//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements C++ name mangling according to the Itanium C++ ABI, // which is used in GCC 3.2 and newer (and many compilers that are // ABI-compatible with GCC): // // http://mentorembedded.github.io/cxx-abi/abi.html#mangling // //===----------------------------------------------------------------------===// #include "clang/AST/Mangle.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/ABI.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #define MANGLE_CHECKER 0 #if MANGLE_CHECKER #include <cxxabi.h> #endif using namespace clang; namespace { /// \brief Retrieve the declaration context that should be used when mangling /// the given declaration. static const DeclContext *getEffectiveDeclContext(const Decl *D) { // The ABI assumes that lambda closure types that occur within // default arguments live in the context of the function. However, due to // the way in which Clang parses and creates function declarations, this is // not the case: the lambda closure type ends up living in the context // where the function itself resides, because the function declaration itself // had not yet been created. Fix the context here. if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { if (RD->isLambda()) if (ParmVarDecl *ContextParam = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) return ContextParam->getDeclContext(); } // Perform the same check for block literals. if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { if (ParmVarDecl *ContextParam = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) return ContextParam->getDeclContext(); } const DeclContext *DC = D->getDeclContext(); if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC)) return getEffectiveDeclContext(CD); return DC; } static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { return getEffectiveDeclContext(cast<Decl>(DC)); } static bool isLocalContainerContext(const DeclContext *DC) { return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); } static const RecordDecl *GetLocalClassDecl(const Decl *D) { const DeclContext *DC = getEffectiveDeclContext(D); while (!DC->isNamespace() && !DC->isTranslationUnit()) { if (isLocalContainerContext(DC)) return dyn_cast<RecordDecl>(D); D = cast<Decl>(DC); DC = getEffectiveDeclContext(D); } return nullptr; } static const FunctionDecl *getStructor(const FunctionDecl *fn) { if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) return ftd->getTemplatedDecl(); return fn; } static const NamedDecl *getStructor(const NamedDecl *decl) { const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); return (fn ? getStructor(fn) : decl); } static bool isLambda(const NamedDecl *ND) { const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); if (!Record) return false; return Record->isLambda(); } static const unsigned UnknownArity = ~0U; class ItaniumMangleContextImpl : public ItaniumMangleContext { typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; public: explicit ItaniumMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags) : ItaniumMangleContext(Context, Diags) {} /// @name Mangler Entry Points /// @{ bool shouldMangleCXXName(const NamedDecl *D) override; bool shouldMangleStringLiteral(const StringLiteral *) override { return false; } void mangleCXXName(const NamedDecl *D, raw_ostream &) override; void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, raw_ostream &) override; void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, const ThisAdjustment &ThisAdjustment, raw_ostream &) override; void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, raw_ostream &) override; void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, raw_ostream &) override; void mangleCXXRTTI(QualType T, raw_ostream &) override; void mangleCXXRTTIName(QualType T, raw_ostream &) override; void mangleTypeName(QualType T, raw_ostream &) override; void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, raw_ostream &) override; void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, raw_ostream &) override; void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; void mangleDynamicAtExitDestructor(const VarDecl *D, raw_ostream &Out) override; void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &) override; void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { // Lambda closure types are already numbered. if (isLambda(ND)) return false; // Anonymous tags are already numbered. if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) return false; } // Use the canonical number for externally visible decls. if (ND->isExternallyVisible()) { unsigned discriminator = getASTContext().getManglingNumber(ND); if (discriminator == 1) return false; disc = discriminator - 2; return true; } // Make up a reasonable number for internal decls. unsigned &discriminator = Uniquifier[ND]; if (!discriminator) { const DeclContext *DC = getEffectiveDeclContext(ND); discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; } if (discriminator == 1) return false; disc = discriminator-2; return true; } /// @} }; /// CXXNameMangler - Manage the mangling of a single name. class CXXNameMangler { ItaniumMangleContextImpl &Context; raw_ostream &Out; /// The "structor" is the top-level declaration being mangled, if /// that's not a template specialization; otherwise it's the pattern /// for that specialization. const NamedDecl *Structor; unsigned StructorType; /// SeqID - The next subsitution sequence number. unsigned SeqID; class FunctionTypeDepthState { unsigned Bits; enum { InResultTypeMask = 1 }; public: FunctionTypeDepthState() : Bits(0) {} /// The number of function types we're inside. unsigned getDepth() const { return Bits >> 1; } /// True if we're in the return type of the innermost function type. bool isInResultType() const { return Bits & InResultTypeMask; } FunctionTypeDepthState push() { FunctionTypeDepthState tmp = *this; Bits = (Bits & ~InResultTypeMask) + 2; return tmp; } void enterResultType() { Bits |= InResultTypeMask; } void leaveResultType() { Bits &= ~InResultTypeMask; } void pop(FunctionTypeDepthState saved) { assert(getDepth() == saved.getDepth() + 1); Bits = saved.Bits; } } FunctionTypeDepth; llvm::DenseMap<uintptr_t, unsigned> Substitutions; ASTContext &getASTContext() const { return Context.getASTContext(); } public: CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, const NamedDecl *D = nullptr) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0), SeqID(0) { // These can't be mangled without a ctor type or dtor type. assert(!D || (!isa<CXXDestructorDecl>(D) && !isa<CXXConstructorDecl>(D))); } CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, const CXXConstructorDecl *D, CXXCtorType Type) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), SeqID(0) { } CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, const CXXDestructorDecl *D, CXXDtorType Type) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), SeqID(0) { } #if MANGLE_CHECKER ~CXXNameMangler() { if (Out.str()[0] == '\01') return; int status = 0; char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); assert(status == 0 && "Could not demangle mangled name!"); free(result); } #endif raw_ostream &getStream() { return Out; } void mangle(const NamedDecl *D, StringRef Prefix = "_Z"); void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); void mangleNumber(const llvm::APSInt &I); void mangleNumber(int64_t Number); void mangleFloat(const llvm::APFloat &F); void mangleFunctionEncoding(const FunctionDecl *FD); void mangleSeqID(unsigned SeqID); void mangleName(const NamedDecl *ND); void mangleType(QualType T); void mangleNameOrStandardSubstitution(const NamedDecl *ND); private: bool mangleSubstitution(const NamedDecl *ND); bool mangleSubstitution(QualType T); bool mangleSubstitution(TemplateName Template); bool mangleSubstitution(uintptr_t Ptr); void mangleExistingSubstitution(QualType type); void mangleExistingSubstitution(TemplateName name); bool mangleStandardSubstitution(const NamedDecl *ND); void addSubstitution(const NamedDecl *ND) { ND = cast<NamedDecl>(ND->getCanonicalDecl()); addSubstitution(reinterpret_cast<uintptr_t>(ND)); } void addSubstitution(QualType T); void addSubstitution(TemplateName Template); void addSubstitution(uintptr_t Ptr); void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, bool recursive = false); void mangleUnresolvedName(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned KnownArity = UnknownArity); void mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleUnqualifiedName(const NamedDecl *ND) { mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity); } void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, unsigned KnownArity); void mangleUnscopedName(const NamedDecl *ND); void mangleUnscopedTemplateName(const TemplateDecl *ND); void mangleUnscopedTemplateName(TemplateName); void mangleSourceName(const IdentifierInfo *II); void mangleLocalName(const Decl *D); void mangleBlockForPrefix(const BlockDecl *Block); void mangleUnqualifiedBlock(const BlockDecl *Block); void mangleLambda(const CXXRecordDecl *Lambda); void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, bool NoFunction=false); void mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void manglePrefix(NestedNameSpecifier *qualifier); void manglePrefix(const DeclContext *DC, bool NoFunction=false); void manglePrefix(QualType type); void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false); void mangleTemplatePrefix(TemplateName Template); void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); void mangleQualifiers(Qualifiers Quals); void mangleRefQualifier(RefQualifierKind RefQualifier); void mangleObjCMethodName(const ObjCMethodDecl *MD); // Declare manglers for every type class. #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); #include "clang/AST/TypeNodes.def" void mangleType(const TagType*); void mangleType(TemplateName); void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType); void mangleNeonVectorType(const VectorType *T); void mangleAArch64NeonVectorType(const VectorType *T); void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); void mangleMemberExpr(const Expr *base, bool isArrow, NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned knownArity); void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); void mangleCXXCtorType(CXXCtorType T); void mangleCXXDtorType(CXXDtorType T); void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs); void mangleTemplateArgs(const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleTemplateArgs(const TemplateArgumentList &AL); void mangleTemplateArg(TemplateArgument A); void mangleTemplateParameter(unsigned Index); void mangleFunctionParam(const ParmVarDecl *parm); }; } bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); if (FD) { LanguageLinkage L = FD->getLanguageLinkage(); // Overloadable functions need mangling. if (FD->hasAttr<OverloadableAttr>()) return true; // "main" is not mangled. if (FD->isMain()) return false; // C++ functions and those whose names are not a simple identifier need // mangling. if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) return true; // C functions are not mangled. if (L == CLanguageLinkage) return false; } // Otherwise, no mangling is done outside C++ mode. if (!getASTContext().getLangOpts().CPlusPlus) return false; const VarDecl *VD = dyn_cast<VarDecl>(D); if (VD) { // C variables are not mangled. if (VD->isExternC()) return false; // Variables at global