//===--- CGBlocks.cpp - Emit LLVM Code for declarations -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit blocks. // //===----------------------------------------------------------------------===// #include "CGBlocks.h" #include "CGDebugInfo.h" #include "CGObjCRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/DeclObjC.h" #include "llvm/ADT/SmallSet.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Module.h" #include <algorithm> #include <cstdio> using namespace clang; using namespace CodeGen; CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name) : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false), HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false), StructureType(nullptr), Block(block), DominatingIP(nullptr) { // Skip asm prefix, if any. 'name' is usually taken directly from // the mangled name of the enclosing function. if (!name.empty() && name[0] == '\01') name = name.substr(1); } // Anchor the vtable to this translation unit. CodeGenModule::ByrefHelpers::~ByrefHelpers() {} /// Build the given block as a global block. static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, const CGBlockInfo &blockInfo, llvm::Constant *blockFn); /// Build the helper function to copy a block. static llvm::Constant *buildCopyHelper(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo); } /// Build the helper function to dispose of a block. static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo); } /// buildBlockDescriptor - Build the block descriptor meta-data for a block. /// buildBlockDescriptor is accessed from 5th field of the Block_literal /// meta-data and contains stationary information about the block literal. /// Its definition will have 4 (or optinally 6) words. /// \code /// struct Block_descriptor { /// unsigned long reserved; /// unsigned long size; // size of Block_literal metadata in bytes. /// void *copy_func_helper_decl; // optional copy helper. /// void *destroy_func_decl; // optioanl destructor helper. /// void *block_method_encoding_address; // @encode for block literal signature. /// void *block_layout_info; // encoding of captured block variables. /// }; /// \endcode static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { ASTContext &C = CGM.getContext(); llvm::Type *ulong = CGM.getTypes().ConvertType(C.UnsignedLongTy); llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); SmallVector<llvm::Constant*, 6> elements; // reserved elements.push_back(llvm::ConstantInt::get(ulong, 0)); // Size // FIXME: What is the right way to say this doesn't fit? We should give // a user diagnostic in that case. Better fix would be to change the // API to size_t. elements.push_back(llvm::ConstantInt::get(ulong, blockInfo.BlockSize.getQuantity())); // Optional copy/dispose helpers. if (blockInfo.NeedsCopyDispose) { // copy_func_helper_decl elements.push_back(buildCopyHelper(CGM, blockInfo)); // destroy_func_decl elements.push_back(buildDisposeHelper(CGM, blockInfo)); } // Signature. Mandatory ObjC-style method descriptor @encode sequence. std::string typeAtEncoding = CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr()); elements.push_back(llvm::ConstantExpr::getBitCast( CGM.GetAddrOfConstantCString(typeAtEncoding), i8p)); // GC layout. if (C.getLangOpts().ObjC1) { if (CGM.getLangOpts().getGC() != LangOptions::NonGC) elements.push_back(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo)); else elements.push_back(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo)); } else elements.push_back(llvm::Constant::getNullValue(i8p)); llvm::Constant *init = llvm::ConstantStruct::getAnon(elements); llvm::GlobalVariable *global = new llvm::GlobalVariable(CGM.getModule(), init->getType(), true, llvm::GlobalValue::InternalLinkage, init, "__block_descriptor_tmp"); return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType()); } /* Purely notional variadic template describing the layout of a block. template <class _ResultType, class... _ParamTypes, class... _CaptureTypes> struct Block_literal { /// Initialized to one of: /// extern void *_NSConcreteStackBlock[]; /// extern void *_NSConcreteGlobalBlock[]; /// /// In theory, we could start one off malloc'ed by setting /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using /// this isa: /// extern void *_NSConcreteMallocBlock[]; struct objc_class *isa; /// These are the flags (with corresponding bit number) that the /// compiler is actually supposed to know about. /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block /// descriptor provides copy and dispose helper functions /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured /// object with a nontrivial destructor or copy constructor /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated /// as global memory /// 29. BLOCK_USE_STRET - indicates that the block function /// uses stret, which objc_msgSend needs to know about /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an /// @encoded signature string /// And we're not supposed to manipulate these: /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved /// to malloc'ed memory /// 27. BLOCK_IS_GC - indicates that the block has been moved to /// to GC-allocated memory /// Additionally, the bottom 16 bits are a reference count which /// should be zero on the stack. int flags; /// Reserved; should be zero-initialized. int reserved; /// Function pointer generated from block literal. _ResultType (*invoke)(Block_literal *, _ParamTypes...); /// Block description metadata generated from block literal. struct Block_descriptor *block_descriptor; /// Captured values follow. _CapturesTypes captures...; }; */ /// The number of fields in a block header. const unsigned BlockHeaderSize = 5; namespace { /// A chunk of data that we actually have to capture in the block. struct BlockLayoutChunk { CharUnits Alignment; CharUnits Size; Qualifiers::ObjCLifetime Lifetime; const BlockDecl::Capture *Capture; // null for 'this' llvm::Type *Type; BlockLayoutChunk(CharUnits align, CharUnits size, Qualifiers::ObjCLifetime lifetime, const BlockDecl::Capture *capture, llvm::Type *type) : Alignment(align), Size(size), Lifetime(lifetime), Capture(capture), Type(type) {} /// Tell the block info that this chunk has the given field index. void setIndex(CGBlockInfo &info, unsigned index) { if (!Capture) info.CXXThisIndex = index; else info.Captures[Capture->getVariable()] = CGBlockInfo::Capture::makeIndex(index); } }; /// Order by 1) all __strong together 2) next, all byfref together 3) next, /// all __weak together. Preserve descending alignment in all situations. bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) { CharUnits LeftValue, RightValue; bool LeftByref = left.Capture ? left.Capture->isByRef() : false; bool RightByref = right.Capture ? right.Capture->isByRef() : false; if (left.Lifetime == Qualifiers::OCL_Strong && left.Alignment >= right.Alignment) LeftValue = CharUnits::fromQuantity(64); else if (LeftByref && left.Alignment >= right.Alignment) LeftValue = CharUnits::fromQuantity(32); else if (left.Lifetime == Qualifiers::OCL_Weak && left.Alignment >= right.Alignment) LeftValue = CharUnits::fromQuantity(16); else LeftValue = left.Alignment; if (right.Lifetime == Qualifiers::OCL_Strong && right.Alignment >= left.Alignment) RightValue = CharUnits::fromQuantity(64); else if (RightByref && right.Alignment >= left.Alignment) RightValue = CharUnits::fromQuantity(32); else if (right.Lifetime == Qualifiers::OCL_Weak && right.Alignment >= left.Alignment) RightValue = CharUnits::fromQuantity(16); else RightValue = right.Alignment; return LeftValue > RightValue; } } /// Determines if the given type is safe for constant capture in C++. static bool isSafeForCXXConstantCapture(QualType type) { const RecordType *recordType = type->getBaseElementTypeUnsafe()->getAs<RecordType>(); // Only records can be unsafe. if (!recordType) return true; const auto *record = cast<CXXRecordDecl>(recordType->getDecl()); // Maintain semantics for classes with non-trivial dtors or copy ctors. if (!record->hasTrivialDestructor()) return false; if (record->hasNonTrivialCopyConstructor()) return false; // Otherwise, we just have to make sure there aren't any mutable // fields that might have changed since initialization. return !record->hasMutableFields(); } /// It is illegal to modify a const object after initialization. /// Therefore, if a const object has a constant initializer, we don't /// actually need to keep storage for it in the block; we'll just /// rematerialize it at the start of the block function. This is /// acceptable because we make no promises about address stability of /// captured variables. static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM, CodeGenFunction *CGF, const VarDecl *var) { QualType type = var->getType(); // We can only do this if the variable is const. if (!type.isConstQualified()) return nullptr; // Furthermore, in C++ we have to worry about mutable fields: // C++ [dcl.type.cv]p4: // Except that any class member declared mutable can be // modified, any attempt to modify a const object during its // lifetime results in undefined behavior. if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type)) return nullptr; // If the variable doesn't have any initializer (shouldn't this be // invalid?), it's not clear what we should do. Maybe capture as // zero? const Expr *init = var->getInit(); if (!init) return nullptr; return CGM.EmitConstantInit(*var, CGF); } /// Get the low bit of a nonzero character count. This is the /// alignment of the nth byte if the 0th byte is universally aligned. static CharUnits getLowBit(CharUnits v) { return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1)); } static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info, SmallVectorImpl<llvm::Type*> &elementTypes) { ASTContext &C = CGM.getContext(); // The header is basically a 'struct { void *; int; int; void *; void *; }'. CharUnits ptrSize, ptrAlign, intSize, intAlign; std::tie(ptrSize, ptrAlign) = C.getTypeInfoInChars(C.VoidPtrTy); std::tie(intSize, intAlign) = C.getTypeInfoInChars(C.IntTy); // Are there crazy embedded platforms where this isn't true? assert(intSize <= ptrSize && "layout assumptions horribly violated"); CharUnits headerSize = ptrSize; if (2 * intSize < ptrAlign) headerSize += ptrSize; else headerSize += 2 * intSize; headerSize += 2 * ptrSize; info.BlockAlign = ptrAlign; info.BlockSize = headerSize; assert(elementTypes.empty()); llvm::Type *i8p = CGM.getTypes().ConvertType(C.VoidPtrTy); llvm::Type *intTy = CGM.getTypes().ConvertType(C.IntTy); elementTypes.push_back(i8p); elementTypes.push_back(intTy); elementTypes.push_back(intTy); elementTypes.push_back(i8p); elementTypes.push_back(CGM.getBlockDescriptorType()); assert(elementTypes.size() == BlockHeaderSize); } /// Compute the layout of the given block. Attempts to lay the block /// out with minimal space requirements. static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF, CGBlockInfo &info) { ASTContext &C = CGM.getContext(); const BlockDecl *block = info.getBlockDecl(); SmallVector<llvm::Type*, 8> elementTypes; initializeForBlockHeader(CGM, info, elementTypes); if (!block->hasCaptures()) { info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); info.CanBeGlobal = true; return; } else if (C.getLangOpts().ObjC1 && CGM.getLangOpts().getGC() == LangOptions::NonGC) info.HasCapturedVariableLayout = true; // Collect the layout chunks. SmallVector<BlockLayoutChunk, 16> layout; layout.reserve(block->capturesCXXThis() + (block->capture_end() - block->capture_begin())); CharUnits maxFieldAlign; // First, 'this'. if (block->capturesCXXThis()) { assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) && "Can't capture 'this' outside a method"); QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType(C); llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType); std::pair<CharUnits,CharUnits> tinfo = CGM.getContext().getTypeInfoInChars(thisType); maxFieldAlign = std::max(maxFieldAlign, tinfo.second); layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, Qualifiers::OCL_None, nullptr, llvmType)); } // Next, all the block captures. for (const auto &CI : block->captures()) { const VarDecl *variable = CI.getVariable(); if (CI.isByRef()) { // We have to copy/dispose of the __block reference. info.NeedsCopyDispose = true; // Just use void* instead of a pointer to the byref type. QualType byRefPtrTy = C.VoidPtrTy; llvm::Type *llvmType = CGM.getTypes().ConvertType(byRefPtrTy); std::pair<CharUnits,CharUnits> tinfo = CGM.getContext().getTypeInfoInChars(byRefPtrTy); maxFieldAlign = std::max(maxFieldAlign, tinfo.second); layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first, Qualifiers::OCL_None, &CI, llvmType)); continue; } // Otherwise, build a layout chunk with the size and alignment of // the declaration. if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) { info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant); continue; } // If we have a lifetime qualifier, honor it for capture purposes. // That includes *not* copying it if it's __unsafe_unretained. Qualifiers::ObjCLifetime lifetime = variable->getType().getObjCLifetime(); if (lifetime) { switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("impossible"); case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: break; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: info.NeedsCopyDispose = true; } // Block pointers require copy/dispose. So do Objective-C pointers. } else if (variable->getType()->isObjCRetainableType()) { info.NeedsCopyDispose = true; // used for mrr below. lifetime = Qualifiers::OCL_Strong; // So do types that require non-trivial copy construction. } else if (CI.hasCopyExpr()) { info.NeedsCopyDispose = true; info.HasCXXObject = true; // And so do types with destructors. } else if (CGM.getLangOpts().CPlusPlus) { if (const CXXRecordDecl *record = variable->getType()->getAsCXXRecordDecl()) { if (!record->hasTrivialDestructor()) { info.HasCXXObject = true; info.NeedsCopyDispose = true; } } } QualType VT = variable->getType(); CharUnits size = C.getTypeSizeInChars(VT); CharUnits align = C.getDeclAlign(variable); maxFieldAlign = std::max(maxFieldAlign, align); llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(VT); layout.push_back(BlockLayoutChunk(align, size, lifetime, &CI, llvmType)); } // If that was everything, we're done here. if (layout.empty()) { info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); info.CanBeGlobal = true; return; } // Sort the layout by alignment. We have to use a stable sort here // to get reproducible results. There should probably be an // llvm::array_pod_stable_sort. std::stable_sort(layout.begin(), layout.end()); // Needed for blocks layout info. info.BlockHeaderForcedGapOffset = info.BlockSize; info.BlockHeaderForcedGapSize = CharUnits::Zero(); CharUnits &blockSize = info.BlockSize; info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign); // Assuming that the first byte in the header is maximally aligned, // get the alignment of the first byte following the header. CharUnits endAlign = getLowBit(blockSize); // If the end of the header isn't satisfactorily aligned for the // maximum thing, look for things that are okay with the header-end // alignment, and keep appending them until we get something that's // aligned right. This algorithm is only guaranteed optimal if // that condition is satisfied at some point; otherwise we can get // things like: // header // next byte has alignment 4 // something_with_size_5; // next byte has alignment 1 // something_with_alignment_8; // which has 7 bytes of padding, as opposed to the naive solution // which might have less (?). if (endAlign < maxFieldAlign) { SmallVectorImpl<BlockLayoutChunk>::iterator li = layout.begin() + 1, le = layout.end(); // Look for something that the header end is already // satisfactorily aligned for. for (; li != le && endAlign < li->Alignment; ++li) ; // If we found something that's naturally aligned for the end of // the header, keep adding things... if (li != le) { SmallVectorImpl<BlockLayoutChunk>::iterator first = li; for (; li != le; ++li) { assert(endAlign >= li->Alignment); li->setIndex(info, elementTypes.size()); elementTypes.push_back(li->Type); blockSize += li->Size; endAlign = getLowBit(blockSize); // ...until we get to the alignment of the maximum field. if (endAlign >= maxFieldAlign) { if (li == first) { // No user field was appended. So, a gap was added. // Save total gap size for use in block layout bit map. info.BlockHeaderForcedGapSize = li->Size; } break; } } // Don't re-append everything we just appended. layout.erase(first, li); } } assert(endAlign == getLowBit(blockSize)); // At this point, we just have to add padding if the end align still // isn't aligned right. if (endAlign < maxFieldAlign) { CharUnits newBlockSize = blockSize.RoundUpToAlignment(maxFieldAlign); CharUnits padding = newBlockSize - blockSize; elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, padding.getQuantity())); blockSize = newBlockSize; endAlign = getLowBit(blockSize); // might be > maxFieldAlign } assert(endAlign >= maxFieldAlign); assert(endAlign == getLowBit(blockSize)); // Slam everything else on now. This works because they have // strictly decreasing alignment and we expect that size is always a // multiple of alignment. for (SmallVectorImpl<BlockLayoutChunk>::iterator li = layout.begin(), le = layout.end(); li != le; ++li) { assert(endAlign >= li->Alignment); li->setIndex(info, elementTypes.size()); elementTypes.push_back(li->Type); blockSize += li->Size; endAlign = getLowBit(blockSize); } info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); } /// Enter