//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Decl nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGDebugInfo.h" #include "CGOpenCLRuntime.h" #include "CodeGenModule.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" using namespace clang; using namespace CodeGen; void CodeGenFunction::EmitDecl(const Decl &D) { switch (D.getKind()) { case Decl::TranslationUnit: case Decl::Namespace: case Decl::UnresolvedUsingTypename: case Decl::ClassTemplateSpecialization: case Decl::ClassTemplatePartialSpecialization: case Decl::VarTemplateSpecialization: case Decl::VarTemplatePartialSpecialization: case Decl::TemplateTypeParm: case Decl::UnresolvedUsingValue: case Decl::NonTypeTemplateParm: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: case Decl::Field: case Decl::MSProperty: case Decl::IndirectField: case Decl::ObjCIvar: case Decl::ObjCAtDefsField: case Decl::ParmVar: case Decl::ImplicitParam: case Decl::ClassTemplate: case Decl::VarTemplate: case Decl::FunctionTemplate: case Decl::TypeAliasTemplate: case Decl::TemplateTemplateParm: case Decl::ObjCMethod: case Decl::ObjCCategory: case Decl::ObjCProtocol: case Decl::ObjCInterface: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::ObjCProperty: case Decl::ObjCCompatibleAlias: case Decl::AccessSpec: case Decl::LinkageSpec: case Decl::ObjCPropertyImpl: case Decl::FileScopeAsm: case Decl::Friend: case Decl::FriendTemplate: case Decl::Block: case Decl::Captured: case Decl::ClassScopeFunctionSpecialization: case Decl::UsingShadow: llvm_unreachable("Declaration should not be in declstmts!"); case Decl::Function: // void X(); case Decl::Record: // struct/union/class X; case Decl::Enum: // enum X; case Decl::EnumConstant: // enum ? { X = ? } case Decl::CXXRecord: // struct/union/class X; [C++] case Decl::StaticAssert: // static_assert(X, ""); [C++0x] case Decl::Label: // __label__ x; case Decl::Import: case Decl::OMPThreadPrivate: case Decl::Empty: // None of these decls require codegen support. return; case Decl::NamespaceAlias: if (CGDebugInfo *DI = getDebugInfo()) DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); return; case Decl::Using: // using X; [C++] if (CGDebugInfo *DI = getDebugInfo()) DI->EmitUsingDecl(cast<UsingDecl>(D)); return; case Decl::UsingDirective: // using namespace X; [C++] if (CGDebugInfo *DI = getDebugInfo()) DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); return; case Decl::Var: { const VarDecl &VD = cast<VarDecl>(D); assert(VD.isLocalVarDecl() && "Should not see file-scope variables inside a function!"); return EmitVarDecl(VD); } case Decl::Typedef: // typedef int X; case Decl::TypeAlias: { // using X = int; [C++0x] const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); QualType Ty = TD.getUnderlyingType(); if (Ty->isVariablyModifiedType()) EmitVariablyModifiedType(Ty); } } } /// EmitVarDecl - This method handles emission of any variable declaration /// inside a function, including static vars etc. void CodeGenFunction::EmitVarDecl(const VarDecl &D) { if (D.isStaticLocal()) { llvm::GlobalValue::LinkageTypes Linkage = CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); // FIXME: We need to force the emission/use of a guard variable for // some variables even if we can constant-evaluate them because // we can't guarantee every translation unit will constant-evaluate them. return EmitStaticVarDecl(D, Linkage); } if (D.hasExternalStorage()) // Don't emit it now, allow it to be emitted lazily on its first use. return; if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); assert(D.hasLocalStorage()); return EmitAutoVarDecl(D); } static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, const char *Separator) { CodeGenModule &CGM = CGF.CGM; if (CGF.getLangOpts().CPlusPlus) return CGM.getMangledName(&D).str(); StringRef ContextName; if (!CGF.CurFuncDecl) { // Better be in a block declared in global scope. const NamedDecl *ND = cast<NamedDecl>(&D); const DeclContext *DC = ND->getDeclContext(); if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); else llvm_unreachable("Unknown context for block static var decl"); } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) ContextName = CGM.getMangledName(FD); else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) ContextName = CGF.CurFn->getName(); else llvm_unreachable("Unknown context for static var decl"); return ContextName.str() + Separator + D.getNameAsString(); } llvm::Constant * CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, const char *Separator, llvm::GlobalValue::LinkageTypes Linkage) { QualType Ty = D.getType(); assert(Ty->isConstantSizeType() && "VLAs can't be static"); // Use the label if the variable is renamed with the asm-label extension. std::string Name; if (D.hasAttr<AsmLabelAttr>()) Name = CGM.getMangledName(&D); else Name = GetStaticDeclName(*this, D, Separator); llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); unsigned AddrSpace = CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), LTy, Ty.isConstant(getContext()), Linkage, CGM.EmitNullConstant(D.getType()), Name, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); CGM.setGlobalVisibility(GV, &D); if (D.getTLSKind()) CGM.setTLSMode(GV, D); if (D.isExternallyVisible()) { if (D.hasAttr<DLLImportAttr>()) GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); else if (D.hasAttr<DLLExportAttr>()) GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); } // Make sure the result is of the correct type. unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty); if (AddrSpace != ExpectedAddrSpace) { llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); } return GV; } /// hasNontrivialDestruction - Determine whether a type's destruction is /// non-trivial. If so, and the variable uses static initialization, we must /// register its destructor to run on exit. static bool hasNontrivialDestruction(QualType T) { CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); return RD && !RD->hasTrivialDestructor(); } /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the /// global variable that has already been created for it. If the initializer /// has a different type than GV does, this may free GV and return a different /// one. Otherwise it just returns GV. llvm::GlobalVariable * CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, llvm::GlobalVariable *GV) { llvm::Constant *Init = CGM.EmitConstantInit(D, this); // If constant emission