scope with non-internal linkage are not mangled const DeclContext *DC = getEffectiveDeclContext(D); // Check for extern variable declared locally. if (DC->isFunctionOrMethod() && D->hasLinkage()) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = getEffectiveParentContext(DC); if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && !isa<VarTemplateSpecializationDecl>(D)) return false; } return true; } void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { // <mangled-name> ::= _Z <encoding> // ::= <data name> // ::= <special-name> Out << Prefix; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) mangleFunctionEncoding(FD); else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) mangleName(VD); else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) mangleName(IFD->getAnonField()); else mangleName(cast<FieldDecl>(D)); } void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { // <encoding> ::= <function name> <bare-function-type> mangleName(FD); // Don't mangle in the type if this isn't a decl we should typically mangle. if (!Context.shouldMangleDeclName(FD)) return; if (FD->hasAttr<EnableIfAttr>()) { FunctionTypeDepthState Saved = FunctionTypeDepth.push(); Out << "Ua9enable_ifI"; // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use // it here. for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(), E = FD->getAttrs().rend(); I != E; ++I) { EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); if (!EIA) continue; Out << 'X'; mangleExpression(EIA->getCond()); Out << 'E'; } Out << 'E'; FunctionTypeDepth.pop(Saved); } // Whether the mangling of a function type includes the return type depends on // the context and the nature of the function. The rules for deciding whether // the return type is included are: // // 1. Template functions (names or types) have return types encoded, with // the exceptions listed below. // 2. Function types not appearing as part of a function name mangling, // e.g. parameters, pointer types, etc., have return type encoded, with the // exceptions listed below. // 3. Non-template function names do not have return types encoded. // // The exceptions mentioned in (1) and (2) above, for which the return type is // never included, are // 1. Constructors. // 2. Destructors. // 3. Conversion operator functions, e.g. operator int. bool MangleReturnType = false; if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || isa<CXXConversionDecl>(FD))) MangleReturnType = true; // Mangle the type of the primary template. FD = PrimaryTemplate->getTemplatedDecl(); } mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), MangleReturnType); } static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { while (isa<LinkageSpecDecl>(DC)) { DC = getEffectiveParentContext(DC); } return DC; } /// isStd - Return whether a given namespace is the 'std' namespace. static bool isStd(const NamespaceDecl *NS) { if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) ->isTranslationUnit()) return false; const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); return II && II->isStr("std"); } // isStdNamespace - Return whether a given decl context is a toplevel 'std' // namespace. static bool isStdNamespace(const DeclContext *DC) { if (!DC->isNamespace()) return false; return isStd(cast<NamespaceDecl>(DC)); } static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { // Check if we have a function template. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { TemplateArgs = FD->getTemplateSpecializationArgs(); return TD; } } // Check if we have a class template. if (const ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { TemplateArgs = &Spec->getTemplateArgs(); return Spec->getSpecializedTemplate(); } // Check if we have a variable template. if (const VarTemplateSpecializationDecl *Spec = dyn_cast<VarTemplateSpecializationDecl>(ND)) { TemplateArgs = &Spec->getTemplateArgs(); return Spec->getSpecializedTemplate(); } return nullptr; } void CXXNameMangler::mangleName(const NamedDecl *ND) { // <name> ::= <nested-name> // ::= <unscoped-name> // ::= <unscoped-template-name> <template-args> // ::= <local-name> // const DeclContext *DC = getEffectiveDeclContext(ND); // If this is an extern variable declared locally, the relevant DeclContext // is that of the containing namespace, or the translation unit. // FIXME: This is a hack; extern variables declared locally should have // a proper semantic declaration context! if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = getEffectiveParentContext(DC); else if (GetLocalClassDecl(ND)) { mangleLocalName(ND); return; } DC = IgnoreLinkageSpecDecls(DC); if (DC->isTranslationUnit() || isStdNamespace(DC)) { // Check if we have a template. const TemplateArgumentList *TemplateArgs = nullptr; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleUnscopedTemplateName(TD); mangleTemplateArgs(*TemplateArgs); return; } mangleUnscopedName(ND); return; } if (isLocalContainerContext(DC)) { mangleLocalName(ND); return; } mangleNestedName(ND, DC); } void CXXNameMangler::mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); if (DC->isTranslationUnit() || isStdNamespace(DC)) { mangleUnscopedTemplateName(TD); mangleTemplateArgs(TemplateArgs, NumTemplateArgs); } else { mangleNestedName(TD, TemplateArgs, NumTemplateArgs); } } void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { // <unscoped-name> ::= <unqualified-name> // ::= St <unqualified-name> # ::std:: if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) Out << "St"; mangleUnqualifiedName(ND); } void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { // <unscoped-template-name> ::= <unscoped-name> // ::= <substitution> if (mangleSubstitution(ND)) return; // <template-template-param> ::= <template-param> if (const TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { mangleTemplateParameter(TTP->getIndex()); return; } mangleUnscopedName(ND->getTemplatedDecl()); addSubstitution(ND); } void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) { // <unscoped-template-name> ::= <unscoped-name> // ::= <substitution> if (TemplateDecl *TD = Template.getAsTemplateDecl()) return mangleUnscopedTemplateName(TD); if (mangleSubstitution(Template)) return; DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); assert(Dependent && "Not a dependent template name?"); if (const IdentifierInfo *Id = Dependent->getIdentifier()) mangleSourceName(Id); else mangleOperatorName(Dependent->getOperator(), UnknownArity); addSubstitution(Template); } void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { // ABI: // Floating-point literals are encoded using a fixed-length // lowercase hexadecimal string corresponding to the internal // representation (IEEE on Itanium), high-order bytes first, // without leading zeroes. For example: "Lf bf800000 E" is -1.0f // on Itanium. // The 'without leading zeroes' thing seems to be an editorial // mistake; see the discussion on cxx-abi-dev beginning on // 2012-01-16. // Our requirements here are just barely weird enough to justify // using a custom algorithm instead of post-processing APInt::toString(). llvm::APInt valueBits = f.bitcastToAPInt(); unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; assert(numCharacters != 0); // Allocate a buffer of the right number of characters. SmallVector<char, 20> buffer; buffer.set_size(numCharacters); // Fill the buffer left-to-right. for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { // The bit-index of the next hex digit. unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); // Project out 4 bits starting at 'digitIndex'. llvm::integerPart hexDigit = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth]; hexDigit >>= (digitBitIndex % llvm::integerPartWidth); hexDigit &= 0xF; // Map that over to a lowercase hex digit. static const char charForHex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; buffer[stringIndex] = charForHex[hexDigit]; } Out.write(buffer.data(), numCharacters); } void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { if (Value.isSigned() && Value.isNegative()) { Out << 'n'; Value.abs().print(Out, /*signed*/ false); } else { Value.print(Out, /*signed*/ false); } } void CXXNameMangler::mangleNumber(int64_t Number) { // <number> ::= [n] <non-negative decimal integer> if (Number < 0) { Out << 'n'; Number = -Number; } Out << Number; } void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { // <call-offset> ::= h <nv-offset> _ // ::= v <v-offset> _ // <nv-offset> ::= <offset number> # non-virtual base override // <v-offset> ::= <offset number> _ <virtual offset number> // # virtual base override, with vcall offset if (!Virtual) { Out << 'h'; mangleNumber(NonVirtual); Out << '_'; return; } Out << 'v'; mangleNumber(NonVirtual); Out << '_'; mangleNumber(Virtual); Out << '_'; } void CXXNameMangler::manglePrefix(QualType type) { if (const TemplateSpecializationType *TST = type->getAs<TemplateSpecializationType>()) { if (!mangleSubstitution(QualType(TST, 0))) { mangleTemplatePrefix(TST->getTemplateName()); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); addSubstitution(QualType(TST, 0)); } } else if (const DependentTemplateSpecializationType *DTST = type->getAs<DependentTemplateSpecializationType>()) { TemplateName Template = getASTContext().getDependentTemplateName(DTST->getQualifier(), DTST->getIdentifier()); mangleTemplatePrefix(Template); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); } else { // We use the QualType mangle type variant here because it handles // substitutions. mangleType(type); } } /// Mangle everything prior to the base-unresolved-name in an unresolved-name. /// /// \param firstQualifierLookup - the entity found by unqualified lookup /// for the first name in the qualifier, if this is for a member expression /// \param recursive - true if this is being called recursively, /// i.e. if there is more prefix "to the right". void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, bool recursive) { // x, ::x // <unresolved-name> ::= [gs] <base-unresolved-name> // T::x / decltype(p)::x // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> // T::N::x /decltype(p)::N::x // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E // <base-unresolved-name> // A::x, N::y, A<T>::z; "gs" means leading "::" // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E // <base-unresolved-name> switch (qualifier->getKind()) { case NestedNameSpecifier::Global: Out << "gs"; // We want an 'sr' unless this is the entire NNS. if (recursive) Out << "sr"; // We never want an 'E' here. return; case NestedNameSpecifier::Namespace: if (qualifier->getPrefix()) mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); else Out << "sr"; mangleSourceName(qualifier->getAsNamespace()->getIdentifier()); break; case NestedNameSpecifier::NamespaceAlias: if (qualifier->getPrefix()) mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); else Out << "sr"; mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier()); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const Type *type = qualifier->getAsType(); // We only want to use an unresolved-type encoding if this is one of: // - a decltype // - a template type parameter // - a template template parameter with arguments // In all of these cases, we should have no prefix. if (qualifier->getPrefix()) { mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); } else { // Otherwise, all the cases want this. Out << "sr"; } // Only certain other types are valid as prefixes; enumerate them. switch (type->getTypeClass()) { case Type::Builtin: case Type::Complex: case Type::Adjusted: case Type::Decayed: case Type::Pointer: case Type::BlockPointer: case Type::LValueReference: case Type::RValueReference: case Type::MemberPointer: case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::DependentSizedArray: case Type::DependentSizedExtVector: case Type::Vector: case Type::ExtVector: case Type::FunctionProto: case Type::FunctionNoProto: case Type::Enum: case Type::Paren: case Type::Elaborated: case Type::Attributed: case Type::Auto: case Type::PackExpansion: case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: case Type::Atomic: llvm_unreachable("type is illegal as a nested name specifier"); case Type::SubstTemplateTypeParmPack: // FIXME: not clear how to mangle this! // template <class T...