the scope of a block. This should be run at the entrance to /// a full-expression so that the block's cleanups are pushed at the /// right place in the stack. static void enterBlockScope(CodeGenFunction &CGF, BlockDecl *block) { assert(CGF.HaveInsertPoint()); // Allocate the block info and place it at the head of the list. CGBlockInfo &blockInfo = *new CGBlockInfo(block, CGF.CurFn->getName()); blockInfo.NextBlockInfo = CGF.FirstBlockInfo; CGF.FirstBlockInfo = &blockInfo; // Compute information about the layout, etc., of this block, // pushing cleanups as necessary. computeBlockInfo(CGF.CGM, &CGF, blockInfo); // Nothing else to do if it can be global. if (blockInfo.CanBeGlobal) return; // Make the allocation for the block. blockInfo.Address = CGF.CreateTempAlloca(blockInfo.StructureType, "block"); blockInfo.Address->setAlignment(blockInfo.BlockAlign.getQuantity()); // If there are cleanups to emit, enter them (but inactive). if (!blockInfo.NeedsCopyDispose) return; // Walk through the captures (in order) and find the ones not // captured by constant. for (const auto &CI : block->captures()) { // Ignore __block captures; there's nothing special in the // on-stack block that we need to do for them. if (CI.isByRef()) continue; // Ignore variables that are constant-captured. const VarDecl *variable = CI.getVariable(); CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) continue; // Ignore objects that aren't destructed. QualType::DestructionKind dtorKind = variable->getType().isDestructedType(); if (dtorKind == QualType::DK_none) continue; CodeGenFunction::Destroyer *destroyer; // Block captures count as local values and have imprecise semantics. // They also can't be arrays, so need to worry about that. if (dtorKind == QualType::DK_objc_strong_lifetime) { destroyer = CodeGenFunction::destroyARCStrongImprecise; } else { destroyer = CGF.getDestroyer(dtorKind); } // GEP down to the address. llvm::Value *addr = CGF.Builder.CreateStructGEP(blockInfo.Address, capture.getIndex()); // We can use that GEP as the dominating IP. if (!blockInfo.DominatingIP) blockInfo.DominatingIP = cast<llvm::Instruction>(addr); CleanupKind cleanupKind = InactiveNormalCleanup; bool useArrayEHCleanup = CGF.needsEHCleanup(dtorKind); if (useArrayEHCleanup) cleanupKind = InactiveNormalAndEHCleanup; CGF.pushDestroy(cleanupKind, addr, variable->getType(), destroyer, useArrayEHCleanup); // Remember where that cleanup was. capture.setCleanup(CGF.EHStack.stable_begin()); } } /// Enter a full-expression with a non-trivial number of objects to /// clean up. This is in this file because, at the moment, the only /// kind of cleanup object is a BlockDecl*. void CodeGenFunction::enterNonTrivialFullExpression(const ExprWithCleanups *E) { assert(E->getNumObjects() != 0); ArrayRef<ExprWithCleanups::CleanupObject> cleanups = E->getObjects(); for (ArrayRef<ExprWithCleanups::CleanupObject>::iterator i = cleanups.begin(), e = cleanups.end(); i != e; ++i) { enterBlockScope(*this, *i); } } /// Find the layout for the given block in a linked list and remove it. static CGBlockInfo *findAndRemoveBlockInfo(CGBlockInfo **head, const BlockDecl *block) { while (true) { assert(head && *head); CGBlockInfo *cur = *head; // If this is the block we're looking for, splice it out of the list. if (cur->getBlockDecl() == block) { *head = cur->NextBlockInfo; return cur; } head = &cur->NextBlockInfo; } } /// Destroy a chain of block layouts. void CodeGenFunction::destroyBlockInfos(CGBlockInfo *head) { assert(head && "destroying an empty chain"); do { CGBlockInfo *cur = head; head = cur->NextBlockInfo; delete cur; } while (head != nullptr); } /// Emit a block literal expression in the current function. llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) { // If the block has no captures, we won't have a pre-computed // layout for it. if (!blockExpr->getBlockDecl()->hasCaptures()) { CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName()); computeBlockInfo(CGM, this, blockInfo); blockInfo.BlockExpression = blockExpr; return EmitBlockLiteral(blockInfo); } // Find the block info for this block and take ownership of it. std::unique_ptr<CGBlockInfo> blockInfo; blockInfo.reset(findAndRemoveBlockInfo(&FirstBlockInfo, blockExpr->getBlockDecl())); blockInfo->BlockExpression = blockExpr; return EmitBlockLiteral(*blockInfo); } llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) { // Using the computed layout, generate the actual block function. bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda(); llvm::Constant *blockFn = CodeGenFunction(CGM, true).GenerateBlockFunction(CurGD, blockInfo, LocalDeclMap, isLambdaConv); blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); // If there is nothing to capture, we can emit this as a global block. if (blockInfo.CanBeGlobal) return buildGlobalBlock(CGM, blockInfo, blockFn); // Otherwise, we have to emit this as a local block. llvm::Constant *isa = CGM.getNSConcreteStackBlock(); isa = llvm::ConstantExpr::getBitCast(isa, VoidPtrTy); // Build the block descriptor. llvm::Constant *descriptor = buildBlockDescriptor(CGM, blockInfo); llvm::AllocaInst *blockAddr = blockInfo.Address; assert(blockAddr && "block has no address!"); // Compute the initial on-stack block flags. BlockFlags flags = BLOCK_HAS_SIGNATURE; if (blockInfo.HasCapturedVariableLayout) flags |= BLOCK_HAS_EXTENDED_LAYOUT; if (blockInfo.NeedsCopyDispose) flags |= BLOCK_HAS_COPY_DISPOSE; if (blockInfo.HasCXXObject) flags |= BLOCK_HAS_CXX_OBJ; if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; // Initialize the block literal. Builder.CreateStore(isa, Builder.CreateStructGEP(blockAddr, 0, "block.isa")); Builder.CreateStore(llvm::ConstantInt::get(IntTy, flags.getBitMask()), Builder.CreateStructGEP(blockAddr, 1, "block.flags")); Builder.CreateStore(llvm::ConstantInt::get(IntTy, 0), Builder.CreateStructGEP(blockAddr, 2, "block.reserved")); Builder.CreateStore(blockFn, Builder.CreateStructGEP(blockAddr, 3, "block.invoke")); Builder.CreateStore(descriptor, Builder.CreateStructGEP(blockAddr, 4, "block.descriptor")); // Finally, capture all the values into the block. const BlockDecl *blockDecl = blockInfo.getBlockDecl(); // First, 'this'. if (blockDecl->capturesCXXThis()) { llvm::Value *addr = Builder.CreateStructGEP(blockAddr, blockInfo.CXXThisIndex, "block.captured-this.addr"); Builder.CreateStore(LoadCXXThis(), addr); } // Next, captured variables. for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); // Ignore constant captures. if (capture.isConstant()) continue; QualType type = variable->getType(); CharUnits align = getContext().getDeclAlign(variable); // This will be a [[type]]*, except that a byref entry will just be // an i8**. llvm::Value *blockField = Builder.CreateStructGEP(blockAddr, capture.getIndex(), "block.captured"); // Compute the address of the thing we're going to move into the // block literal. llvm::Value *src; if (BlockInfo && CI.isNested()) { // We need to use the capture from the enclosing block. const CGBlockInfo::Capture &enclosingCapture = BlockInfo->getCapture(variable); // This is a [[type]]*, except that a byref entry wil just be an i8**. src = Builder.CreateStructGEP(LoadBlockStruct(), enclosingCapture.getIndex(), "block.capture.addr"); } else if (blockDecl->isConversionFromLambda()) { // The lambda capture in a lambda's conversion-to-block-pointer is // special; we'll simply emit it directly. src = nullptr; } else { // Just look it up in the locals map, which will give us back a // [[type]]*. If that doesn't work, do the more elaborate DRE // emission. src = LocalDeclMap.lookup(variable); if (!src) { DeclRefExpr declRef(const_cast<VarDecl *>(variable), /*refersToEnclosing*/ CI.isNested(), type, VK_LValue, SourceLocation()); src = EmitDeclRefLValue(&declRef).getAddress(); } } // For byrefs, we just write the pointer to the byref struct into // the block field. There's no need to chase the forwarding // pointer at this point, since we're building something that will // live a shorter life than the stack byref anyway. if (CI.isByRef()) { // Get a void* that points to the byref struct. if (CI.isNested()) src = Builder.CreateAlignedLoad(src, align.getQuantity(), "byref.capture"); else src = Builder.CreateBitCast(src, VoidPtrTy); // Write that void* into the capture field. Builder.CreateAlignedStore(src, blockField, align.getQuantity()); // If we have a copy constructor, evaluate that into the block field. } else if (const Expr *copyExpr = CI.getCopyExpr()) { if (blockDecl->isConversionFromLambda()) { // If we have a lambda conversion, emit the expression // directly into the block instead. AggValueSlot Slot = AggValueSlot::forAddr(blockField, align, Qualifiers(), AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); EmitAggExpr(copyExpr, Slot); } else { EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr); } // If it's a reference variable, copy the reference into the block field. } else if (type->isReferenceType()) { llvm::Value *ref = Builder.CreateAlignedLoad(src, align.getQuantity(), "ref.val"); Builder.CreateAlignedStore(ref, blockField, align.getQuantity()); // If this is an ARC __strong block-pointer variable, don't do a // block copy. // // TODO: this can be generalized into the normal initialization logic: // we should never need to do a block-copy when initializing a local // variable, because the local variable's lifetime should be strictly // contained within the stack block's. } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong && type->isBlockPointerType()) { // Load the block and do a simple retain. LValue srcLV = MakeAddrLValue(src, type, align); llvm::Value *value = EmitLoadOfScalar(srcLV, SourceLocation()); value = EmitARCRetainNonBlock(value); // Do a primitive store to the block field. LValue destLV = MakeAddrLValue(blockField, type, align); EmitStoreOfScalar(value, destLV, /*init*/ true); // Otherwise, fake up a POD copy into the block field. } else { // Fake up a new variable so that EmitScalarInit doesn't think // we're referring to the variable in its own initializer. ImplicitParamDecl blockFieldPseudoVar(getContext(), /*DC*/ nullptr, SourceLocation(), /*name*/ nullptr, type); // We use one of these or the other depending on whether the // reference is nested. DeclRefExpr declRef(const_cast<VarDecl*>(variable), /*refersToEnclosing*/ CI.isNested(), type, VK_LValue, SourceLocation()); ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue, &declRef, VK_RValue); EmitExprAsInit(&l2r, &blockFieldPseudoVar, MakeAddrLValue(blockField, type, align), /*captured by init*/ false); } // Activate the cleanup if layout pushed one. if (!CI.isByRef()) { EHScopeStack::stable_iterator cleanup = capture.getCleanup(); if (cleanup.isValid()) ActivateCleanupBlock(cleanup, blockInfo.DominatingIP); } } // Cast to the converted block-pointer type, which happens (somewhat // unfortunately) to be a pointer to function type. llvm::Value *result = Builder.CreateBitCast(blockAddr, ConvertType(blockInfo.getBlockExpr()->getType())); return result; } llvm::Type *CodeGenModule::getBlockDescriptorType() { if (BlockDescriptorType) return BlockDescriptorType; llvm::Type *UnsignedLongTy = getTypes().ConvertType(getContext().UnsignedLongTy); // struct __block_descriptor { // unsigned long reserved; // unsigned long block_size; // // // later, the following will be added // // struct { // void (*copyHelper)(); // void (*copyHelper)(); // } helpers; // !!! optional // // const char *signature; // the block signature // const char *layout; // reserved // }; BlockDescriptorType = llvm::StructType::create("struct.__block_descriptor", UnsignedLongTy, UnsignedLongTy, NULL); // Now form a pointer to that. BlockDescriptorType = llvm::PointerType::getUnqual(BlockDescriptorType); return BlockDescriptorType; } llvm::Type *CodeGenModule::getGenericBlockLiteralType() { if (GenericBlockLiteralType) return GenericBlockLiteralType; llvm::Type *BlockDescPtrTy = getBlockDescriptorType(); // struct __block_literal_generic { // void *__isa; // int __flags; // int __reserved; // void (*__invoke)(void *); // struct __block_descriptor *__descriptor; // }; GenericBlockLiteralType = llvm::StructType::create("struct.__block_literal_generic", VoidPtrTy, IntTy, IntTy, VoidPtrTy, BlockDescPtrTy, NULL); return GenericBlockLiteralType; } RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue) { const BlockPointerType *BPT = E->getCallee()->getType()->getAs<BlockPointerType>(); llvm::Value *Callee = EmitScalarExpr(E->getCallee()); // Get a pointer to the generic block literal. llvm::Type *BlockLiteralTy = llvm::PointerType::getUnqual(CGM.getGenericBlockLiteralType()); // Bitcast the callee to a block literal. llvm::Value *BlockLiteral = Builder.CreateBitCast(Callee, BlockLiteralTy, "block.literal"); // Get the function pointer from the literal. llvm::Value *FuncPtr = Builder.CreateStructGEP(BlockLiteral, 3); BlockLiteral = Builder.CreateBitCast(BlockLiteral, VoidPtrTy); // Add the block literal. CallArgList Args; Args.add(RValue::get(BlockLiteral), getContext().VoidPtrTy); QualType FnType = BPT->getPointeeType(); // And the rest of the arguments. EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), E->arg_begin(), E->arg_end()); // Load the function. llvm::Value *Func = Builder.CreateLoad(FuncPtr); const FunctionType *FuncTy = FnType->castAs<FunctionType>(); const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy); // Cast the function pointer to the right type. llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo); llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy); Func = Builder.CreateBitCast(Func, BlockFTyPtr); // And call the block. return EmitCall(FnInfo, Func, ReturnValue, Args); } llvm::Value *CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable, bool isByRef) { assert(BlockInfo && "evaluating block ref without block information?"); const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable); // Handle constant captures. if (capture.isConstant()) return LocalDeclMap[variable]; llvm::Value *addr = Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(), "block.capture.addr"); if (isByRef) { // addr should be a void** right now. Load, then cast the result // to byref*. addr = Builder.CreateLoad(addr); llvm::PointerType *byrefPointerType = llvm::PointerType::get(BuildByRefType(variable), 0); addr = Builder.CreateBitCast(addr, byrefPointerType, "byref.addr"); // Follow the forwarding pointer. addr = Builder.CreateStructGEP(addr, 1, "byref.forwarding"); addr = Builder.CreateLoad(addr, "byref.addr.forwarded"); // Cast back to byref* and GEP over to the actual object. addr = Builder.CreateBitCast(addr, byrefPointerType); addr = Builder.CreateStructGEP(addr, getByRefValueLLVMField(variable), variable->getNameAsString()); } if (variable->getType()->isReferenceType()) addr = Builder.CreateLoad(addr, "ref.tmp"); return addr; } llvm::Constant * CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *blockExpr, const char *name) { CGBlockInfo blockInfo(blockExpr->getBlockDecl(), name); blockInfo.BlockExpression = blockExpr; // Compute information about the layout, etc., of this block. computeBlockInfo(*this, nullptr, blockInfo); // Using that metadata, generate the actual block function. llvm::Constant *blockFn; { llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap; blockFn = CodeGenFunction(*this).GenerateBlockFunction(GlobalDecl(), blockInfo, LocalDeclMap, false); } blockFn = llvm::ConstantExpr::getBitCast(blockFn, VoidPtrTy); return buildGlobalBlock(*this, blockInfo, blockFn); } static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, const CGBlockInfo &blockInfo, llvm::Constant *blockFn) { assert(blockInfo.CanBeGlobal); // Generate the constants for the block literal initializer. llvm::Constant *fields[BlockHeaderSize]; // isa fields[0] = CGM.getNSConcreteGlobalBlock(); // __flags BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE; if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; fields[1] = llvm::ConstantInt::get(CGM.IntTy, flags.getBitMask()); // Reserved fields[2] = llvm::Constant::getNullValue(CGM.IntTy); // Function fields[3] = blockFn; // Descriptor fields[4] = buildBlockDescriptor(CGM, blockInfo); llvm::Constant *init = llvm::ConstantStruct::getAnon(fields); llvm::GlobalVariable *literal = new llvm::GlobalVariable(CGM.getModule(), init->getType(), /*constant*/ true, llvm::GlobalVariable::InternalLinkage, init, "__block_literal_global"); literal->setAlignment(blockInfo.BlockAlign.getQuantity()); // Return a constant of the appropriately-casted type. llvm::Type *requiredType = CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType()); return llvm::ConstantExpr::getBitCast(literal, requiredType); } llvm::Function * CodeGenFunction::GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &blockInfo, const DeclMapTy &ldm, bool IsLambdaConversionToBlock) { const BlockDecl *blockDecl = blockInfo.getBlockDecl(); CurGD = GD; BlockInfo = &blockInfo; // Arrange for local static and local extern declarations to appear // to be local to this function as well, in case they're directly // referenced in a block. for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) { const auto *var = dyn_cast<VarDecl>(i->first); if (var && !var->hasLocalStorage()) LocalDeclMap[var] = i->second; } // Begin building the function declaration. // Build the argument list. FunctionArgList args; // The first argument is the block pointer. Just take it as a void* // and cast it later. QualType selfTy = getContext().VoidPtrTy; IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor"); ImplicitParamDecl