failed, then this should be a C++ static // initializer. if (!Init) { if (!getLangOpts().CPlusPlus) CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); else if (Builder.GetInsertBlock()) { // Since we have a static initializer, this global variable can't // be constant. GV->setConstant(false); EmitCXXGuardedInit(D, GV, /*PerformInit*/true); } return GV; } // The initializer may differ in type from the global. Rewrite // the global to match the initializer. (We have to do this // because some types, like unions, can't be completely represented // in the LLVM type system.) if (GV->getType()->getElementType() != Init->getType()) { llvm::GlobalVariable *OldGV = GV; GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), OldGV->isConstant(), OldGV->getLinkage(), Init, "", /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), CGM.getContext().getTargetAddressSpace(D.getType())); GV->setVisibility(OldGV->getVisibility()); // Steal the name of the old global GV->takeName(OldGV); // Replace all uses of the old global with the new global llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtrForOldDecl); // Erase the old global, since it is no longer used. OldGV->eraseFromParent(); } GV->setConstant(CGM.isTypeConstant(D.getType(), true)); GV->setInitializer(Init); if (hasNontrivialDestruction(D.getType())) { // We have a constant initializer, but a nontrivial destructor. We still // need to perform a guarded "initialization" in order to register the // destructor. EmitCXXGuardedInit(D, GV, /*PerformInit*/false); } return GV; } void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { llvm::Value *&DMEntry = LocalDeclMap[&D]; assert(!DMEntry && "Decl already exists in localdeclmap!"); // Check to see if we already have a global variable for this // declaration. This can happen when double-emitting function // bodies, e.g. with complete and base constructors. llvm::Constant *addr = CGM.getStaticLocalDeclAddress(&D); if (!addr) addr = CreateStaticVarDecl(D, ".", Linkage); // Store into LocalDeclMap before generating initializer to handle // circular references. DMEntry = addr; CGM.setStaticLocalDeclAddress(&D, addr); // We can't have a VLA here, but we can have a pointer to a VLA, // even though that doesn't really make any sense. // Make sure to evaluate VLA bounds now so that we have them for later. if (D.getType()->isVariablyModifiedType()) EmitVariablyModifiedType(D.getType()); // Save the type in case adding the initializer forces a type change. llvm::Type *expectedType = addr->getType(); llvm::GlobalVariable *var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); // If this value has an initializer, emit it. if (D.getInit()) var = AddInitializerToStaticVarDecl(D, var); var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); if (D.hasAttr<AnnotateAttr>()) CGM.AddGlobalAnnotations(&D, var); if (const SectionAttr *SA = D.getAttr<SectionAttr>()) var->setSection(SA->getName()); if (D.hasAttr<UsedAttr>()) CGM.addUsedGlobal(var); // We may have to cast the constant because of the initializer // mismatch above. // // FIXME: It is really dangerous to store this in the map; if anyone // RAUW's the GV uses of this constant will be invalid. llvm::Constant *castedAddr = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); DMEntry = castedAddr; CGM.setStaticLocalDeclAddress(&D, castedAddr); CGM.reportGlobalToASan(var, D.getLocation()); // Emit global variable debug descriptor for static vars. CGDebugInfo *DI = getDebugInfo(); if (DI && CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { DI->setLocation(D.getLocation()); DI->EmitGlobalVariable(var, &D); } } namespace { struct DestroyObject : EHScopeStack::Cleanup { DestroyObject(llvm::Value *addr, QualType type, CodeGenFunction::Destroyer *destroyer, bool useEHCleanupForArray) : addr(addr), type(type), destroyer(destroyer), useEHCleanupForArray(useEHCleanupForArray) {} llvm::Value *addr; QualType type; CodeGenFunction::Destroyer *destroyer; bool useEHCleanupForArray; void Emit(CodeGenFunction &CGF, Flags flags) override { // Don't use an EH cleanup recursively from an EH cleanup. bool useEHCleanupForArray = flags.isForNormalCleanup() && this->useEHCleanupForArray; CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); } }; struct DestroyNRVOVariable : EHScopeStack::Cleanup { DestroyNRVOVariable(llvm::Value *addr, const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} const CXXDestructorDecl *Dtor; llvm::Value *NRVOFlag; llvm::Value *Loc; void Emit(CodeGenFunction &CGF, Flags flags) override { // Along the exceptions path we always execute the dtor. bool NRVO = flags.isForNormalCleanup() && NRVOFlag; llvm::BasicBlock *SkipDtorBB = nullptr; if (NRVO) { // If we exited via NRVO, we skip the destructor call. llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); CGF.EmitBlock(RunDtorBB); } CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, /*Delegating=*/false, Loc); if (NRVO) CGF.EmitBlock(SkipDtorBB); } }; struct CallStackRestore : EHScopeStack::Cleanup { llvm::Value *Stack; CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} void Emit(CodeGenFunction &CGF, Flags flags) override { llvm::Value *V = CGF.Builder.CreateLoad(Stack); llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); CGF.Builder.CreateCall(F, V); } }; struct ExtendGCLifetime : EHScopeStack::Cleanup { const VarDecl &Var; ExtendGCLifetime(const VarDecl *var) : Var(*var) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // Compute the address of the local variable, in case it's a // byref or something. DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, Var.getType(), VK_LValue, SourceLocation()); llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), SourceLocation()); CGF.EmitExtendGCLifetime(value); } }; struct CallCleanupFunction : EHScopeStack::Cleanup { llvm::Constant *CleanupFn; const CGFunctionInfo &FnInfo; const VarDecl &Var; CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, const VarDecl *Var) : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} void Emit(CodeGenFunction &CGF, Flags flags) override { DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, Var.getType(), VK_LValue, SourceLocation()); // Compute the address of the local variable, in case it's a byref // or something. llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); // In some cases, the type of the function argument will be different from // the type of