> class A { // template <class U...> void foo(decltype(T::foo(U())) x...); // }; Out << "_SUBSTPACK_"; break; // <unresolved-type> ::= <template-param> // ::= <decltype> // ::= <template-template-param> <template-args> // (this last is not official yet) case Type::TypeOfExpr: case Type::TypeOf: case Type::Decltype: case Type::TemplateTypeParm: case Type::UnaryTransform: case Type::SubstTemplateTypeParm: unresolvedType: assert(!qualifier->getPrefix()); // We only get here recursively if we're followed by identifiers. if (recursive) Out << 'N'; // This seems to do everything we want. It's not really // sanctioned for a substituted template parameter, though. mangleType(QualType(type, 0)); // We never want to print 'E' directly after an unresolved-type, // so we return directly. return; case Type::Typedef: mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier()); break; case Type::UnresolvedUsing: mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl() ->getIdentifier()); break; case Type::Record: mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier()); break; case Type::TemplateSpecialization: { const TemplateSpecializationType *tst = cast<TemplateSpecializationType>(type); TemplateName name = tst->getTemplateName(); switch (name.getKind()) { case TemplateName::Template: case TemplateName::QualifiedTemplate: { TemplateDecl *temp = name.getAsTemplateDecl(); // If the base is a template template parameter, this is an // unresolved type. assert(temp && "no template for template specialization type"); if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType; mangleSourceName(temp->getIdentifier()); break; } case TemplateName::OverloadedTemplate: case TemplateName::DependentTemplate: llvm_unreachable("invalid base for a template specialization type"); case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = name.getAsSubstTemplateTemplateParm(); mangleExistingSubstitution(subst->getReplacement()); break; } case TemplateName::SubstTemplateTemplateParmPack: { // FIXME: not clear how to mangle this! // template <template <class U> class T...> class A { // template <class U...> void foo(decltype(T<U>::foo) x...); // }; Out << "_SUBSTPACK_"; break; } } mangleTemplateArgs(tst->getArgs(), tst->getNumArgs()); break; } case Type::InjectedClassName: mangleSourceName(cast<InjectedClassNameType>(type)->getDecl() ->getIdentifier()); break; case Type::DependentName: mangleSourceName(cast<DependentNameType>(type)->getIdentifier()); break; case Type::DependentTemplateSpecialization: { const DependentTemplateSpecializationType *tst = cast<DependentTemplateSpecializationType>(type); mangleSourceName(tst->getIdentifier()); mangleTemplateArgs(tst->getArgs(), tst->getNumArgs()); break; } } break; } case NestedNameSpecifier::Identifier: // Member expressions can have these without prefixes. if (qualifier->getPrefix()) { mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); } else if (firstQualifierLookup) { // Try to make a proper qualifier out of the lookup result, and // then just recurse on that. NestedNameSpecifier *newQualifier; if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) { QualType type = getASTContext().getTypeDeclType(typeDecl); // Pretend we had a different nested name specifier. newQualifier = NestedNameSpecifier::Create(getASTContext(), /*prefix*/ nullptr, /*template*/ false, type.getTypePtr()); } else if (NamespaceDecl *nspace = dyn_cast<NamespaceDecl>(firstQualifierLookup)) { newQualifier = NestedNameSpecifier::Create(getASTContext(), /*prefix*/ nullptr, nspace); } else if (NamespaceAliasDecl *alias = dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) { newQualifier = NestedNameSpecifier::Create(getASTContext(), /*prefix*/ nullptr, alias); } else { // No sensible mangling to do here. newQualifier = nullptr; } if (newQualifier) return mangleUnresolvedPrefix(newQualifier, /*lookup*/ nullptr, recursive); } else { Out << "sr"; } mangleSourceName(qualifier->getAsIdentifier()); break; } // If this was the innermost part of the NNS, and we fell out to // here, append an 'E'. if (!recursive) Out << 'E'; } /// Mangle an unresolved-name, which is generally used for names which /// weren't resolved to specific entities. void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned knownArity) { if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup); mangleUnqualifiedName(nullptr, name, knownArity); } static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) { assert(RD->isAnonymousStructOrUnion() && "Expected anonymous struct or union!"); for (const auto *I : RD->fields()) { if (I->getIdentifier()) return I; if (const RecordType *RT = I->getType()->getAs<RecordType>()) if (const FieldDecl *NamedDataMember = FindFirstNamedDataMember(RT->getDecl())) return NamedDataMember; } // We didn't find a named data member. return nullptr; } void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, unsigned KnownArity) { // <unqualified-name> ::= <operator-name> // ::= <ctor-dtor-name> // ::= <source-name> switch (Name.getNameKind()) { case DeclarationName::Identifier: { if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { // We must avoid conflicts between internally- and externally- // linked variable and function declaration names in the same TU: // void test() { extern void foo(); } // static void foo(); // This naming convention is the same as that followed by GCC, // though it shouldn't actually matter. if (ND && ND->getFormalLinkage() == InternalLinkage && getEffectiveDeclContext(ND)->isFileContext()) Out << 'L'; mangleSourceName(II); break; } // Otherwise, an anonymous entity. We must have a declaration. assert(ND && "mangling empty name without declaration"); if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { if (NS->isAnonymousNamespace()) { // This is how gcc mangles these names. Out << "12_GLOBAL__N_1"; break; } } if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { // We must have an anonymous union or struct declaration. const RecordDecl *RD = cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl()); // Itanium C++ ABI 5.1.2: // // For the purposes of mangling, the name of an anonymous union is // considered to be the name of the first named data member found by a // pre-order, depth-first, declaration-order walk of the data members of // the anonymous union. If there is no such data member (i.e., if all of // the data members in the union are unnamed), then there is no way for // a program to refer to the anonymous union, and there is therefore no // need to mangle its name. const FieldDecl *FD = FindFirstNamedDataMember(RD); // It's actually possible for various reasons for us to get here // with an empty anonymous struct / union. Fortunately, it // doesn't really matter what name we generate. if (!FD) break; assert(FD->getIdentifier() && "Data member name isn't an identifier!"); mangleSourceName(FD->getIdentifier()); break; } // Class extensions have no name as a category, and it's possible // for them to be the semantic parent of certain declarations // (primarily, tag decls defined within declarations). Such // declarations will always have internal linkage, so the name // doesn't really matter, but we shouldn't crash on them. For // safety, just handle all ObjC containers here. if (isa<ObjCContainerDecl>(ND)) break; // We must have an anonymous struct. const TagDecl *TD = cast<TagDecl>(ND); if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { assert(TD->getDeclContext() == D->getDeclContext() && "Typedef should not be in another decl context!"); assert(D->getDeclName().getAsIdentifierInfo() && "Typedef was not named!"); mangleSourceName(D->getDeclName().getAsIdentifierInfo()); break; } // <unnamed-type-name> ::= <closure-type-name> // // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'. if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { if (Record->isLambda() && Record->getLambdaManglingNumber()) { mangleLambda(Record); break; } } if (TD->isExternallyVisible()) { unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); Out << "Ut"; if (UnnamedMangle > 1) Out << llvm::utostr(UnnamedMangle - 2); Out << '_'; break; } // Get a unique id for the anonymous struct. unsigned AnonStructId = Context.getAnonymousStructId(TD); // Mangle it as a source name in the form // [n] $_<id> // where n is the length of the string. SmallString<8> Str; Str += "$_"; Str += llvm::utostr(AnonStructId); Out << Str.size(); Out << Str.str(); break; } case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: llvm_unreachable("Can't mangle Objective-C selector names here!"); case DeclarationName::CXXConstructorName: if (ND == Structor) // If the named decl is the C++ constructor we're mangling, use the type // we were given. mangleCXXCtorType(static_cast<CXXCtorType>(StructorType)); else // Otherwise, use the complete constructor name. This is relevant if a // class with a constructor is declared within a constructor. mangleCXXCtorType(Ctor_Complete); break; case DeclarationName::CXXDestructorName: if (ND == Structor) // If the named decl is the C++ destructor we're mangling, use the type we // were given. mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); else // Otherwise, use the complete destructor name. This is relevant if a // class with a destructor is declared within a destructor. mangleCXXDtorType(Dtor_Complete); break; case DeclarationName::CXXConversionFunctionName: // <operator-name> ::= cv <type> # (cast) Out << "cv"; mangleType(Name.getCXXNameType()); break; case DeclarationName::CXXOperatorName: { unsigned Arity; if (ND) { Arity = cast<FunctionDecl>(ND)->getNumParams(); // If we have a C++ member function, we need to include the 'this' pointer. // FIXME: This does not make sense for operators that are static, but their // names stay the same regardless of the arity (operator new for instance). if (isa<CXXMethodDecl>(ND)) Arity++; } else Arity = KnownArity; mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); break; } case DeclarationName::CXXLiteralOperatorName: // FIXME: This mangling is not yet official. Out << "li"; mangleSourceName(Name.getCXXLiteralIdentifier()); break; case DeclarationName::CXXUsingDirective: llvm_unreachable("Can't mangle a using directive name!"); } } void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { // <source-name> ::= <positive length number> <identifier> // <number> ::= [n] <non-negative decimal integer> // <identifier> ::= <unqualified source code identifier> Out << II->getLength() << II->getName(); } void CXXNameMangler::mangleNestedName(const NamedDecl *ND, const DeclContext *DC, bool NoFunction) { // <nested-name> // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> // <template-args> E