selfDecl(getContext(), const_cast<BlockDecl*>(blockDecl), SourceLocation(), II, selfTy); args.push_back(&selfDecl); // Now add the rest of the parameters. for (auto i : blockDecl->params()) args.push_back(i); // Create the function declaration. const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType(); const CGFunctionInfo &fnInfo = CGM.getTypes().arrangeFreeFunctionDeclaration( fnType->getReturnType(), args, fnType->getExtInfo(), fnType->isVariadic()); if (CGM.ReturnSlotInterferesWithArgs(fnInfo)) blockInfo.UsesStret = true; llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo); StringRef name = CGM.getBlockMangledName(GD, blockDecl); llvm::Function *fn = llvm::Function::Create( fnLLVMType, llvm::GlobalValue::InternalLinkage, name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo); // Begin generating the function. StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args, blockDecl->getLocation(), blockInfo.getBlockExpr()->getBody()->getLocStart()); // Okay. Undo some of what StartFunction did. // Pull the 'self' reference out of the local decl map. llvm::Value *blockAddr = LocalDeclMap[&selfDecl]; LocalDeclMap.erase(&selfDecl); BlockPointer = Builder.CreateBitCast(blockAddr, blockInfo.StructureType->getPointerTo(), "block"); // At -O0 we generate an explicit alloca for the BlockPointer, so the RA // won't delete the dbg.declare intrinsics for captured variables. llvm::Value *BlockPointerDbgLoc = BlockPointer; if (CGM.getCodeGenOpts().OptimizationLevel == 0) { // Allocate a stack slot for it, so we can point the debugger to it llvm::AllocaInst *Alloca = CreateTempAlloca(BlockPointer->getType(), "block.addr"); unsigned Align = getContext().getDeclAlign(&selfDecl).getQuantity(); Alloca->setAlignment(Align); // Set the DebugLocation to empty, so the store is recognized as a // frame setup instruction by llvm::DwarfDebug::beginFunction(). NoLocation NL(*this, Builder); Builder.CreateAlignedStore(BlockPointer, Alloca, Align); BlockPointerDbgLoc = Alloca; } // If we have a C++ 'this' reference, go ahead and force it into // existence now. if (blockDecl->capturesCXXThis()) { llvm::Value *addr = Builder.CreateStructGEP(BlockPointer, blockInfo.CXXThisIndex, "block.captured-this"); CXXThisValue = Builder.CreateLoad(addr, "this"); } // Also force all the constant captures. for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (!capture.isConstant()) continue; unsigned align = getContext().getDeclAlign(variable).getQuantity(); llvm::AllocaInst *alloca = CreateMemTemp(variable->getType(), "block.captured-const"); alloca->setAlignment(align); Builder.CreateAlignedStore(capture.getConstant(), alloca, align); LocalDeclMap[variable] = alloca; } // Save a spot to insert the debug information for all the DeclRefExprs. llvm::BasicBlock *entry = Builder.GetInsertBlock(); llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint(); --entry_ptr; if (IsLambdaConversionToBlock) EmitLambdaBlockInvokeBody(); else { PGO.assignRegionCounters(blockDecl, fn); RegionCounter Cnt = getPGORegionCounter(blockDecl->getBody()); Cnt.beginRegion(Builder); EmitStmt(blockDecl->getBody()); PGO.emitInstrumentationData(); PGO.destroyRegionCounters(); } // Remember where we were... llvm::BasicBlock *resume = Builder.GetInsertBlock(); // Go back to the entry. ++entry_ptr; Builder.SetInsertPoint(entry, entry_ptr); // Emit debug information for all the DeclRefExprs. // FIXME: also for 'this' if (CGDebugInfo *DI = getDebugInfo()) { for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); DI->EmitLocation(Builder, variable->getLocation()); if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) { DI->EmitDeclareOfAutoVariable(variable, LocalDeclMap[variable], Builder); continue; } DI->EmitDeclareOfBlockDeclRefVariable(variable, BlockPointerDbgLoc, Builder, blockInfo); } } // Recover location if it was changed in the above loop. DI->EmitLocation(Builder, cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); } // And resume where we left off. if (resume == nullptr) Builder.ClearInsertionPoint(); else Builder.SetInsertPoint(resume); FinishFunction(cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc()); return fn; } /* notes.push_back(HelperInfo()); HelperInfo ¬e = notes.back(); note.index = capture.getIndex(); note.RequiresCopying = (ci->hasCopyExpr() || BlockRequiresCopying(type)); note.cxxbar_import = ci->getCopyExpr(); if (ci->isByRef()) { note.flag = BLOCK_FIELD_IS_BYREF; if (type.isObjCGCWeak()) note.flag |= BLOCK_FIELD_IS_WEAK; } else if (type->isBlockPointerType()) { note.flag = BLOCK_FIELD_IS_BLOCK; } else { note.flag = BLOCK_FIELD_IS_OBJECT; } */ /// Generate the copy-helper function for a block closure object: /// static void block_copy_helper(block_t *dst, block_t *src); /// The runtime will have previously initialized 'dst' by doing a /// bit-copy of 'src'. /// /// Note that this copies an entire block closure object to the heap; /// it should not be confused with a 'byref copy helper', which moves /// the contents of an individual __block variable to the heap. llvm::Constant * CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) { ASTContext &C = getContext(); FunctionArgList args; ImplicitParamDecl dstDecl(getContext(), nullptr, SourceLocation(), nullptr, C.VoidPtrTy); args.push_back(&dstDecl); ImplicitParamDecl srcDecl(getContext(), nullptr, SourceLocation(), nullptr, C.VoidPtrTy); args.push_back(&srcDecl); const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( C.VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false); // FIXME: it would be nice if these were mergeable with things with // identical semantics. llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_block_", &CGM.getModule()); IdentifierInfo *II = &CGM.getContext().Idents.get("__copy_helper_block_"); FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, C.VoidTy, nullptr, SC_Static, false, false); // Create a scope with an artificial location for the body of this function. ArtificialLocation AL(*this, Builder); StartFunction(FD, C.VoidTy, Fn, FI, args); AL.Emit(); llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); llvm::Value *src = GetAddrOfLocalVar(&srcDecl); src = Builder.CreateLoad(src); src = Builder.CreateBitCast(src, structPtrTy, "block.source"); llvm::Value *dst = GetAddrOfLocalVar(&dstDecl); dst = Builder.CreateLoad(dst); dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest"); const BlockDecl *blockDecl = blockInfo.getBlockDecl(); for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); QualType type = variable->getType(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) continue; const Expr *copyExpr = CI.getCopyExpr(); BlockFieldFlags flags; bool useARCWeakCopy = false; bool useARCStrongCopy = false; if (copyExpr) { assert(!CI.isByRef()); // don't bother computing flags } else if (CI.isByRef()) { flags = BLOCK_FIELD_IS_BYREF; if (type.isObjCGCWeak()) flags |= BLOCK_FIELD_IS_WEAK; } else if (type->isObjCRetainableType()) { flags = BLOCK_FIELD_IS_OBJECT; bool isBlockPointer = type->isBlockPointerType(); if (isBlockPointer) flags = BLOCK_FIELD_IS_BLOCK; // Special rules for ARC captures: if (getLangOpts().ObjCAutoRefCount) { Qualifiers qs = type.getQualifiers(); // We need to register __weak direct captures with the runtime. if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) { useARCWeakCopy = true; // We need to retain the copied value for __strong direct captures. } else if (qs.getObjCLifetime() == Qualifiers::OCL_Strong) { // If it's a block pointer, we have to copy the block and // assign that to the destination pointer, so we might as // well use _Block_object_assign. Otherwise we can avoid that. if (!isBlockPointer) useARCStrongCopy = true; // Otherwise the memcpy is fine. } else { continue; } // Non-ARC captures of retainable pointers are strong and // therefore require a call to _Block_object_assign. } else { // fall through } } else { continue; } unsigned index = capture.getIndex(); llvm::Value *srcField = Builder.CreateStructGEP(src, index); llvm::Value *dstField = Builder.CreateStructGEP(dst, index); // If there's an explicit copy expression, we do that. if (copyExpr) { EmitSynthesizedCXXCopyCtor(dstField, srcField, copyExpr); } else if (useARCWeakCopy) { EmitARCCopyWeak(dstField, srcField); } else { llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); if (useARCStrongCopy) { // At -O0, store null into the destination field (so that the // storeStrong doesn't over-release) and then call storeStrong. // This is a workaround to not having an initStrong call. if (CGM.getCodeGenOpts().OptimizationLevel == 0) { auto *ty = cast<llvm::PointerType>(srcValue->getType()); llvm::Value *null = llvm::ConstantPointerNull::get(ty); Builder.CreateStore(null, dstField); EmitARCStoreStrongCall(dstField, srcValue, true); // With optimization enabled, take advantage of the fact that // the blocks