the pointer. An example of this is // void f(void* arg); // __attribute__((cleanup(f))) void *g; // // To fix this we insert a bitcast here. QualType ArgTy = FnInfo.arg_begin()->type; llvm::Value *Arg = CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); CallArgList Args; Args.add(RValue::get(Arg), CGF.getContext().getPointerType(Var.getType())); CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); } }; /// A cleanup to call @llvm.lifetime.end. class CallLifetimeEnd : public EHScopeStack::Cleanup { llvm::Value *Addr; llvm::Value *Size; public: CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) : Addr(addr), Size(size) {} void Emit(CodeGenFunction &CGF, Flags flags) override { llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), Size, castAddr) ->setDoesNotThrow(); } }; } /// EmitAutoVarWithLifetime - Does the setup required for an automatic /// variable with lifetime. static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, llvm::Value *addr, Qualifiers::ObjCLifetime lifetime) { switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("present but none"); case Qualifiers::OCL_ExplicitNone: // nothing to do break; case Qualifiers::OCL_Strong: { CodeGenFunction::Destroyer *destroyer = (var.hasAttr<ObjCPreciseLifetimeAttr>() ? CodeGenFunction::destroyARCStrongPrecise : CodeGenFunction::destroyARCStrongImprecise); CleanupKind cleanupKind = CGF.getARCCleanupKind(); CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, cleanupKind & EHCleanup); break; } case Qualifiers::OCL_Autoreleasing: // nothing to do break; case Qualifiers::OCL_Weak: // __weak objects always get EH cleanups; otherwise, exceptions // could cause really nasty crashes instead of mere leaks. CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), CodeGenFunction::destroyARCWeak, /*useEHCleanup*/ true); break; } } static bool isAccessedBy(const VarDecl &var, const Stmt *s) { if (const Expr *e = dyn_cast<Expr>(s)) { // Skip the most common kinds of expressions that make // hierarchy-walking expensive. s = e = e->IgnoreParenCasts(); if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) return (ref->getDecl() == &var); if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { const BlockDecl *block = be->getBlockDecl(); for (const auto &I : block->captures()) { if (I.getVariable() == &var) return true; } } } for (Stmt::const_child_range children = s->children(); children; ++children) // children might be null; as in missing decl or conditional of an if-stmt. if ((*children) && isAccessedBy(var, *children)) return true; return false; } static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { if (!decl) return false; if (!isa<VarDecl>(decl)) return false; const VarDecl *var = cast<VarDecl>(decl); return isAccessedBy(*var, e); } static void drillIntoBlockVariable(CodeGenFunction &CGF, LValue &lvalue, const VarDecl *var) { lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); } void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit) { Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); if (!lifetime) { llvm::Value *value = EmitScalarExpr(init); if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); EmitStoreThroughLValue(RValue::get(value), lvalue, true); return; } if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) init = DIE->getExpr(); // If we're emitting a value with lifetime, we have to do the // initialization *before* we leave the cleanup scopes. if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { enterFullExpression(ewc); init = ewc->getSubExpr(); } CodeGenFunction::RunCleanupsScope Scope(*this); // We have to maintain the illusion that the variable is // zero-initialized. If the variable might be accessed in its // initializer, zero-initialize before running the initializer, then // actually perform the initialization with an assign. bool accessedByInit = false; if (lifetime != Qualifiers::OCL_ExplicitNone) accessedByInit = (capturedByInit || isAccessedBy(D, init)); if (accessedByInit) { LValue tempLV = lvalue; // Drill down to the __block object if necessary. if (capturedByInit) { // We can use a simple GEP for this because it can't have been // moved yet. tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), getByRefValueLLVMField(cast<VarDecl>(D)))); } llvm::PointerType *ty = cast<llvm::PointerType>(tempLV.getAddress()->getType()); ty = cast<llvm::PointerType>(ty->getElementType()); llvm::Value *zero = llvm::ConstantPointerNull::get(ty); // If __weak, we want to use a barrier under certain conditions. if (lifetime == Qualifiers::OCL_Weak) EmitARCInitWeak(tempLV.getAddress(), zero); // Otherwise just do a simple store. else EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); } // Emit the initializer. llvm::Value *value = nullptr; switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("present but none"); case Qualifiers::OCL_ExplicitNone: // nothing to do value = EmitScalarExpr(init); break; case Qualifiers::OCL_Strong: { value = EmitARCRetainScalarExpr(init); break; } case Qualifiers::OCL_Weak: { // No way to optimize a producing initializer into this. It's not // worth optimizing for, because the value will immediately // disappear in the common case. value = EmitScalarExpr(init); if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); if (accessedByInit) EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); else EmitARCInitWeak(lvalue.getAddress(), value); return; } case Qualifiers::OCL_Autoreleasing: value = EmitARCRetainAutoreleaseScalarExpr(init); break; } if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); // If the variable might have been accessed by its initializer, we // might have to initialize with a barrier. We have to do this for // both __weak and __strong, but __weak got filtered out above. if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); EmitARCRelease(oldValue, ARCImpreciseLifetime); return; } EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); } /// EmitScalarInit - Initialize the given lvalue with the given object. void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); if (!lifetime) return EmitStoreThroughLValue(RValue::get(init), lvalue, true); switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("present but none"); case Qualifiers::OCL_ExplicitNone: // nothing to do break; case Qualifiers::OCL_Strong: init = EmitARCRetain(lvalue.getType(), init); break; case Qualifiers::OCL_Weak: // Initialize and