Out << 'N'; if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { Qualifiers MethodQuals = Qualifiers::fromCVRMask(Method->getTypeQualifiers()); // We do not consider restrict a distinguishing attribute for overloading // purposes so we must not mangle it. MethodQuals.removeRestrict(); mangleQualifiers(MethodQuals); mangleRefQualifier(Method->getRefQualifier()); } // Check if we have a template. const TemplateArgumentList *TemplateArgs = nullptr; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleTemplatePrefix(TD, NoFunction); mangleTemplateArgs(*TemplateArgs); } else { manglePrefix(DC, NoFunction); mangleUnqualifiedName(ND); } Out << 'E'; } void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E Out << 'N'; mangleTemplatePrefix(TD); mangleTemplateArgs(TemplateArgs, NumTemplateArgs); Out << 'E'; } void CXXNameMangler::mangleLocalName(const Decl *D) { // <local-name> := Z <function encoding> E <entity name> [<discriminator>] // := Z <function encoding> E s [<discriminator>] // <local-name> := Z <function encoding> E d [ <parameter number> ] // _ <entity name> // <discriminator> := _ <non-negative number> assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); const RecordDecl *RD = GetLocalClassDecl(D); const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); Out << 'Z'; if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) mangleObjCMethodName(MD); else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) mangleBlockForPrefix(BD); else mangleFunctionEncoding(cast<FunctionDecl>(DC)); Out << 'E'; if (RD) { // The parameter number is omitted for the last parameter, 0 for the // second-to-last parameter, 1 for the third-to-last parameter, etc. The // <entity name> will of course contain a <closure-type-name>: Its // numbering will be local to the particular argument in which it appears // -- other default arguments do not affect its encoding. const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); if (CXXRD->isLambda()) { if (const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { Out << 'd'; unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); if (Num > 1) mangleNumber(Num - 2); Out << '_'; } } } // Mangle the name relative to the closest enclosing function. // equality ok because RD derived from ND above if (D == RD) { mangleUnqualifiedName(RD); } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); mangleUnqualifiedBlock(BD); } else { const NamedDecl *ND = cast<NamedDecl>(D); mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/); } } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { // Mangle a block in a default parameter; see above explanation for // lambdas. if (const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { Out << 'd'; unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); if (Num > 1) mangleNumber(Num - 2); Out << '_'; } } mangleUnqualifiedBlock(BD); } else { mangleUnqualifiedName(cast<NamedDecl>(D)); } if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { unsigned disc; if (Context.getNextDiscriminator(ND, disc)) { if (disc < 10) Out << '_' << disc; else Out << "__" << disc << '_'; } } } void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { if (GetLocalClassDecl(Block)) { mangleLocalName(Block); return; } const DeclContext *DC = getEffectiveDeclContext(Block); if (isLocalContainerContext(DC)) { mangleLocalName(Block); return; } manglePrefix(getEffectiveDeclContext(Block)); mangleUnqualifiedBlock(Block); } void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { if (Decl *Context = Block->getBlockManglingContextDecl()) { if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && Context->getDeclContext()->isRecord()) { if (const IdentifierInfo *Name = cast<NamedDecl>(Context)->getIdentifier()) { mangleSourceName(Name); Out << 'M'; } } } // If we have a block mangling number, use it. unsigned Number = Block->getBlockManglingNumber(); // Otherwise, just make up a number. It doesn't matter what it is because // the symbol in question isn't externally visible. if (!Number) Number = Context.getBlockId(Block, false); Out << "Ub"; if (Number > 1) Out << Number - 2; Out << '_'; } void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { // If the context of a closure type is an initializer for a class member // (static or nonstatic), it is encoded in a qualified name with a final // <prefix> of the form: // // <data-member-prefix> := <member source-name> M // // Technically, the data-member-prefix is part of the <prefix>. However, // since a closure type will always be mangled with a prefix, it's easier // to emit that last part of the prefix here. if (Decl *Context = Lambda->getLambdaContextDecl()) { if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && Context->getDeclContext()->isRecord()) { if (const IdentifierInfo *Name = cast<NamedDecl>(Context)->getIdentifier()) { mangleSourceName(Name); Out << 'M'; } } } Out << "Ul"; const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> getAs<FunctionProtoType>(); mangleBareFunctionType(Proto, /*MangleReturnType=*/false); Out << "E"; // The number is omitted for the first closure type with a given // <lambda-sig> in a given context; it is n-2 for the nth closure type // (in lexical order) with that same <lambda-sig> and context. // // The AST keeps track of the number for us. unsigned Number = Lambda->getLambdaManglingNumber(); assert(Number > 0 && "Lambda should be mangled as an unnamed class"); if (Number > 1) mangleNumber(Number - 2); Out << '_'; } void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { switch (qualifier->getKind()) { case NestedNameSpecifier::Global: // nothing return; case NestedNameSpecifier::Namespace: mangleName(qualifier->getAsNamespace()); return; case NestedNameSpecifier::NamespaceAlias: mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); return; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: manglePrefix(QualType(qualifier->getAsType(), 0)); return; case NestedNameSpecifier::Identifier: // Member expressions can have these without prefixes, but that // should end up in mangleUnresolvedPrefix instead. assert(qualifier->getPrefix()); manglePrefix(qualifier->getPrefix()); mangleSourceName(qualifier->getAsIdentifier()); return; } llvm_unreachable("unexpected nested name specifier"); } void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { // <prefix> ::= <prefix> <unqualified-name> // ::= <template-prefix> <template-args> // ::= <template-param> // ::= # empty // ::= <substitution> DC = IgnoreLinkageSpecDecls(DC); if (DC->isTranslationUnit()) return; if (NoFunction && isLocalContainerContext(DC)) return; assert(!isLocalContainerContext(DC)); const NamedDecl *ND = cast<NamedDecl>(DC); if (mangleSubstitution(ND)) return; // Check if we have a template. const TemplateArgumentList *TemplateArgs = nullptr; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleTemplatePrefix(TD); mangleTemplateArgs(*TemplateArgs); } else { manglePrefix(getEffectiveDeclContext(ND), NoFunction); mangleUnqualifiedName(ND); } addSubstitution(ND); } void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { // <template-prefix> ::= <prefix> <template unqualified-name> // ::= <template-param> // ::= <substitution> if (TemplateDecl *TD = Template.getAsTemplateDecl()) return mangleTemplatePrefix(TD); if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) manglePrefix(Qualified->getQualifier()); if (OverloadedTemplateStorage *Overloaded = Template.getAsOverloadedTemplate()) { mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(), UnknownArity); return; } DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); assert(Dependent && "Unknown template name kind?"); manglePrefix(Dependent->getQualifier()); mangleUnscopedTemplateName(Template); } void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction) { // <template-prefix> ::= <prefix> <template unqualified-name> // ::= <template-param> // ::= <substitution> // <template-template-param> ::= <template-param> // <substitution> if (mangleSubstitution(ND)) return; // <template-template-param> ::= <template-param> if (const TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { mangleTemplateParameter(TTP->getIndex()); return; } manglePrefix(getEffectiveDeclContext(ND), NoFunction); mangleUnqualifiedName(ND->getTemplatedDecl()); addSubstitution(ND); } /// Mangles a template name under the production <type>. Required for /// template template arguments. /// <type> ::= <class-enum-type> /// ::= <template-param> /// ::= <substitution> void CXXNameMangler::mangleType(TemplateName TN) { if (mangleSubstitution(TN)) return; TemplateDecl *TD = nullptr; switch (TN.getKind()) { case TemplateName::QualifiedTemplate: TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); goto HaveDecl; case TemplateName::Template: TD = TN.getAsTemplateDecl(); goto HaveDecl; HaveDecl: if (isa<TemplateTemplateParmDecl>(TD)) mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); else mangleName(TD); break; case TemplateName::OverloadedTemplate: llvm_unreachable("can't mangle an overloaded template name as a <type>"); case TemplateName::DependentTemplate: { const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); assert(Dependent->isIdentifier()); // <class-enum-type> ::= <name> // <name> ::= <nested-name> mangleUnresolvedPrefix(Dependent->getQualifier(), nullptr); mangleSourceName(Dependent->getIdentifier()); break; } case TemplateName::SubstTemplateTemplateParm: { // Substituted template parameters are mangled as the substituted // template. This will check for the substitution twice, which is // fine, but we have to return early so that we don't try to *add* // the substitution twice. SubstTemplateTemplateParmStorage *subst = TN.getAsSubstTemplateTemplateParm(); mangleType(subst->getReplacement()); return; } case TemplateName::SubstTemplateTemplateParmPack: { // FIXME: not clear how to mangle this! // template <template <class> class T...> class A { // template <template <class> class U...