runtime guarantees a memcpy of the block data, and // just emit a retain of the src field. } else { EmitARCRetainNonBlock(srcValue); // We don't need this anymore, so kill it. It's not quite // worth the annoyance to avoid creating it in the first place. cast<llvm::Instruction>(dstField)->eraseFromParent(); } } else { srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy); llvm::Value *dstAddr = Builder.CreateBitCast(dstField, VoidPtrTy); llvm::Value *args[] = { dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) }; bool copyCanThrow = false; if (CI.isByRef() && variable->getType()->getAsCXXRecordDecl()) { const Expr *copyExpr = CGM.getContext().getBlockVarCopyInits(variable); if (copyExpr) { copyCanThrow = true; // FIXME: reuse the noexcept logic } } if (copyCanThrow) { EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args); } else { EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args); } } } } FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); } /// Generate the destroy-helper function for a block closure object: /// static void block_destroy_helper(block_t *theBlock); /// /// Note that this destroys a heap-allocated block closure object; /// it should not be confused with a 'byref destroy helper', which /// destroys the heap-allocated contents of an individual __block /// variable. llvm::Constant * CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) { ASTContext &C = getContext(); FunctionArgList args; ImplicitParamDecl srcDecl(getContext(), nullptr, SourceLocation(), nullptr, C.VoidPtrTy); args.push_back(&srcDecl); const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( C.VoidTy, args, FunctionType::ExtInfo(), /*variadic=*/false); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__destroy_helper_block_", &CGM.getModule()); IdentifierInfo *II = &CGM.getContext().Idents.get("__destroy_helper_block_"); FunctionDecl *FD = FunctionDecl::Create(C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, C.VoidTy, nullptr, SC_Static, false, false); // Create a scope with an artificial location for the body of this function. ArtificialLocation AL(*this, Builder); StartFunction(FD, C.VoidTy, Fn, FI, args); AL.Emit(); llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); llvm::Value *src = GetAddrOfLocalVar(&srcDecl); src = Builder.CreateLoad(src); src = Builder.CreateBitCast(src, structPtrTy, "block"); const BlockDecl *blockDecl = blockInfo.getBlockDecl(); CodeGenFunction::RunCleanupsScope cleanups(*this); for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); QualType type = variable->getType(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) continue; BlockFieldFlags flags; const CXXDestructorDecl *dtor = nullptr; bool useARCWeakDestroy = false; bool useARCStrongDestroy = false; if (CI.isByRef()) { flags = BLOCK_FIELD_IS_BYREF; if (type.isObjCGCWeak()) flags |= BLOCK_FIELD_IS_WEAK; } else if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { if (record->hasTrivialDestructor()) continue; dtor = record->getDestructor(); } else if (type->isObjCRetainableType()) { flags = BLOCK_FIELD_IS_OBJECT; if (type->isBlockPointerType()) flags = BLOCK_FIELD_IS_BLOCK; // Special rules for ARC captures. if (getLangOpts().ObjCAutoRefCount) { Qualifiers qs = type.getQualifiers(); // Don't generate special dispose logic for a captured object // unless it's __strong or __weak. if (!qs.hasStrongOrWeakObjCLifetime()) continue; // Support __weak direct captures. if (qs.getObjCLifetime() == Qualifiers::OCL_Weak) useARCWeakDestroy = true; // Tools really want us to use objc_storeStrong here. else useARCStrongDestroy = true; } } else { continue; } unsigned index = capture.getIndex(); llvm::Value *srcField = Builder.CreateStructGEP(src, index); // If there's an explicit copy expression, we do that. if (dtor) { PushDestructorCleanup(dtor, srcField); // If this is a __weak capture, emit the release directly. } else if (useARCWeakDestroy) { EmitARCDestroyWeak(srcField); // Destroy strong objects with a call if requested. } else if (useARCStrongDestroy) { EmitARCDestroyStrong(srcField, ARCImpreciseLifetime); // Otherwise we call _Block_object_dispose. It wouldn't be too // hard to just emit this as a cleanup if we wanted to make sure // that things were done in reverse. } else { llvm::Value *value = Builder.CreateLoad(srcField); value = Builder.CreateBitCast(value, VoidPtrTy); BuildBlockRelease(value, flags); } } cleanups.ForceCleanup(); FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); } namespace { /// Emits the copy/dispose helper functions for a __block object of id type. class ObjectByrefHelpers : public CodeGenModule::ByrefHelpers { BlockFieldFlags Flags; public: ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags) : ByrefHelpers(alignment), Flags(flags) {} void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, llvm::Value *srcField) override { destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy); srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy); llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField); unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask(); llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags); llvm::Value *fn = CGF.CGM.getBlockObjectAssign(); llvm::Value *args[] = { destField, srcValue, flagsVal }; CGF.EmitNounwindRuntimeCall(fn, args); } void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0)); llvm::Value *value = CGF.Builder.CreateLoad(field); CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER); } void profileImpl(llvm::FoldingSetNodeID &id) const override { id.AddInteger(Flags.getBitMask()); } }; /// Emits the copy/dispose helpers for an ARC __block __weak variable. class ARCWeakByrefHelpers : public CodeGenModule::ByrefHelpers { public: ARCWeakByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {} void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, llvm::Value *srcField) override { CGF.EmitARCMoveWeak(destField, srcField); } void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { CGF.EmitARCDestroyWeak(field); } void profileImpl(llvm::FoldingSetNodeID &id) const override { // 0 is distinguishable from all pointers and byref flags id.AddInteger(0); } }; /// Emits the copy/dispose helpers for an ARC __block __strong variable /// that's not of block-pointer type. class ARCStrongByrefHelpers : public CodeGenModule::ByrefHelpers { public: ARCStrongByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {} void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, llvm::Value *srcField) override { // Do a "move" by copying the value and then zeroing out the old // variable. llvm::LoadInst *value = CGF.Builder.CreateLoad(srcField); value->setAlignment(Alignment.getQuantity()); llvm::Value *null = llvm::ConstantPointerNull::get(cast<llvm::PointerType>(value->getType())); if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { llvm::StoreInst *store = CGF.Builder.CreateStore(null, destField); store->setAlignment(Alignment.getQuantity()); CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true); CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true); return; } llvm::StoreInst *store = CGF.Builder.CreateStore(value, destField); store->setAlignment(Alignment.getQuantity()); store = CGF.Builder.CreateStore(null, srcField); store->setAlignment(Alignment.getQuantity()); } void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); } void profileImpl(llvm::FoldingSetNodeID &id) const override { // 1 is distinguishable from all pointers and byref flags id.AddInteger(1); } }; /// Emits the copy/dispose helpers for an ARC __block __strong /// variable that's of block-pointer type. class ARCStrongBlockByrefHelpers : public CodeGenModule::ByrefHelpers { public: ARCStrongBlockByrefHelpers(CharUnits alignment) : ByrefHelpers(alignment) {} void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, llvm::Value *srcField) override { // Do the copy with objc_retainBlock; that's all that // _Block_object_assign would do anyway, and we'd have to pass the // right arguments to make sure it doesn't get no-op'ed. llvm::LoadInst *oldValue = CGF.Builder.CreateLoad(srcField); oldValue->setAlignment(Alignment.getQuantity()); llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true); llvm::StoreInst *store = CGF.Builder.CreateStore(copy, destField); store->setAlignment(Alignment.getQuantity()); } void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); } void profileImpl(llvm::FoldingSetNodeID &id) const override { // 2 is distinguishable from all pointers and byref flags id.AddInteger(2); } }; /// Emits the copy/dispose helpers for a __block variable with a /// nontrivial copy constructor or destructor. class CXXByrefHelpers : public CodeGenModule::ByrefHelpers { QualType VarType; const Expr *CopyExpr; public: CXXByrefHelpers(CharUnits alignment, QualType type, const Expr *copyExpr) : ByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {} bool needsCopy() const override { return CopyExpr != nullptr; } void emitCopy(CodeGenFunction &CGF, llvm::Value *destField, llvm::Value *srcField) override { if (!CopyExpr) return; CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr); } void emitDispose(CodeGenFunction &CGF, llvm::Value *field) override { EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin(); CGF.PushDestructorCleanup(VarType, field); CGF.PopCleanupBlocks(cleanupDepth); } void profileImpl(llvm::FoldingSetNodeID &id) const override { id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr()); } }; } // end anonymous namespace static llvm::Constant * generateByrefCopyHelper(CodeGenFunction &CGF, llvm::StructType &byrefType, unsigned valueFieldIndex, CodeGenModule::ByrefHelpers &byrefInfo) { ASTContext &Context = CGF.getContext(); QualType R = Context.VoidTy; FunctionArgList args; ImplicitParamDecl dst(CGF.getContext(), nullptr, SourceLocation(), nullptr, Context.VoidPtrTy); args.push_back(&dst); ImplicitParamDecl src(CGF.getContext(), nullptr, SourceLocation(), nullptr, Context.VoidPtrTy); args.push_back(&src); const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeFreeFunctionDeclaration( R, args, FunctionType::ExtInfo(), /*variadic=*/false); CodeGenTypes &Types = CGF.CGM.getTypes(); llvm::FunctionType *LTy = Types.GetFunctionType(FI); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__Block_byref_object_copy_", &CGF.CGM.getModule()); IdentifierInfo *II = &Context.Idents.get("__Block_byref_object_copy_"); FunctionDecl *FD = FunctionDecl::Create(Context, Context.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, R, nullptr, SC_Static, false, false); CGF.StartFunction(FD, R, Fn, FI, args); if (byrefInfo.needsCopy()) { llvm::Type *byrefPtrType = byrefType.getPointerTo(0); // dst->x llvm::Value *destField = CGF.GetAddrOfLocalVar(&dst); destField = CGF.Builder.CreateLoad(destField); destField = CGF.Builder.CreateBitCast(destField, byrefPtrType); destField = CGF.Builder.CreateStructGEP(destField, valueFieldIndex, "x"); // src->x llvm::Value *srcField = CGF.GetAddrOfLocalVar(&src); srcField = CGF.Builder.CreateLoad(srcField); srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType); srcField = CGF.Builder.CreateStructGEP(srcField, valueFieldIndex, "x"); byrefInfo.emitCopy(CGF, destField, srcField); } CGF.FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); } /// Build the copy helper for a __block variable. static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM, llvm::StructType &byrefType, unsigned byrefValueIndex, CodeGenModule::ByrefHelpers &info) { CodeGenFunction CGF(CGM); return generateByrefCopyHelper(CGF, byrefType, byrefValueIndex, info); } /// Generate code for a __block variable's dispose helper. static llvm::Constant * generateByrefDisposeHelper(CodeGenFunction &CGF, llvm::StructType &byrefType, unsigned byrefValueIndex, CodeGenModule::ByrefHelpers &byrefInfo) { ASTContext &Context = CGF.getContext(); QualType R = Context.VoidTy; FunctionArgList args; ImplicitParamDecl src(CGF.getContext(), nullptr, SourceLocation(), nullptr, Context.VoidPtrTy); args.push_back(&src); const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeFreeFunctionDeclaration( R, args, FunctionType::ExtInfo(), /*variadic=*/false); CodeGenTypes &Types = CGF.CGM.getTypes(); llvm::FunctionType *LTy = Types.GetFunctionType(FI); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__Block_byref_object_dispose_", &CGF.CGM.getModule()); IdentifierInfo *II = &Context.Idents.get("__Block_byref_object_dispose_"); FunctionDecl *FD = FunctionDecl::Create(Context, Context.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, R, nullptr, SC_Static, false, false); CGF.StartFunction(FD, R, Fn, FI, args); if (byrefInfo.needsDispose()) { llvm::Value *V = CGF.GetAddrOfLocalVar(&src); V = CGF.Builder.CreateLoad(V); V = CGF.Builder.CreateBitCast(V, byrefType.getPointerTo(0)); V = CGF.Builder.CreateStructGEP(V, byrefValueIndex, "x"); byrefInfo.emitDispose(CGF, V); } CGF.FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); } /// Build the dispose helper for a __block variable. static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM, llvm::StructType &byrefType, unsigned byrefValueIndex, CodeGenModule::ByrefHelpers &info) { CodeGenFunction CGF(CGM); return generateByrefDisposeHelper(CGF, byrefType, byrefValueIndex, info); } /// Lazily build the copy and dispose helpers for a __block variable /// with the given information. template <class T> static T *buildByrefHelpers(CodeGenModule &CGM, llvm::StructType &byrefTy, unsigned byrefValueIndex, T &byrefInfo) { // Increase the field's alignment to be at least pointer alignment, // since the layout of the byref struct will guarantee at least that. byrefInfo.Alignment = std::max(byrefInfo.Alignment, CharUnits::fromQuantity(CGM.PointerAlignInBytes)); llvm::FoldingSetNodeID id; byrefInfo.Profile(id); void *insertPos; CodeGenModule::ByrefHelpers *node = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos); if (node) return static_cast<T*>(node); byrefInfo.CopyHelper = buildByrefCopyHelper(CGM, byrefTy, byrefValueIndex, byrefInfo); byrefInfo.DisposeHelper = buildByrefDisposeHelper(CGM, byrefTy, byrefValueIndex,byrefInfo); T *copy = new (CGM.getContext()) T(byrefInfo); CGM.ByrefHelpersCache.InsertNode(copy, insertPos); return copy; } /// Build the copy and dispose helpers for the given __block variable /// emission. Places the helpers in the global cache. Returns null /// if no helpers are required. CodeGenModule::ByrefHelpers * CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType, const AutoVarEmission &emission) { const VarDecl &var = *emission.Variable; QualType type = var.getType(); unsigned byrefValueIndex = getByRefValueLLVMField(&var); if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { const Expr *copyExpr = CGM.getContext().getBlockVarCopyInits(&var); if (!copyExpr && record->hasTrivialDestructor()) return nullptr; CXXByrefHelpers byrefInfo(emission.Alignment, type, copyExpr); return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); } // Otherwise, if we don't have a retainable type, there's nothing to do. // that the runtime does extra copies. if (!type->isObjCRetainableType()) return nullptr; Qualifiers qs = type.getQualifiers(); // If we have lifetime, that dominates. if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { assert(getLangOpts().ObjCAutoRefCount); switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("impossible"); // These are just bits as far as the runtime is concerned. case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: return nullptr; // Tell the runtime that this is ARC __weak, called by the // byref routines. case Qualifiers::OCL_Weak: { ARCWeakByrefHelpers byrefInfo(emission.Alignment); return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); } // ARC __strong __block variables need to be retained. case Qualifiers::OCL_Strong: // Block pointers need to be copied, and there's no direct // transfer possible. if (type->isBlockPointerType()) { ARCStrongBlockByrefHelpers byrefInfo(emission.Alignment); return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); // Otherwise, we transfer ownership of the retain from the stack // to the heap. } else { ARCStrongByrefHelpers byrefInfo(emission.Alignment); return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); } } llvm_unreachable("fell out of lifetime switch!"); } BlockFieldFlags flags; if (type->isBlockPointerType()) { flags |= BLOCK_FIELD_IS_BLOCK; } else if (CGM.getContext().isObjCNSObjectType(type) || type->isObjCObjectPointerType()) { flags |= BLOCK_FIELD_IS_OBJECT; } else { return nullptr; } if (type.isObjCGCWeak()) flags |= BLOCK_FIELD_IS_WEAK; ObjectByrefHelpers byrefInfo(emission.Alignment, flags); return ::buildByrefHelpers(CGM, byrefType, byrefValueIndex, byrefInfo); } unsigned CodeGenFunction::getByRefValueLLVMField(const ValueDecl *VD) const { assert(ByRefValueInfo.count(VD) && "Did not find value!"); return ByRefValueInfo.find(VD)->second.second; } llvm::Value *CodeGenFunction::BuildBlockByrefAddress(llvm::Value *BaseAddr, const VarDecl *V) { llvm::Value *Loc = Builder.CreateStructGEP(BaseAddr, 1, "forwarding"); Loc = Builder.CreateLoad(Loc); Loc = Builder.CreateStructGEP(Loc, getByRefValueLLVMField(V), V->getNameAsString()); return Loc; } /// BuildByRefType - This routine changes a __block variable declared as T x /// into: /// /// struct { /// void *__isa; /// void *__forwarding; /// int32_t __flags; /// int32_t __size; /// void *__copy_helper; // only if needed /// void *__destroy_helper; // only if needed /// void *__byref_variable_layout;// only if needed /// char padding[X]; // only if needed /// T x; /// } x /// llvm::Type *CodeGenFunction::BuildByRefType(const VarDecl *D) { std::pair<llvm::Type *, unsigned> &Info = ByRefValueInfo[D]; if (Info.first) return Info.first; QualType Ty = D->getType(); SmallVector<llvm::Type *, 8> types; llvm::StructType *ByRefType = llvm::StructType::create(getLLVMContext(), "struct.