then skip the primitive store. EmitARCInitWeak(lvalue.getAddress(), init); return; case Qualifiers::OCL_Autoreleasing: init = EmitARCRetainAutorelease(lvalue.getType(), init); break; } EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); } /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the /// non-zero parts of the specified initializer with equal or fewer than /// NumStores scalar stores. static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, unsigned &NumStores) { // Zero and Undef never requires any extra stores. if (isa<llvm::ConstantAggregateZero>(Init) || isa<llvm::ConstantPointerNull>(Init) || isa<llvm::UndefValue>(Init)) return true; if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || isa<llvm::ConstantExpr>(Init)) return Init->isNullValue() || NumStores--; // See if we can emit each element. if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) return false; } return true; } if (llvm::ConstantDataSequential *CDS = dyn_cast<llvm::ConstantDataSequential>(Init)) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { llvm::Constant *Elt = CDS->getElementAsConstant(i); if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) return false; } return true; } // Anything else is hard and scary. return false; } /// emitStoresForInitAfterMemset - For inits that /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar /// stores that would be required. static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, bool isVolatile, CGBuilderTy &Builder) { assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && "called emitStoresForInitAfterMemset for zero or undef value."); if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || isa<llvm::ConstantExpr>(Init)) { Builder.CreateStore(Init, Loc, isVolatile); return; } if (llvm::ConstantDataSequential *CDS = dyn_cast<llvm::ConstantDataSequential>(Init)) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { llvm::Constant *Elt = CDS->getElementAsConstant(i); // If necessary, get a pointer to the element and emit it. if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), isVolatile, Builder); } return; } assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && "Unknown value type!"); for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); // If necessary, get a pointer to the element and emit it. if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), isVolatile, Builder); } } /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset /// plus some stores to initialize a local variable instead of using a memcpy /// from a constant global. It is beneficial to use memset if the global is all /// zeros, or mostly zeros and large. static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, uint64_t GlobalSize) { // If a global is all zeros, always use a memset. if (isa<llvm::ConstantAggregateZero>(Init)) return true; // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, // do it if it will require 6 or fewer scalar stores. // TODO: Should budget depends on the size? Avoiding a large global warrants // plopping in more stores. unsigned StoreBudget = 6; uint64_t SizeLimit = 32; return GlobalSize > SizeLimit && canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); } /// Should we use the LLVM lifetime intrinsics for the given local variable? static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, unsigned Size) { // For now, only in optimized builds. if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) return false; // Limit the size of marked objects to 32 bytes. We don't want to increase // compile time by marking tiny objects. unsigned SizeThreshold = 32; return Size > SizeThreshold; } /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a /// variable declaration with auto, register, or no storage class specifier. /// These turn into simple stack objects, or GlobalValues depending on target. void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { AutoVarEmission emission = EmitAutoVarAlloca(D); EmitAutoVarInit(emission); EmitAutoVarCleanups(emission); } /// EmitAutoVarAlloca - Emit the alloca and debug information for a /// local variable. Does not emit initialization or destruction. CodeGenFunction::AutoVarEmission CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { QualType Ty = D.getType(); AutoVarEmission emission(D); bool isByRef = D.hasAttr<BlocksAttr>(); emission.IsByRef = isByRef; CharUnits alignment = getContext().getDeclAlign(&D); emission.Alignment = alignment; // If the type is variably-modified, emit all the VLA sizes for it. if (Ty->isVariablyModifiedType()) EmitVariablyModifiedType(Ty); llvm::Value *DeclPtr; if (Ty->isConstantSizeType()) { bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); // If this value is an array or struct with a statically determinable // constant initializer, there are optimizations we can do. // // TODO: We should constant-evaluate the initializer of any variable, // as long as it is initialized by a constant expression. Currently, // isConstantInitializer produces wrong answers for structs with // reference or bitfield members, and a few other cases, and checking // for POD-ness protects us from some of these. if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && (D.isConstexpr() || ((Ty.isPODType(getContext()) || getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && D.getInit()->isConstantInitializer(getContext(), false)))) { // If the variable's a const type, and it's neither an NRVO // candidate nor a __block variable and has no mutable members, // emit it as a global instead. if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && CGM.isTypeConstant(Ty, true)) { EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); emission.Address = nullptr; // signal this condition to later callbacks assert(emission.wasEmittedAsGlobal()); return emission; } // Otherwise, tell the initialization code that we're in this case. emission.IsConstantAggregate = true; } // A normal fixed sized variable becomes an alloca in the entry block, // unless it's an NRVO variable. llvm::Type *LTy = ConvertTypeForMem(Ty); if (NRVO) { // The named return value optimization: allocate this variable in the // return slot, so that we can elide the copy when returning this // variable (C++0x [class.copy]p34). DeclPtr = ReturnValue; if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { // Create a flag that is used to indicate when the NRVO was applied // to this