> void foo(B<T,U> x...); // }; Out << "_SUBSTPACK_"; break; } } addSubstitution(TN); } void CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { switch (OO) { // <operator-name> ::= nw # new case OO_New: Out << "nw"; break; // ::= na # new[] case OO_Array_New: Out << "na"; break; // ::= dl # delete case OO_Delete: Out << "dl"; break; // ::= da # delete[] case OO_Array_Delete: Out << "da"; break; // ::= ps # + (unary) // ::= pl # + (binary or unknown) case OO_Plus: Out << (Arity == 1? "ps" : "pl"); break; // ::= ng # - (unary) // ::= mi # - (binary or unknown) case OO_Minus: Out << (Arity == 1? "ng" : "mi"); break; // ::= ad # & (unary) // ::= an # & (binary or unknown) case OO_Amp: Out << (Arity == 1? "ad" : "an"); break; // ::= de # * (unary) // ::= ml # * (binary or unknown) case OO_Star: // Use binary when unknown. Out << (Arity == 1? "de" : "ml"); break; // ::= co # ~ case OO_Tilde: Out << "co"; break; // ::= dv # / case OO_Slash: Out << "dv"; break; // ::= rm # % case OO_Percent: Out << "rm"; break; // ::= or # | case OO_Pipe: Out << "or"; break; // ::= eo # ^ case OO_Caret: Out << "eo"; break; // ::= aS # = case OO_Equal: Out << "aS"; break; // ::= pL # += case OO_PlusEqual: Out << "pL"; break; // ::= mI # -= case OO_MinusEqual: Out << "mI"; break; // ::= mL # *= case OO_StarEqual: Out << "mL"; break; // ::= dV # /= case OO_SlashEqual: Out << "dV"; break; // ::= rM # %= case OO_PercentEqual: Out << "rM"; break; // ::= aN # &= case OO_AmpEqual: Out << "aN"; break; // ::= oR # |= case OO_PipeEqual: Out << "oR"; break; // ::= eO # ^= case OO_CaretEqual: Out << "eO"; break; // ::= ls # << case OO_LessLess: Out << "ls"; break; // ::= rs # >> case OO_GreaterGreater: Out << "rs"; break; // ::= lS # <<= case OO_LessLessEqual: Out << "lS"; break; // ::= rS # >>= case OO_GreaterGreaterEqual: Out << "rS"; break; // ::= eq # == case OO_EqualEqual: Out << "eq"; break; // ::= ne # != case OO_ExclaimEqual: Out << "ne"; break; // ::= lt # < case OO_Less: Out << "lt"; break; // ::= gt # > case OO_Greater: Out << "gt"; break; // ::= le # <= case OO_LessEqual: Out << "le"; break; // ::= ge # >= case OO_GreaterEqual: Out << "ge"; break; // ::= nt # ! case OO_Exclaim: Out << "nt"; break; // ::= aa # && case OO_AmpAmp: Out << "aa"; break; // ::= oo # || case OO_PipePipe: Out << "oo"; break; // ::= pp # ++ case OO_PlusPlus: Out << "pp"; break; // ::= mm # -- case OO_MinusMinus: Out << "mm"; break; // ::= cm # , case OO_Comma: Out << "cm"; break; // ::= pm # ->* case OO_ArrowStar: Out << "pm"; break; // ::= pt # -> case OO_Arrow: Out << "pt"; break; // ::= cl # () case OO_Call: Out << "cl"; break; // ::= ix # [] case OO_Subscript: Out << "ix"; break; // ::= qu # ? // The conditional operator can't be overloaded, but we still handle it when // mangling expressions. case OO_Conditional: Out << "qu"; break; case OO_None: case NUM_OVERLOADED_OPERATORS: llvm_unreachable("Not an overloaded operator"); } } void CXXNameMangler::mangleQualifiers(Qualifiers Quals) { // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const if (Quals.hasRestrict()) Out << 'r'; if (Quals.hasVolatile()) Out << 'V'; if (Quals.hasConst()) Out << 'K'; if (Quals.hasAddressSpace()) { // Address space extension: // // <type> ::= U <target-addrspace> // <type> ::= U <OpenCL-addrspace> // <type> ::= U <CUDA-addrspace> SmallString<64> ASString; unsigned AS = Quals.getAddressSpace(); if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { // <target-addrspace> ::= "AS" <address-space-number> unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); ASString = "AS" + llvm::utostr_32(TargetAS); } else { switch (AS) { default: llvm_unreachable("Not a language specific address space"); // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ] case LangAS::opencl_global: ASString = "CLglobal"; break; case LangAS::opencl_local: ASString = "CLlocal"; break; case LangAS::opencl_constant: ASString = "CLconstant"; break; // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] case LangAS::cuda_device: ASString = "CUdevice"; break; case LangAS::cuda_constant: ASString = "CUconstant"; break; case LangAS::cuda_shared: ASString = "CUshared"; break; } } Out << 'U' << ASString.size() << ASString; } StringRef LifetimeName; switch (Quals.getObjCLifetime()) { // Objective-C ARC Extension: // // <type> ::= U "__strong" // <type> ::= U "__weak" // <type> ::= U "__autoreleasing" case Qualifiers::OCL_None: break; case Qualifiers::OCL_Weak: LifetimeName = "__weak"; break; case Qualifiers::OCL_Strong: LifetimeName = "__strong"; break; case Qualifiers::OCL_Autoreleasing: LifetimeName = "__autoreleasing"; break; case Qualifiers::OCL_ExplicitNone: // The __unsafe_unretained qualifier is *not* mangled, so that // __unsafe_unretained types in ARC produce the same manglings as the // equivalent (but, naturally, unqualified) types in non-ARC, providing // better ABI compatibility. // // It's safe to do this because unqualified 'id' won't show up // in any type signatures that need to be mangled. break; } if (!LifetimeName.empty()) Out << 'U' << LifetimeName.size() << LifetimeName; } void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { // <ref-qualifier> ::= R # lvalue reference // ::= O # rvalue-reference switch (RefQualifier) { case RQ_None: break; case RQ_LValue: Out << 'R'; break; case RQ_RValue: Out << 'O'; break; } } void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { Context.mangleObjCMethodName(MD, Out); } void CXXNameMangler::mangleType(QualType T) { // If our type is instantiation-dependent but not dependent, we mangle // it as it was written in the source, removing any top-level sugar. // Otherwise, use the canonical type. // // FIXME: This is an approximation of the instantiation-dependent name // mangling rules, since we should really be using the type as written and // augmented via semantic analysis (i.e., with implicit conversions and // default template arguments) for any instantiation-dependent type. // Unfortunately, that requires several changes to our AST: // - Instantiation-dependent TemplateSpecializationTypes will need to be // uniqued, so that we can handle substitutions properly // - Default template arguments will need to be represented in the // TemplateSpecializationType, since they need to be mangled even though // they aren't written. // - Conversions on non-type template arguments need to be expressed, since // they can affect the mangling of sizeof/alignof. if (!T->isInstantiationDependentType() || T->isDependentType()) T = T.getCanonicalType(); else { // Desugar any types that are purely sugar. do { // Don't desugar through template specialization types that aren't // type aliases. We need to mangle the template arguments as written. if (const TemplateSpecializationType *TST = dyn_cast<TemplateSpecializationType>(T)) if (!TST->isTypeAlias()) break; QualType Desugared = T.getSingleStepDesugaredType(Context.getASTContext()); if (Desugared == T) break; T = Desugared; } while (true); } SplitQualType split = T.split(); Qualifiers quals = split.Quals; const Type *ty = split.Ty; bool isSubstitutable = quals || !isa<BuiltinType>(T); if (isSubstitutable && mangleSubstitution(T)) return; // If we're mangling a qualified array type, push the qualifiers to // the element type. if (quals && isa<ArrayType>(T)) { ty = Context.getASTContext().getAsArrayType(T); quals = Qualifiers(); // Note that we don't update T: we want to add the // substitution at the original type. } if (quals) { mangleQualifiers(quals); // Recurse: even if the qualified type isn't yet substitutable, // the unqualified type might be. mangleType(QualType(ty, 0)); } else { switch (ty->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) \ case Type::CLASS: \ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ return; #define TYPE(CLASS, PARENT) \ case Type::CLASS: \ mangleType(static_cast<const CLASS##Type*>(ty)); \ break; #include "clang/AST/TypeNodes.def" } } // Add the substitution. if (isSubstitutable) addSubstitution(T); } void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { if (!mangleStandardSubstitution(ND)) mangleName(ND); } void CXXNameMangler::mangleType(const BuiltinType *T) { // <type> ::= <builtin-type> // <builtin-type> ::= v # void // ::= w # wchar_t // ::= b # bool // ::= c # char // ::= a # signed char // ::= h # unsigned char // ::= s # short // ::= t # unsigned short // ::= i # int // ::= j # unsigned int // ::= l # long // ::= m # unsigned long // ::= x # long long, __int64 // ::= y # unsigned long long, __int64 // ::= n # __int128 // ::= o # unsigned __int128 // ::= f # float // ::= d # double // ::= e # long double, __float80 // UNSUPPORTED: ::= g # __float128 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) // ::= Dh # IEEE 754r half-precision floating point (16 bits) // ::= Di # char32_t // ::= Ds # char16_t // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) // ::= u <source-name> # vendor extended type switch (T->getKind()) { case BuiltinType::Void: Out << 'v'; break; case BuiltinType::Bool: Out << 'b'; break; case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break; case BuiltinType::UChar: Out << 'h'; break; case BuiltinType::UShort: Out << 't'; break; case BuiltinType::UInt: Out << 'j'; break; case BuiltinType::ULong: Out << 'm'; break; case BuiltinType::ULongLong: Out << 'y'; break; case BuiltinType::UInt128: Out << 'o'; break; case BuiltinType::SChar: Out << 'a'; break; case BuiltinType::WChar_S: case BuiltinType::WChar_U: Out << 'w'; break; case BuiltinType::Char16: Out << "Ds"; break; case BuiltinType::Char32: Out << "Di"; break; case BuiltinType::Short: Out << 's'; break; case BuiltinType::Int: Out << 'i'; break; case BuiltinType::Long: Out << 'l'; break; case BuiltinType::LongLong: Out << 'x'; break; case BuiltinType::Int128: Out << 'n'; break; case BuiltinType::Half: Out << "Dh"; break; case BuiltinType::Float: Out << 'f'; break; case BuiltinType::Double: Out << 'd'; break; case BuiltinType::LongDouble: Out << 'e'; break; case BuiltinType::NullPtr: Out << "Dn"; break; #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) \ case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" case BuiltinType::Dependent: llvm_unreachable("mangling a placeholder type"); case BuiltinType::ObjCId: Out << "11objc_object"; break; case BuiltinType::ObjCClass: Out << "10objc_class"; break; case BuiltinType::ObjCSel: Out << "13objc_selector"; break; case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break; case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break; case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break; case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break; case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break; case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break; case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break; case BuiltinType::OCLEvent: Out << "9ocl_event"; break; } } // <type> ::= <function-type> // <function-type> ::= [<CV-qualifiers>] F [Y] // <bare-function-type> [<ref-qualifier>] E void CXXNameMangler::mangleType(const FunctionProtoType *T) { // Mangle CV-qualifiers, if present. These are 'this' qualifiers, // e.g. "const" in "int (A::*)() const". mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals())); Out << 'F'; // FIXME: We don't have enough information in the AST to produce the 'Y' // encoding for extern "C" function types. mangleBareFunctionType(T, /*MangleReturnType=*/true); // Mangle the ref-qualifier, if present. mangleRefQualifier(T->getRefQualifier()); Out << 'E'; } void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { llvm_unreachable("Can't mangle K&R function prototypes"); } void CXXNameMangler::mangleBareFunctionType(const FunctionType *T, bool MangleReturnType) { // We should never be mangling something without a prototype. const FunctionProtoType *Proto = cast<FunctionProtoType>(T); // Record that we're in a function type. See mangleFunctionParam // for details on what we're trying to achieve here. FunctionTypeDepthState saved = FunctionTypeDepth.push(); // <bare-function-type> ::= <signature type>+ if (MangleReturnType) { FunctionTypeDepth.enterResultType(); mangleType(Proto->getReturnType()); FunctionTypeDepth.leaveResultType(); } if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { // <builtin-type> ::= v # void Out << 'v'; FunctionTypeDepth.pop(saved); return; } for (const auto &Arg : Proto->param_types()) mangleType(Context.getASTContext().getSignatureParameterType(Arg)); FunctionTypeDepth.pop(saved); // <builtin-type> ::= z # ellipsis if (Proto->isVariadic()) Out << 'z'; } // <type> ::= <class-enum-type> // <class-enum-type> ::= <name> void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { mangleName(T->getDecl()); } // <type> ::= <class-enum-type> // <class-enum-type> ::= <name> void CXXNameMangler::mangleType(const EnumType *T) { mangleType(static_cast<const TagType*>(T)); } void CXXNameMangler::mangleType(const RecordType *T) { mangleType(static_cast<const TagType*>(T)); } void CXXNameMangler::mangleType(const TagType *T) { mangleName(T->getDecl()); } // <type> ::= <array-type> // <array-type> ::= A <positive dimension number> _ <element type> // ::= A [<dimension expression>] _ <element type> void CXXNameMangler::mangleType(const ConstantArrayType *T) { Out << 'A' << T->getSize() << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const VariableArrayType *T) { Out << 'A'; // decayed vla types (size 0) will just be skipped. if (T->getSizeExpr()) mangleExpression(T->getSizeExpr()); Out << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { Out << 'A'; mangleExpression(T->getSizeExpr()); Out << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const IncompleteArrayType *T) { Out << "A_"; mangleType(T->getElementType()); } // <type> ::= <pointer-to-member-type> // <pointer-to-member-type> ::= M <class type> <member type> void CXXNameMangler::mangleType(const MemberPointerType *T) { Out << 'M'; mangleType(QualType(T->getClass(), 0)); QualType PointeeType = T->getPointeeType(); if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { mangleType(FPT); // Itanium C++ ABI 5.1.8: // // The type of a non-static member function is considered to be different, // for the purposes of substitution, from the type of a namespace-scope or // static member function whose type appears similar. The types of two // non-static member functions are considered to be different, for the // purposes of substitution, if the functions are members of different // classes. In other words, for the purposes of substitution, the class of // which the function is a member is considered part of the type of // function. // Given that we already substitute member function pointers as a // whole, the net effect of this rule is just to unconditionally // suppress substitution on the function type in a member pointer. // We increment the SeqID here to emulate adding an entry to the // substitution table. ++SeqID; } else mangleType(PointeeType); } // <type> ::= <template-param> void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { mangleTemplateParameter(T->getIndex()); } // <type> ::= <template-param> void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { // FIXME: not clear how to mangle this! // template <class T...> class A { // template <class U...> void foo(T(*)(U) x...); // }; Out << "_SUBSTPACK_"; } // <type> ::= P <type> # pointer-to void CXXNameMangler::mangleType(const PointerType *T) { Out << 'P'; mangleType(T->getPointeeType()); } void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { Out << 'P'; mangleType(T->getPointeeType()); } // <type> ::= R <type> # reference-to void CXXNameMangler::mangleType(const LValueReferenceType *T) { Out << 'R'; mangleType(T->getPointeeType()); } // <type> ::= O <type> # rvalue reference-to (C++0x) void CXXNameMangler::mangleType(const RValueReferenceType *T) { Out << 'O'; mangleType(T->getPointeeType()); } // <type> ::= C <type> # complex pair (C 2000) void CXXNameMangler::mangleType(const ComplexType *T) { Out << 'C'; mangleType(T->getElementType()); } // ARM's ABI for Neon vector types specifies that they should be mangled as // if they are structs (to match ARM's initial implementation). The // vector type must be one of the special types predefined by ARM. void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { QualType EltType = T->getElementType(); assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); const char *EltName = nullptr; if (T->getVectorKind() == VectorType::NeonPolyVector) { switch (cast<BuiltinType>(EltType)->getKind()) { case BuiltinType::SChar: case BuiltinType::UChar: EltName = "poly8_t"; break; case BuiltinType::Short: case BuiltinType::UShort: EltName = "poly16_t"; break; case BuiltinType::ULongLong: EltName = "poly64_t"; break; default: llvm_unreachable("unexpected Neon polynomial vector element type"); } } else { switch (cast<BuiltinType>(EltType)->getKind()) { case BuiltinType::SChar: EltName = "int8_t"; break; case BuiltinType::UChar: EltName = "uint8_t"; break; case BuiltinType::Short: EltName = "int16_t"; break; case BuiltinType::UShort: EltName = "uint16_t"; break; case BuiltinType::Int: EltName = "int32_t"; break; case BuiltinType::UInt: EltName = "uint32_t"; break; case BuiltinType::LongLong: EltName = "int64_t"; break; case BuiltinType::ULongLong: EltName = "uint64_t"; break; case BuiltinType::Double: EltName = "float64_t"; break; case BuiltinType::Float: EltName = "float32_t"; break; case BuiltinType::Half: EltName = "float16_t";break; default: llvm_unreachable("unexpected Neon vector element type"); } } const char *BaseName = nullptr; unsigned BitSize = (T->getNumElements() * getASTContext().getTypeSize(EltType)); if (BitSize == 64) BaseName = "__simd64_"; else { assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); BaseName = "__simd128_"; } Out << strlen(BaseName) + strlen(EltName); Out << BaseName << EltName; } static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { switch (EltType->getKind()) { case BuiltinType::SChar: return "Int8"; case BuiltinType::Short: return "Int16"; case BuiltinType::Int: return "Int32"; case BuiltinType::Long: case BuiltinType::LongLong: return "Int64"; case BuiltinType::UChar: return "Uint8"; case BuiltinType::UShort: return "Uint16"; case BuiltinType::UInt: return "Uint32"; case BuiltinType::ULong: case BuiltinType::ULongLong: return "Uint64"; case BuiltinType::Half: return "Float16"; case BuiltinType::Float: return "Float32"; case BuiltinType::Double: return "Float64"; default: llvm_unreachable("Unexpected vector element base type"); } } // AArch64's ABI for Neon vector types specifies that they should be mangled as // the equivalent internal name. The vector type must be one of the special // types predefined by ARM. void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { QualType EltType = T->getElementType(); assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); unsigned BitSize = (T->getNumElements() * getASTContext().getTypeSize(EltType)); (void)BitSize; // Silence warning. assert((BitSize == 64 || BitSize == 128) && "Neon vector type not 64 or 128 bits"); StringRef EltName; if (T->getVectorKind() == VectorType::NeonPolyVector) { switch (cast<BuiltinType>(EltType)->getKind()) { case BuiltinType::UChar: EltName = "Poly8"; break; case BuiltinType::UShort: EltName = "Poly16"; break; case BuiltinType::ULong: EltName = "Poly64"; break; default: llvm_unreachable("unexpected Neon polynomial vector element type"); } } else EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); std::string TypeName = ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str(); Out << TypeName.length() << TypeName; } // GNU extension: vector types // <type> ::= <vector-type> // <vector-type> ::= Dv <positive dimension number> _ // <extended element type> // ::= Dv [<dimension expression>] _ <element type> // <extended element type> ::= <element type> // ::= p # AltiVec vector pixel // ::= b # Altivec vector bool void CXXNameMangler::mangleType(const VectorType *T) { if ((T->getVectorKind() == VectorType::NeonVector || T->getVectorKind() == VectorType::NeonPolyVector)) { llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); llvm::Triple::ArchType Arch = getASTContext().getTargetInfo().getTriple().getArch(); if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || Arch == llvm::Triple::arm64_be || Arch == llvm::Triple::arm64) && !Target.isOSDarwin()) mangleAArch64NeonVectorType(T); else mangleNeonVectorType(T); return; } Out << "Dv" << T->getNumElements() << '_'; if (T->getVectorKind() == VectorType::AltiVecPixel) Out << 'p'; else if (T->getVectorKind() == VectorType::AltiVecBool) Out << 'b'; else mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const ExtVectorType *T) { mangleType(static_cast<const VectorType*>(T)); } void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { Out << "Dv"; mangleExpression(T->getSizeExpr()); Out << '_'; mangleType(T->getElementType()); } void CXXNameMangler::mangleType(const PackExpansionType *T) { // <type> ::= Dp <type> # pack expansion (C++0x) Out << "Dp"; mangleType(T->getPattern()); } void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { mangleSourceName(T->getDecl()->getIdentifier()); } void CXXNameMangler::mangleType(const ObjCObjectType *T) { if (!T->qual_empty()) { // Mangle protocol qualifiers. SmallString<64> QualStr; llvm::raw_svector_ostream QualOS(QualStr); QualOS << "objcproto"; for (const auto *I : T->quals()) { StringRef name = I->getName(); QualOS << name.size() << name; } QualOS.flush(); Out << 'U' << QualStr.size() << QualStr; } mangleType(T->getBaseType()); } void CXXNameMangler::mangleType(const BlockPointerType *T) { Out << "U13block_pointer"; mangleType(T->getPointeeType()); } void CXXNameMangler::mangleType(const InjectedClassNameType *T) { // Mangle injected class name types as if the user had written the // specialization out fully. It may not actually be possible to see // this mangling, though. mangleType(T->getInjectedSpecializationType()); } void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { mangleName(TD, T->getArgs(), T->getNumArgs()); } else { if (mangleSubstitution(QualType(T, 0))) return; mangleTemplatePrefix(T->getTemplateName()); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(T->getArgs(), T->getNumArgs()); addSubstitution(QualType(T, 0)); } } void CXXNameMangler::mangleType(const DependentNameType *T) { // Proposal by cxx-abi-dev, 2014-03-26 // <class-enum-type> ::= <name> # non-dependent or dependent type name or // # dependent elaborated type specifier using // # 'typename' // ::= Ts <name> # dependent elaborated type specifier using // # 'struct' or 'class' // ::= Tu <name> # dependent elaborated type specifier using // # 'union' // ::= Te <name> # dependent elaborated type specifier using // # 'enum' switch (T->getKeyword()) { case ETK_Typename: break; case ETK_Struct: case ETK_Class: case ETK_Interface: Out << "Ts"; break; case ETK_Union: Out << "Tu"; break; case ETK_Enum: Out << "Te"; break; default: llvm_unreachable("unexpected keyword for dependent type name"); } // Typename types are always nested Out << 'N'; manglePrefix(T->getQualifier()); mangleSourceName(T->getIdentifier()); Out << 'E'; } void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { // Dependently-scoped template types are nested if they have a prefix. Out << 'N'; // TODO: avoid making this TemplateName. TemplateName Prefix = getASTContext().getDependentTemplateName(T->getQualifier(), T->getIdentifier()); mangleTemplatePrefix(Prefix); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(T->getArgs(), T->getNumArgs()); Out << 'E'; } void CXXNameMangler::mangleType(const TypeOfType *T) { // FIXME: this is pretty unsatisfactory, but there isn't an obvious // "extension with parameters" mangling. Out << "u6typeof"; } void CXXNameMangler::mangleType(const TypeOfExprType *T) { // FIXME: this is pretty unsatisfactory, but there isn't an obvious // "extension with parameters" mangling. Out << "u6typeof"; } void CXXNameMangler::mangleType(const DecltypeType *T) { Expr *E = T->getUnderlyingExpr(); // type ::= Dt <expression> E # decltype of an id-expression // # or class member access // ::= DT <expression> E # decltype of an expression // This purports to be an exhaustive list of id-expressions and // class member accesses. Note that we do not ignore parentheses; // parentheses change the semantics of decltype