__block_byref_" + D->getNameAsString()); // void *__isa; types.push_back(Int8PtrTy); // void *__forwarding; types.push_back(llvm::PointerType::getUnqual(ByRefType)); // int32_t __flags; types.push_back(Int32Ty); // int32_t __size; types.push_back(Int32Ty); // Note that this must match *exactly* the logic in buildByrefHelpers. bool HasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D); if (HasCopyAndDispose) { /// void *__copy_helper; types.push_back(Int8PtrTy); /// void *__destroy_helper; types.push_back(Int8PtrTy); } bool HasByrefExtendedLayout = false; Qualifiers::ObjCLifetime Lifetime; if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) && HasByrefExtendedLayout) /// void *__byref_variable_layout; types.push_back(Int8PtrTy); bool Packed = false; CharUnits Align = getContext().getDeclAlign(D); if (Align > getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))) { // We have to insert padding. // The struct above has 2 32-bit integers. unsigned CurrentOffsetInBytes = 4 * 2; // And either 2, 3, 4 or 5 pointers. unsigned noPointers = 2; if (HasCopyAndDispose) noPointers += 2; if (HasByrefExtendedLayout) noPointers += 1; CurrentOffsetInBytes += noPointers * CGM.getDataLayout().getTypeAllocSize(Int8PtrTy); // Align the offset. unsigned AlignedOffsetInBytes = llvm::RoundUpToAlignment(CurrentOffsetInBytes, Align.getQuantity()); unsigned NumPaddingBytes = AlignedOffsetInBytes - CurrentOffsetInBytes; if (NumPaddingBytes > 0) { llvm::Type *Ty = Int8Ty; // FIXME: We need a sema error for alignment larger than the minimum of // the maximal stack alignment and the alignment of malloc on the system. if (NumPaddingBytes > 1) Ty = llvm::ArrayType::get(Ty, NumPaddingBytes); types.push_back(Ty); // We want a packed struct. Packed = true; } } // T x; types.push_back(ConvertTypeForMem(Ty)); ByRefType->setBody(types, Packed); Info.first = ByRefType; Info.second = types.size() - 1; return Info.first; } /// Initialize the structural components of a __block variable, i.e. /// everything but the actual object. void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) { // Find the address of the local. llvm::Value *addr = emission.Address; // That's an alloca of the byref structure type. llvm::StructType *byrefType = cast<llvm::StructType>( cast<llvm::PointerType>(addr->getType())->getElementType()); // Build the byref helpers if necessary. This is null if we don't need any. CodeGenModule::ByrefHelpers *helpers = buildByrefHelpers(*byrefType, emission); const VarDecl &D = *emission.Variable; QualType type = D.getType(); bool HasByrefExtendedLayout; Qualifiers::ObjCLifetime ByrefLifetime; bool ByRefHasLifetime = getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout); llvm::Value *V; // Initialize the 'isa', which is just 0 or 1. int isa = 0; if (type.isObjCGCWeak()) isa = 1; V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa"); Builder.CreateStore(V, Builder.CreateStructGEP(addr, 0, "byref.isa")); // Store the address of the variable into its own forwarding pointer. Builder.CreateStore(addr, Builder.CreateStructGEP(addr, 1, "byref.forwarding")); // Blocks ABI: // c) the flags field is set to either 0 if no helper functions are // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are, BlockFlags flags; if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE; if (ByRefHasLifetime) { if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED; else switch (ByrefLifetime) { case Qualifiers::OCL_Strong: flags |= BLOCK_BYREF_LAYOUT_STRONG; break; case Qualifiers::OCL_Weak: flags |= BLOCK_BYREF_LAYOUT_WEAK; break; case Qualifiers::OCL_ExplicitNone: flags |= BLOCK_BYREF_LAYOUT_UNRETAINED; break; case Qualifiers::OCL_None: if (!type->isObjCObjectPointerType() && !type->isBlockPointerType()) flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT; break; default: break; } if (CGM.getLangOpts().ObjCGCBitmapPrint) { printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask()); if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE) printf(" BLOCK_BYREF_HAS_COPY_DISPOSE"); if (flags & BLOCK_BYREF_LAYOUT_MASK) { BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK); if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED) printf(" BLOCK_BYREF_LAYOUT_EXTENDED"); if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG) printf(" BLOCK_BYREF_LAYOUT_STRONG"); if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK) printf(" BLOCK_BYREF_LAYOUT_WEAK"); if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED) printf(" BLOCK_BYREF_LAYOUT_UNRETAINED"); if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT) printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT"); } printf("\n"); } } Builder.CreateStore(llvm::ConstantInt::get(IntTy, flags.getBitMask()), Builder.CreateStructGEP(addr, 2, "byref.flags")); CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType); V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity()); Builder.CreateStore(V, Builder.CreateStructGEP(addr, 3, "byref.size")); if (helpers) { llvm::Value *copy_helper = Builder.CreateStructGEP(addr, 4); Builder.CreateStore(helpers->CopyHelper, copy_helper); llvm::Value *destroy_helper = Builder.CreateStructGEP(addr, 5); Builder.CreateStore(helpers->DisposeHelper, destroy_helper); } if (ByRefHasLifetime && HasByrefExtendedLayout) { llvm::Constant* ByrefLayoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type); llvm::Value *ByrefInfoAddr = Builder.CreateStructGEP(addr, helpers ? 6 : 4, "byref.layout"); // cast destination to pointer to source type. llvm::Type *DesTy = ByrefLayoutInfo->getType(); DesTy = DesTy->getPointerTo(); llvm::Value *BC = Builder.CreatePointerCast(ByrefInfoAddr, DesTy); Builder.CreateStore(ByrefLayoutInfo, BC); } } void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags) { llvm::Value *F = CGM.getBlockObjectDispose(); llvm::Value *args[] = { Builder.CreateBitCast(V, Int8PtrTy), llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) }; EmitNounwindRuntimeCall(F, args); // FIXME: throwing destructors? } namespace { struct CallBlockRelease : EHScopeStack::Cleanup { llvm::Value *Addr; CallBlockRelease(llvm::Value *Addr) : Addr(Addr) {} void Emit(CodeGenFunction &CGF, Flags flags) override { // Should we be passing FIELD_IS_WEAK here? CGF.BuildBlockRelease(Addr, BLOCK_FIELD_IS_BYREF); } }; } /// Enter a cleanup to destroy a __block variable. Note that this /// cleanup should be a no-op if the variable hasn't left the stack /// yet; if a cleanup is required for the variable itself, that needs /// to be done externally. void CodeGenFunction::enterByrefCleanup(const AutoVarEmission &emission) { // We don't enter this cleanup if we're in pure-GC mode. if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) return; EHStack.pushCleanup<CallBlockRelease>(NormalAndEHCleanup, emission.Address); } /// Adjust the declaration of something from the blocks API. static void configureBlocksRuntimeObject(CodeGenModule &CGM, llvm::Constant *C) { if (!CGM.getLangOpts().BlocksRuntimeOptional) return; auto *GV = cast<llvm::GlobalValue>(C->stripPointerCasts()); if (GV->isDeclaration() && GV->hasExternalLinkage()) GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); } llvm::Constant *CodeGenModule::getBlockObjectDispose() { if (BlockObjectDispose) return BlockObjectDispose; llvm::Type *args[] = { Int8PtrTy, Int32Ty }; llvm::FunctionType *fty = llvm::FunctionType::get(VoidTy, args, false); BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose"); configureBlocksRuntimeObject(*this, BlockObjectDispose); return BlockObjectDispose; } llvm::Constant *CodeGenModule::getBlockObjectAssign() { if (BlockObjectAssign) return BlockObjectAssign; llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; llvm::FunctionType *fty = llvm::FunctionType::get(VoidTy, args, false); BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign"); configureBlocksRuntimeObject(*this, BlockObjectAssign); return BlockObjectAssign; } llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { if (NSConcreteGlobalBlock) return NSConcreteGlobalBlock; NSConcreteGlobalBlock = GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock", Int8PtrTy->getPointerTo(), nullptr); configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock); return NSConcreteGlobalBlock; } llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { if (NSConcreteStackBlock) return NSConcreteStackBlock; NSConcreteStackBlock = GetOrCreateLLVMGlobal("_NSConcreteStackBlock", Int8PtrTy->getPointerTo(), nullptr); configureBlocksRuntimeObject(*this, NSConcreteStackBlock); return NSConcreteStackBlock; }