variable. Set it to zero to indicate that NRVO was not // applied. llvm::Value *Zero = Builder.getFalse(); llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); EnsureInsertPoint(); Builder.CreateStore(Zero, NRVOFlag); // Record the NRVO flag for this variable. NRVOFlags[&D] = NRVOFlag; emission.NRVOFlag = NRVOFlag; } } } else { if (isByRef) LTy = BuildByRefType(&D); llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); Alloc->setName(D.getName()); CharUnits allocaAlignment = alignment; if (isByRef) allocaAlignment = std::max(allocaAlignment, getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); Alloc->setAlignment(allocaAlignment.getQuantity()); DeclPtr = Alloc; // Emit a lifetime intrinsic if meaningful. There's no point // in doing this if we don't have a valid insertion point (?). uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); emission.SizeForLifetimeMarkers = sizeV; llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) ->setDoesNotThrow(); } else { assert(!emission.useLifetimeMarkers()); } } } else { EnsureInsertPoint(); if (!DidCallStackSave) { // Save the stack. llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); llvm::Value *V = Builder.CreateCall(F); Builder.CreateStore(V, Stack); DidCallStackSave = true; // Push a cleanup block and restore the stack there. // FIXME: in general circumstances, this should be an EH cleanup. pushStackRestore(NormalCleanup, Stack); } llvm::Value *elementCount; QualType elementType; std::tie(elementCount, elementType) = getVLASize(Ty); llvm::Type *llvmTy = ConvertTypeForMem(elementType); // Allocate memory for the array. llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); vla->setAlignment(alignment.getQuantity()); DeclPtr = vla; } llvm::Value *&DMEntry = LocalDeclMap[&D]; assert(!DMEntry && "Decl already exists in localdeclmap!"); DMEntry = DeclPtr; emission.Address = DeclPtr; // Emit debug info for local var declaration. if (HaveInsertPoint()) if (CGDebugInfo *DI = getDebugInfo()) { if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { DI->setLocation(D.getLocation()); DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); } } if (D.hasAttr<AnnotateAttr>()) EmitVarAnnotations(&D, emission.Address); return emission; } /// Determines whether the given __block variable is potentially /// captured by the given expression. static bool isCapturedBy(const VarDecl &var, const Expr *e) { // Skip the most common kinds of expressions that make // hierarchy-walking expensive. e = e->IgnoreParenCasts(); if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { const BlockDecl *block = be->getBlockDecl(); for (const auto &I : block->captures()) { if (I.getVariable() == &var) return true; } // No need to walk into the subexpressions. return false; } if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { const CompoundStmt *CS = SE->getSubStmt(); for (const auto *BI : CS->body()) if (const auto *E = dyn_cast<Expr>(BI)) { if (isCapturedBy(var, E)) return true; } else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { // special case declarations for (const auto *I : DS->decls()) { if (const auto *VD = dyn_cast<VarDecl>((I))) { const Expr *Init = VD->getInit(); if (Init && isCapturedBy(var, Init)) return true; } } } else // FIXME. Make safe assumption assuming arbitrary statements cause capturing. // Later, provide code to poke into statements for capture analysis. return true; return false; } for (Stmt::const_child_range children = e->children(); children; ++children) if (isCapturedBy(var, cast<Expr>(*children))) return true; return false; } /// \brief Determine whether the given initializer is trivial in the sense /// that it requires no code to be generated. static bool isTrivialInitializer(const Expr *Init) { if (!Init) return true; if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) if (CXXConstructorDecl *Constructor = Construct->getConstructor()) if (Constructor->isTrivial() && Constructor->isDefaultConstructor() && !Construct->requiresZeroInitialization()) return true; return false; } void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { assert(emission.Variable && "emission was not valid!"); // If this was emitted as a global constant, we're done. if (emission.wasEmittedAsGlobal()) return; const VarDecl &D = *emission.Variable; QualType type = D.getType(); // If this local has an initializer, emit it now. const Expr *Init = D.getInit(); // If we are at an unreachable point, we don't need to emit the initializer // unless it contains a label. if (!HaveInsertPoint()) { if (!Init || !ContainsLabel(Init)) return; EnsureInsertPoint(); } // Initialize the structure of a __block variable. if (emission.IsByRef) emitByrefStructureInit(emission); if (isTrivialInitializer(Init)) return; CharUnits alignment = emission.Alignment; // Check whether this is a byref variable that's potentially // captured and moved by its own initializer. If so, we'll need to // emit the initializer first, then copy into the variable. bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); llvm::Value *Loc = capturedByInit ? emission.Address : emission.getObjectAddress(*this); llvm::Constant *constant = nullptr; if (emission.IsConstantAggregate || D.isConstexpr()) { assert(!capturedByInit && "constant init contains a capturing block?"); constant = CGM.EmitConstantInit(D, this); } if (!constant) { LValue lv = MakeAddrLValue(Loc, type, alignment); lv.setNonGC(true); return EmitExprAsInit(Init, &D, lv, capturedByInit); } if (!emission.IsConstantAggregate) { // For simple scalar/complex initialization, store the value directly. LValue lv = MakeAddrLValue(Loc, type, alignment); lv.setNonGC(true); return EmitStoreThroughLValue(RValue::get(constant), lv, true); } // If this is a simple aggregate initialization, we can optimize it // in various ways. bool isVolatile = type.isVolatileQualified(); llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtrTy, getContext().getTypeSizeInChars(type).getQuantity()); llvm::Type *BP = Int8PtrTy; if (Loc->getType() != BP) Loc = Builder.CreateBitCast(Loc, BP); // If the initializer is all or mostly zeros, codegen with memset then do // a few stores afterward. if (shouldUseMemSetPlusStoresToInitialize(constant, CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, alignment.getQuantity(), isVolatile); // Zero and undef don't require a stores. if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); } } else { // Otherwise, create a temporary global with the initializer then // memcpy from the global to the alloca. std::string Name = GetStaticDeclName(*this, D, "."); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, llvm::GlobalValue::PrivateLinkage, constant, Name); GV->setAlignment(alignment.getQuantity()); GV->setUnnamedAddr(true); llvm::Value *SrcPtr = GV; if (SrcPtr->getType() != BP) SrcPtr = Builder.CreateBitCast(SrcPtr, BP); Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), isVolatile); } } /// Emit an expression as an initializer for a variable at the given /// location. The expression is not necessarily the normal /// initializer for the variable, and the address is not necessarily /// its normal location. /// /// \param init the initializing expression /// \param var the variable to act as if we're initializing /// \param loc the address to initialize; its type is a pointer /// to the LLVM mapping of the variable's type /// \param alignment the alignment of the address /// \param capturedByInit true if the variable is a __block variable /// whose address is potentially changed by the initializer void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit) { QualType type = D->getType(); if (type->isReferenceType()) { RValue rvalue = EmitReferenceBindingToExpr(init); if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); EmitStoreThroughLValue(rvalue, lvalue, true); return; } switch (getEvaluationKind(type)) { case TEK_Scalar: EmitScalarInit(init, D, lvalue, capturedByInit); return; case TEK_Complex: { ComplexPairTy complex = EmitComplexExpr(init); if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); EmitStoreOfComplex(complex, lvalue, /*init*/ true); return; } case TEK_Aggregate: if (type->isAtomicType()) { EmitAtomicInit(const_cast<Expr*>(init), lvalue); } else { // TODO: how can we delay here if D is captured by its initializer? EmitAggExpr(init, AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased)); } return; } llvm_unreachable("bad evaluation kind"); } /// Enter a destroy cleanup for the given local variable. void CodeGenFunction::emitAutoVarTypeCleanup( const CodeGenFunction::AutoVarEmission &emission, QualType::DestructionKind dtorKind) { assert(dtorKind != QualType::DK_none); // Note that for __block variables, we want to destroy the // original stack object, not the possibly forwarded object. llvm::Value *addr = emission.getObjectAddress(*this); const VarDecl *var = emission.Variable; QualType type = var->getType(); CleanupKind cleanupKind = NormalAndEHCleanup; CodeGenFunction::Destroyer *destroyer = nullptr; switch (dtorKind) { case QualType::DK_none: llvm_unreachable("no cleanup for trivially-destructible variable"); case QualType::DK_cxx_destructor: // If there's an NRVO flag on the emission, we need a different // cleanup. if (emission.NRVOFlag) { assert(!type->isArrayType()); CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, emission.NRVOFlag); return; } break; case QualType::DK_objc_strong_lifetime: // Suppress cleanups for pseudo-strong variables. if (var->isARCPseudoStrong()) return; // Otherwise, consider whether to use an EH cleanup or not. cleanupKind = getARCCleanupKind(); // Use the imprecise destroyer by default. if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) destroyer = CodeGenFunction::destroyARCStrongImprecise; break; case QualType::DK_objc_weak_lifetime: break; } // If we haven't chosen a more specific destroyer, use the default. if (!destroyer) destroyer = getDestroyer(dtorKind); // Use an EH cleanup in array destructors iff the destructor itself // is being pushed as an EH cleanup. bool useEHCleanup = (cleanupKind & EHCleanup); EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, useEHCleanup); } void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { assert(emission.Variable && "emission was not valid!"); // If this was emitted as a global constant, we're done. if (emission.wasEmittedAsGlobal()) return; // If we don't have an insertion point, we're done. Sema prevents // us from jumping into any of these scopes anyway. if (!HaveInsertPoint()) return; const VarDecl &D = *emission.Variable; // Make sure we call @llvm.lifetime.end. This needs to happen // *last*, so the cleanup needs to be pushed *first*. if (emission.useLifetimeMarkers()) { EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, emission.getAllocatedAddress(), emission.getSizeForLifetimeMarkers()); } // Check the type for a cleanup. if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) emitAutoVarTypeCleanup(emission, dtorKind); // In GC mode, honor objc_precise_lifetime. if (getLangOpts().getGC() != LangOptions::NonGC && D.hasAttr<ObjCPreciseLifetimeAttr>()) { EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); } // Handle the cleanup attribute. if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { const FunctionDecl *FD = CA->getFunctionDecl(); llvm::Constant *F = CGM.GetAddrOfFunction(FD); assert(F && "Could not find function!"); const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); } // If this is a block variable, call _Block_object_destroy // (on the unforwarded address). if (emission.IsByRef) enterByrefCleanup(emission); } CodeGenFunction::Destroyer * CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { switch (kind) { case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); case QualType::DK_cxx_destructor: return destroyCXXObject; case QualType::DK_objc_strong_lifetime: return destroyARCStrongPrecise; case QualType::DK_objc_weak_lifetime: return destroyARCWeak; } llvm_unreachable("Unknown DestructionKind"); } /// pushEHDestroy - Push the standard destructor for the given type as /// an EH-only cleanup. void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, llvm::Value *addr, QualType type) { assert(dtorKind && "cannot push destructor for trivial type"); assert(needsEHCleanup(dtorKind)); pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); } /// pushDestroy - Push the standard destructor for the given type as /// at least a normal cleanup. void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, llvm::Value *addr, QualType type) { assert(dtorKind && "cannot push destructor for trivial type"); CleanupKind cleanupKind = getCleanupKind(dtorKind); pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), cleanupKind & EHCleanup); } void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray) { pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, useEHCleanupForArray); } void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); } void CodeGenFunction::pushLifetimeExtendedDestroy( CleanupKind cleanupKind, llvm::Value *addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray) { assert(!isInConditionalBranch() && "performing lifetime extension from within conditional"); // Push an EH-only cleanup for the object now. // FIXME: When popping normal cleanups, we need to keep this EH cleanup // around in case a temporary's destructor throws an exception. if (cleanupKind & EHCleanup) EHStack.pushCleanup<DestroyObject>( static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, destroyer, useEHCleanupForArray); // Remember that we need to push a full cleanup for the object at the // end of the full-expression. pushCleanupAfterFullExpr<DestroyObject>( cleanupKind, addr, type, destroyer, useEHCleanupForArray); } /// emitDestroy - Immediately perform the destruction of the given /// object. /// /// \param addr - the address of the object; a type* /// \param type - the type of the object; if an array type, all /// objects are destroyed in reverse order /// \param destroyer - the function to call to destroy individual /// elements /// \param useEHCleanupForArray - whether an EH cleanup should be /// used when destroying array elements, in case one of the /// destructions throws an exception void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray) { const ArrayType *arrayType = getContext().getAsArrayType(type); if (!arrayType) return destroyer(*this, addr, type); llvm::Value *begin = addr; llvm::Value *length = emitArrayLength(arrayType, type, begin); // Normally we have to check whether the array is zero-length. bool checkZeroLength = true; // But if the array length is constant, we can suppress that. if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { // ...and if it's constant zero, we can just skip the entire thing. if (constLength->isZero()) return; checkZeroLength = false; } llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); emitArrayDestroy(begin, end, type, destroyer, checkZeroLength, useEHCleanupForArray); } /// emitArrayDestroy - Destroys all the elements of the given array, /// beginning from last to first. The array cannot be zero-length. /// /// \param begin - a type* denoting the first element of the array /// \param end - a type* denoting one past the end of the array /// \param type - the element type of the array /// \param destroyer - the function to call to destroy elements /// \param useEHCleanup - whether to push an EH cleanup to destroy /// the remaining elements in case the destruction of a single /// element throws void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType type, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup) { assert(!type->isArrayType()); // The basic structure here is a do-while loop, because we don't // need to check for the zero-element case. llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); if (checkZeroLength) { llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, "arraydestroy.isempty"); Builder.CreateCondBr(isEmpty, doneBB, bodyBB); } // Enter the loop body, making that address the current address. llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); EmitBlock(bodyBB); llvm::PHINode *elementPast = Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); elementPast->addIncoming(end, entryBB); // Shift the address back by one element. llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, "arraydestroy.element"); if (useEHCleanup) pushRegularPartialArrayCleanup(begin, element, type, destroyer); // Perform the actual destruction there. destroyer(*this, element, type); if (useEHCleanup) PopCleanupBlock(); // Check whether we've reached the end. llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); Builder.CreateCondBr(done, doneBB, bodyBB); elementPast->addIncoming(element, Builder.GetInsertBlock()); // Done. EmitBlock(doneBB); } /// Perform partial array destruction as if in an EH cleanup. Unlike /// emitArrayDestroy, the element type here may still be an array type. static void emitPartialArrayDestroy(CodeGenFunction &CGF, llvm::Value *begin, llvm::Value *end, QualType type, CodeGenFunction::Destroyer *destroyer) { // If the element type is itself an array, drill down. unsigned arrayDepth = 0; while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { // VLAs don't require a GEP index to walk into. if (!isa<VariableArrayType>(arrayType)) arrayDepth++; type = arrayType->getElementType(); } if (arrayDepth) { llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); } // Destroy the array. We don't ever need an EH cleanup because we // assume that we're in an EH cleanup ourselves, so a throwing // destructor causes an immediate terminate. CGF.emitArrayDestroy(begin, end, type, destroyer, /*checkZeroLength*/ true, /*useEHCleanup*/ false); } namespace { /// RegularPartialArrayDestroy - a cleanup which performs a partial /// array destroy where the end pointer is regularly determined and /// does not need to be loaded from a local. class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { llvm::Value *ArrayBegin; llvm::Value *ArrayEnd; QualType ElementType; CodeGenFunction::Destroyer *Destroyer; public: RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CodeGenFunction::Destroyer *destroyer) : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), ElementType(elementType), Destroyer(destroyer) {} void Emit(CodeGenFunction &CGF, Flags flags) override { emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, ElementType, Destroyer); } }; /// IrregularPartialArrayDestroy - a cleanup which performs a /// partial array destroy where the end pointer is irregularly /// determined and must be loaded from a local. class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { llvm::Value *ArrayBegin; llvm::Value *ArrayEndPointer; QualType ElementType; CodeGenFunction::Destroyer *Destroyer; public: IrregularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEndPointer, QualType elementType, CodeGenFunction::Destroyer *destroyer) : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), ElementType(elementType), Destroyer(destroyer) {} void Emit(CodeGenFunction &CGF, Flags flags) override { llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, ElementType, Destroyer); } }; } /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy /// already-constructed elements of the given array. The cleanup /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. /// /// \param elementType - the immediate element type of the array; /// possibly still an array type void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEndPointer, QualType elementType, Destroyer *destroyer) { pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, arrayBegin, arrayEndPointer, elementType, destroyer); } /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy /// already-constructed elements of the given array. The cleanup /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. /// /// \param elementType - the immediate element type of the array; /// possibly still an array type void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, Destroyer *destroyer) { pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, arrayBegin, arrayEnd, elementType, destroyer); } /// Lazily declare the @llvm.lifetime.start intrinsic. llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { if (LifetimeStartFn) return LifetimeStartFn; LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), llvm::Intrinsic::lifetime_start); return LifetimeStartFn; } /// Lazily declare the @llvm.lifetime.end intrinsic. llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { if (LifetimeEndFn) return LifetimeEndFn; LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), llvm::Intrinsic::lifetime_end); return LifetimeEndFn; } namespace { /// A cleanup to perform a release of an object at the end of a /// function. This is used to balance out the incoming +1 of a /// ns_consumed argument when we can't reasonably do that just by /// not doing the initial retain for a __block argument. struct ConsumeARCParameter : EHScopeStack::Cleanup { ConsumeARCParameter(llvm::Value *param, ARCPreciseLifetime_t precise) : Param(param), Precise(precise) {} llvm::Value *Param; ARCPreciseLifetime_t Precise; void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitARCRelease(Param, Precise); } }; } /// Emit an alloca (or GlobalValue depending on target) /// for the specified parameter and set up LocalDeclMap. void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, unsigned ArgNo) { // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && "Invalid argument to EmitParmDecl"); Arg->setName(D.getName()); QualType Ty = D.getType(); // Use better IR generation for certain implicit parameters. if (isa<ImplicitParamDecl>(D)) { // The only implicit argument a block has is its literal. if (BlockInfo) { LocalDeclMap[&D] = Arg; llvm::Value *LocalAddr = nullptr; if (CGM.getCodeGenOpts().OptimizationLevel == 0) { // Allocate a stack slot to let the debug info survive the RA. llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), D.getName() + ".addr"); Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); LocalAddr = Builder.CreateLoad(Alloc); } if (CGDebugInfo *DI = getDebugInfo()) { if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { DI->setLocation(D.getLocation()); DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); } } return; } } llvm::Value *DeclPtr; bool DoStore = false; bool IsScalar = hasScalarEvaluationKind(Ty); CharUnits Align = getContext().getDeclAlign(&D); // If we already have a pointer to the argument, reuse the input pointer. if (ArgIsPointer) { // If we have a prettier pointer type at this point, bitcast to that. unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace(); llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy, D.getName()); // Push a destructor cleanup for this parameter if the ABI requires it. if (!IsScalar && getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); if (RD && RD->hasNonTrivialDestructor()) pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); } } else { // Otherwise, create a temporary to hold the value. llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), D.getName() + ".addr"); Alloc->setAlignment(Align.getQuantity()); DeclPtr = Alloc; DoStore = true; } LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); if (IsScalar) { Qualifiers qs = Ty.getQualifiers(); if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { // We honor __attribute__((ns_consumed)) for types with lifetime. // For __strong, it's handled by just skipping the initial retain; // otherwise we have to balance out the initial +1 with an extra // cleanup to do the release at the end of the function. bool isConsumed = D.hasAttr<NSConsumedAttr>(); // 'self' is always formally __strong, but if this is not an // init method then we don't want to retain it. if (D.isARCPseudoStrong()) { const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); assert(&D == method->getSelfDecl()); assert(lt == Qualifiers::OCL_Strong); assert(qs.hasConst()); assert(method->getMethodFamily() != OMF_init); (void) method; lt = Qualifiers::OCL_ExplicitNone; } if (lt == Qualifiers::OCL_Strong) { if (!isConsumed) { if (CGM.getCodeGenOpts().OptimizationLevel == 0) { // use objc_storeStrong(&dest, value) for retaining the // object. But first, store a null into 'dest' because // objc_storeStrong attempts to release its old value. llvm::Value *Null = CGM.EmitNullConstant(D.getType()); EmitStoreOfScalar(Null, lv, /* isInitialization */ true); EmitARCStoreStrongCall(lv.getAddress(), Arg, true); DoStore = false; } else // Don't use objc_retainBlock for block pointers, because we // don't want to Block_copy something just because we got it // as a parameter. Arg = EmitARCRetainNonBlock(Arg); } } else { // Push the cleanup for a consumed parameter. if (isConsumed) { ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() ? ARCPreciseLifetime : ARCImpreciseLifetime); EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, precise); } if (lt == Qualifiers::OCL_Weak) { EmitARCInitWeak(DeclPtr, Arg); DoStore = false; // The weak init is a store, no need to do two. } } // Enter the cleanup scope. EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); } } // Store the initial value into the alloca. if (DoStore) EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); llvm::Value *&DMEntry = LocalDeclMap[&D]; assert(!DMEntry && "Decl already exists in localdeclmap!"); DMEntry = DeclPtr; // Emit debug info for param declaration. if (CGDebugInfo *DI = getDebugInfo()) { if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); } } if (D.hasAttr<AnnotateAttr>()) EmitVarAnnotations(&D, DeclPtr); }