for these // expressions (and cause the mangler to use the other form). if (isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<UnresolvedLookupExpr>(E) || isa<DependentScopeDeclRefExpr>(E) || isa<CXXDependentScopeMemberExpr>(E) || isa<UnresolvedMemberExpr>(E)) Out << "Dt"; else Out << "DT"; mangleExpression(E); Out << 'E'; } void CXXNameMangler::mangleType(const UnaryTransformType *T) { // If this is dependent, we need to record that. If not, we simply // mangle it as the underlying type since they are equivalent. if (T->isDependentType()) { Out << 'U'; switch (T->getUTTKind()) { case UnaryTransformType::EnumUnderlyingType: Out << "3eut"; break; } } mangleType(T->getUnderlyingType()); } void CXXNameMangler::mangleType(const AutoType *T) { QualType D = T->getDeducedType(); // <builtin-type> ::= Da # dependent auto if (D.isNull()) Out << (T->isDecltypeAuto() ? "Dc" : "Da"); else mangleType(D); } void CXXNameMangler::mangleType(const AtomicType *T) { // <type> ::= U <source-name> <type> # vendor extended type qualifier // (Until there's a standardized mangling...) Out << "U7_Atomic"; mangleType(T->getValueType()); } void CXXNameMangler::mangleIntegerLiteral(QualType T, const llvm::APSInt &Value) { // <expr-primary> ::= L <type> <value number> E # integer literal Out << 'L'; mangleType(T); if (T->isBooleanType()) { // Boolean values are encoded as 0/1. Out << (Value.getBoolValue() ? '1' : '0'); } else { mangleNumber(Value); } Out << 'E'; } /// Mangles a member expression. void CXXNameMangler::mangleMemberExpr(const Expr *base, bool isArrow, NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName member, unsigned arity) { // <expression> ::= dt <expression> <unresolved-name> // ::= pt <expression> <unresolved-name> if (base) { if (base->isImplicitCXXThis()) { // Note: GCC mangles member expressions to the implicit 'this' as // *this., whereas we represent them as this->. The Itanium C++ ABI // does not specify anything here, so we follow GCC. Out << "dtdefpT"; } else { Out << (isArrow ? "pt" : "dt"); mangleExpression(base); } } mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity); } /// Look at the callee of the given call expression and determine if /// it's a parenthesized id-expression which would have triggered ADL /// otherwise. static bool isParenthesizedADLCallee(const CallExpr *call) { const Expr *callee = call->getCallee(); const Expr *fn = callee->IgnoreParens(); // Must be parenthesized. IgnoreParens() skips __extension__ nodes, // too, but for those to appear in the callee, it would have to be // parenthesized. if (callee == fn) return false; // Must be an unresolved lookup. const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); if (!lookup) return false; assert(!lookup->requiresADL()); // Must be an unqualified lookup. if (lookup->getQualifier()) return false; // Must not have found a class member. Note that if one is a class // member, they're all class members. if (lookup->getNumDecls() > 0 && (*lookup->decls_begin())->isCXXClassMember()) return false; // Otherwise, ADL would have been triggered. return true; } void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { // <expression> ::= <unary operator-name> <expression> // ::= <binary operator-name> <expression> <expression> // ::= <trinary operator-name> <expression> <expression> <expression> // ::= cv <type> expression # conversion with one argument // ::= cv <type> _ <expression>* E # conversion with a different number of arguments // ::= st <type> # sizeof (a type) // ::= at <type> # alignof (a type) // ::= <template-param> // ::= <function-param> // ::= sr <type> <unqualified-name> # dependent name // ::= sr <type> <unqualified-name> <template-args> # dependent template-id // ::= ds <expression> <expression> # expr.*expr // ::= sZ <template-param> # size of a parameter pack // ::= sZ <function-param> # size of a function parameter pack // ::= <expr-primary> // <expr-primary> ::= L <type> <value number> E # integer literal // ::= L <type <value float> E # floating literal // ::= L <mangled-name> E # external name // ::= fpT # 'this' expression QualType ImplicitlyConvertedToType; recurse: switch (E->getStmtClass()) { case Expr::NoStmtClass: #define ABSTRACT_STMT(Type) #define EXPR(Type, Base) #define STMT(Type, Base) \ case Expr::Type##Class: #include "clang/AST/StmtNodes.inc" // fallthrough // These all can only appear in local or variable-initialization // contexts and so should never appear in a mangling. case Expr::AddrLabelExprClass: case Expr::DesignatedInitExprClass: case Expr::ImplicitValueInitExprClass: case Expr::ParenListExprClass: case Expr::LambdaExprClass: case Expr::MSPropertyRefExprClass: llvm_unreachable("unexpected statement kind"); // FIXME: invent manglings for all these. case Expr::BlockExprClass: case Expr::CXXPseudoDestructorExprClass: case Expr::ChooseExprClass: case Expr::CompoundLiteralExprClass: case Expr::ExtVectorElementExprClass: case Expr::GenericSelectionExprClass: case Expr::ObjCEncodeExprClass: case Expr::ObjCIsaExprClass: case Expr::ObjCIvarRefExprClass: case Expr::ObjCMessageExprClass: case Expr::ObjCPropertyRefExprClass: case Expr::ObjCProtocolExprClass: case Expr::ObjCSelectorExprClass: case Expr::ObjCStringLiteralClass: case Expr::ObjCBoxedExprClass: case Expr::ObjCArrayLiteralClass: case Expr::ObjCDictionaryLiteralClass: case Expr::ObjCSubscriptRefExprClass: case Expr::ObjCIndirectCopyRestoreExprClass: case Expr::OffsetOfExprClass: case Expr::PredefinedExprClass: case Expr::ShuffleVectorExprClass: case Expr::ConvertVectorExprClass: case Expr::StmtExprClass: case Expr::TypeTraitExprClass: case Expr::ArrayTypeTraitExprClass: case Expr::ExpressionTraitExprClass: case Expr::VAArgExprClass: case Expr::CXXUuidofExprClass: case Expr::CUDAKernelCallExprClass: case Expr::AsTypeExprClass: case Expr::PseudoObjectExprClass: case Expr::AtomicExprClass: { // As bad as this diagnostic is, it's better than crashing. DiagnosticsEngine &Diags = Context.getDiags(); unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() << E->getSourceRange(); break; } // Even gcc-4.5 doesn't mangle this. case Expr::BinaryConditionalOperatorClass: { DiagnosticsEngine &Diags = Context.getDiags(); unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, "?: operator with omitted middle operand cannot be mangled"); Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() << E->getSourceRange(); break; } // These are used for internal purposes and cannot be meaningfully mangled. case Expr::OpaqueValueExprClass: llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); case Expr::InitListExprClass: { Out << "il"; const InitListExpr *InitList = cast<InitListExpr>(E); for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) mangleExpression(InitList->getInit(i)); Out << "E"; break; } case Expr::CXXDefaultArgExprClass: mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); break; case Expr::CXXDefaultInitExprClass: mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity); break; case Expr::CXXStdInitializerListExprClass: mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity); break; case Expr::SubstNonTypeTemplateParmExprClass: mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Arity); break; case Expr::UserDefinedLiteralClass: // We follow g++'s approach of mangling a UDL as a call to the literal // operator. case Expr::CXXMemberCallExprClass: // fallthrough case Expr::CallExprClass: { const CallExpr *CE = cast<CallExpr>(E); // <expression> ::= cp <simple-id> <expression>* E // We use this mangling only when the call would use ADL except // for being parenthesized. Per discussion with David // Vandervoorde, 2011.04.25. if (isParenthesizedADLCallee(CE)) { Out << "cp"; // The callee here is a parenthesized UnresolvedLookupExpr with // no qualifier and should always get mangled as a <simple-id> // anyway. // <expression> ::= cl <expression>* E } else { Out << "cl"; } mangleExpression(CE->getCallee(), CE->getNumArgs()); for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I) mangleExpression(CE->getArg(I)); Out << 'E'; break; } case Expr::CXXNewExprClass: { const CXXNewExpr *New = cast<CXXNewExpr>(E); if (New->isGlobalNew()) Out << "gs"; Out << (New->isArray() ? "na" : "nw"); for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), E = New->placement_arg_end(); I != E; ++I) mangleExpression(*I); Out << '_'; mangleType(New->getAllocatedType()); if (New->hasInitializer()) { if (New->getInitializationStyle() == CXXNewExpr::ListInit) Out << "il"; else Out << "pi"; const Expr *Init = New->getInitializer(); if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { // Directly inline the initializers. for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), E = CCE->arg_end(); I != E; ++I) mangleExpression(*I); } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) mangleExpression(PLE->getExpr(i)); } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && isa<InitListExpr>(Init)) { // Only take InitListExprs apart for list-initialization. const InitListExpr *InitList = cast<InitListExpr>(Init); for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) mangleExpression(InitList->getInit(i)); } else mangleExpression(Init); } Out << 'E'; break; } case Expr::MemberExprClass: { const MemberExpr *ME = cast<MemberExpr>(E); mangleMemberExpr(ME->getBase(), ME->isArrow(), ME->getQualifier(), nullptr, ME->getMemberDecl()->getDeclName(), Arity); break; } case Expr::UnresolvedMemberExprClass: { const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); mangleMemberExpr(ME->getBase(), ME->isArrow(), ME->getQualifier(), nullptr, ME->getMemberName(), Arity); if (ME->hasExplicitTemplateArgs()) mangleTemplateArgs(ME->getExplicitTemplateArgs()); break; } case Expr::CXXDependentScopeMemberExprClass: { const CXXDependentScopeMemberExpr *ME = cast<CXXDependentScopeMemberExpr>(E); mangleMemberExpr(ME->getBase(), ME->isArrow(), ME->getQualifier(), ME->getFirstQualifierFoundInScope(), ME->getMember(), Arity); if (ME->hasExplicitTemplateArgs()) mangleTemplateArgs(ME->getExplicitTemplateArgs()); break; } case Expr::UnresolvedLookupExprClass: { const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); mangleUnresolvedName(ULE->getQualifier(), nullptr, ULE->getName(), Arity); // All the <unresolved-name> productions end in a // base-unresolved-name, where <template-args> are just tacked // onto the end. if (ULE->hasExplicitTemplateArgs()) mangleTemplateArgs(ULE->getExplicitTemplateArgs()); break; } case Expr::CXXUnresolvedConstructExprClass: { const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); unsigned N = CE->arg_size(); Out << "cv"; mangleType(CE->getType()); if (N != 1) Out << '_'; for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); if (N != 1) Out << 'E'; break; } case Expr::CXXTemporaryObjectExprClass: case Expr::CXXConstructExprClass: { const CXXConstructExpr *CE = cast<CXXConstructExpr>(E); unsigned N = CE->getNumArgs(); if (CE->isListInitialization()) Out << "tl"; else Out << "cv"; mangleType(CE->getType()); if (N != 1) Out << '_'; for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); if (N != 1) Out << 'E'; break; } case Expr::CXXScalarValueInitExprClass: Out <<"cv"; mangleType(E->getType()); Out <<"_E"; break; case Expr::CXXNoexceptExprClass: Out << "nx"; mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); break; case Expr::UnaryExprOrTypeTraitExprClass: { const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); if (!SAE->isInstantiationDependent()) { // Itanium C++ ABI: // If the operand of a sizeof or alignof operator is not // instantiation-dependent it is encoded as an integer literal // reflecting the result of the operator. // // If the result of the operator is implicitly converted to a known // integer type, that type is used for the literal; otherwise, the type // of std::size_t or std::ptrdiff_t is used. QualType T = (ImplicitlyConvertedToType.isNull() || !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() : ImplicitlyConvertedToType; llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); mangleIntegerLiteral(T, V); break; } switch(SAE->getKind()) { case UETT_SizeOf: Out << 's'; break; case UETT_AlignOf: Out << 'a'; break; case UETT_VecStep: DiagnosticsEngine &Diags = Context.getDiags(); unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, "cannot yet mangle vec_step expression"); Diags.Report(DiagID); return; } if (SAE->isArgumentType()) { Out << 't'; mangleType(SAE->getArgumentType()); } else { Out << 'z'; mangleExpression(SAE->getArgumentExpr()); } break; } case Expr::CXXThrowExprClass: { const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); // <expression> ::= tw <expression> # throw expression // ::= tr # rethrow if (TE->getSubExpr()) { Out << "tw"; mangleExpression(TE->getSubExpr()); } else { Out << "tr"; } break; } case Expr::CXXTypeidExprClass: { const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); // <expression> ::= ti <type> # typeid (type) // ::= te <expression> # typeid (expression) if (TIE->isTypeOperand()) { Out << "ti"; mangleType(TIE->getTypeOperand(Context.getASTContext())); } else { Out << "te"; mangleExpression(TIE->getExprOperand()); } break; } case Expr::CXXDeleteExprClass: { const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); // <expression> ::= [gs] dl <expression> # [::] delete expr // ::= [gs] da <expression> # [::] delete [] expr if (DE->isGlobalDelete()) Out << "gs"; Out << (DE->isArrayForm() ? "da" : "dl"); mangleExpression(DE->getArgument()); break; } case Expr::UnaryOperatorClass: { const UnaryOperator *UO = cast<UnaryOperator>(E); mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), /*Arity=*/1); mangleExpression(UO->getSubExpr()); break; } case Expr::ArraySubscriptExprClass: { const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); // Array subscript is treated as a syntactically weird form of // binary operator. Out << "ix"; mangleExpression(AE->getLHS()); mangleExpression(AE->getRHS()); break; } case Expr::CompoundAssignOperatorClass: // fallthrough case Expr::BinaryOperatorClass: { const BinaryOperator *BO = cast<BinaryOperator>(E); if (BO->getOpcode() == BO_PtrMemD) Out << "ds"; else mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), /*Arity=*/2); mangleExpression(BO->getLHS()); mangleExpression(BO->getRHS()); break; } case Expr::ConditionalOperatorClass: { const ConditionalOperator *CO = cast<ConditionalOperator>(E); mangleOperatorName(OO_Conditional, /*Arity=*/3); mangleExpression(CO->getCond()); mangleExpression(CO->getLHS(), Arity); mangleExpression(CO->getRHS(), Arity); break; } case Expr::ImplicitCastExprClass: { ImplicitlyConvertedToType = E->getType(); E = cast<ImplicitCastExpr>(E)->getSubExpr(); goto recurse; } case Expr::ObjCBridgedCastExprClass: { // Mangle ownership casts as a vendor extended operator __bridge, // __bridge_transfer, or __bridge_retain. StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); Out << "v1U" << Kind.size() << Kind; } // Fall through to mangle the cast itself. case Expr::CStyleCastExprClass: case Expr::CXXStaticCastExprClass: case Expr::CXXDynamicCastExprClass: case Expr::CXXReinterpretCastExprClass: case Expr::CXXConstCastExprClass: case Expr::CXXFunctionalCastExprClass: { const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); Out << "cv"; mangleType(ECE->getType()); mangleExpression(ECE->getSubExpr()); break; } case Expr::CXXOperatorCallExprClass: { const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); unsigned NumArgs = CE->getNumArgs(); mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); // Mangle the arguments. for (unsigned i = 0; i != NumArgs; ++i) mangleExpression(CE->getArg(i)); break; } case Expr::ParenExprClass: mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); break; case Expr::DeclRefExprClass: { const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); switch (D->getKind()) { default: // <expr-primary> ::= L <mangled-name> E # external name Out << 'L'; mangle(D, "_Z"); Out << 'E'; break; case Decl::ParmVar: mangleFunctionParam(cast<ParmVarDecl>(D)); break; case Decl::EnumConstant: { const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); mangleIntegerLiteral(ED->getType(), ED->getInitVal()); break; } case Decl::NonTypeTemplateParm: { const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); mangleTemplateParameter(PD->getIndex()); break; } } break; } case Expr::SubstNonTypeTemplateParmPackExprClass: // FIXME: not clear how to mangle this! // template <unsigned N...> class A { // template <class U...> void foo(U (&x)[N]...); // }; Out << "_SUBSTPACK_"; break; case Expr::FunctionParmPackExprClass: { // FIXME: not clear how to mangle this! const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); Out << "v110_SUBSTPACK"; mangleFunctionParam(FPPE->getParameterPack()); break; } case Expr::DependentScopeDeclRefExprClass: { const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); mangleUnresolvedName(DRE->getQualifier(), nullptr, DRE->getDeclName(), Arity); // All the <unresolved-name> productions end in a // base-unresolved-name, where <template-args> are just tacked // onto the end. if (DRE->hasExplicitTemplateArgs()) mangleTemplateArgs(DRE->getExplicitTemplateArgs()); break; } case Expr::CXXBindTemporaryExprClass: mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); break; case Expr::ExprWithCleanupsClass: mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); break; case Expr::FloatingLiteralClass: { const FloatingLiteral *FL = cast<FloatingLiteral>(E); Out << 'L'; mangleType(FL->getType()); mangleFloat(FL->getValue()); Out << 'E'; break; } case Expr::CharacterLiteralClass: Out << 'L'; mangleType(E->getType()); Out << cast<CharacterLiteral>(E)->getValue(); Out << 'E'; break; // FIXME. __objc_yes/__objc_no are mangled same as true/false case Expr::ObjCBoolLiteralExprClass: Out << "Lb"; Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); Out << 'E'; break; case Expr::CXXBoolLiteralExprClass: Out << "Lb"; Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); Out << 'E'; break; case Expr::IntegerLiteralClass: { llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); if (E->getType()->isSignedIntegerType()) Value.setIsSigned(true); mangleIntegerLiteral(E->getType(), Value); break; } case Expr::ImaginaryLiteralClass: { const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); // Mangle as if a complex literal. // Proposal from David Vandevoorde, 2010.06.30. Out << 'L'; mangleType(E->getType()); if (const FloatingLiteral *Imag = dyn_cast<FloatingLiteral>(IE->getSubExpr())) { // Mangle a floating-point zero of the appropriate type. mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); Out << '_'; mangleFloat(Imag->getValue()); } else { Out << "0_"; llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); if (IE->getSubExpr()->getType()->isSignedIntegerType()) Value.setIsSigned(true); mangleNumber(Value); } Out << 'E'; break; } case Expr::StringLiteralClass: { // Revised proposal from David Vandervoorde, 2010.07.15. Out << 'L'; assert(isa<ConstantArrayType>(E->getType())); mangleType(E->getType()); Out << 'E'; break; } case Expr::GNUNullExprClass: // FIXME: should this really be mangled the same as nullptr? // fallthrough case Expr::CXXNullPtrLiteralExprClass: { Out << "LDnE"; break; } case Expr::PackExpansionExprClass: Out << "sp"; mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); break; case Expr::SizeOfPackExprClass: { Out << "sZ"; const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack(); if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) mangleTemplateParameter(TTP->getIndex()); else if (const NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Pack)) mangleTemplateParameter(NTTP->getIndex()); else if (const TemplateTemplateParmDecl *TempTP = dyn_cast<TemplateTemplateParmDecl>(Pack)) mangleTemplateParameter(TempTP->getIndex()); else mangleFunctionParam(cast<ParmVarDecl>(Pack)); break; } case Expr::MaterializeTemporaryExprClass: { mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()); break; } case Expr::CXXThisExprClass: Out << "fpT"; break; } } /// Mangle an expression which refers to a parameter variable. /// /// <expression> ::= <function-param> /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 /// <function-param> ::= fp <top-level CV-qualifiers> /// <parameter-2 non-negative number> _ # L == 0, I > 0 /// <function-param> ::= fL <L-1 non-negative number> /// p <top-level CV-qualifiers> _ # L > 0, I == 0 /// <function-param> ::= fL <L-1 non-negative number> /// p <top-level CV-qualifiers> /// <I-1 non-negative number> _ # L > 0, I > 0 /// /// L is the nesting depth of the parameter, defined as 1 if the /// parameter comes from the innermost function prototype scope /// enclosing the current context, 2 if from the next enclosing /// function prototype scope, and so on, with one special case: if /// we've processed the full parameter clause for the innermost /// function type, then L is one less. This definition conveniently /// makes it irrelevant whether a function's result type was written /// trailing or leading, but is otherwise overly complicated; the /// numbering was first designed without considering references to /// parameter in locations other than return types, and then the /// mangling had to be generalized without changing the existing /// manglings. /// /// I is the zero-based index of the parameter within its parameter /// declaration clause. Note that the original ABI document describes /// this using 1-based ordinals. void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { unsigned parmDepth = parm->getFunctionScopeDepth(); unsigned parmIndex = parm->getFunctionScopeIndex(); // Compute 'L'. // parmDepth does not include the declaring function prototype. // FunctionTypeDepth does account for that. assert(parmDepth < FunctionTypeDepth.getDepth()); unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; if (FunctionTypeDepth.isInResultType()) nestingDepth--; if (nestingDepth == 0) { Out << "fp"; } else { Out << "fL" << (nestingDepth - 1) << 'p'; } // Top-level qualifiers. We don't have to worry about arrays here, // because parameters declared as arrays should already have been // transformed to have pointer type. FIXME: apparently these don't // get mangled if used as an rvalue of a known non-class type? assert(!parm->getType()->isArrayType() && "parameter's type is still an array type?"); mangleQualifiers(parm->getType().getQualifiers()); // Parameter index. if (parmIndex != 0) { Out << (parmIndex - 1); } Out << '_'; } void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) { // <ctor-dtor-name> ::= C1 # complete object constructor // ::= C2 # base object constructor // ::= C3 # complete object allocating constructor // switch (T) { case Ctor_Complete: Out << "C1"; break; case Ctor_Base: Out << "C2"; break; case Ctor_CompleteAllocating: Out << "C3"; break; } } void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { // <ctor-dtor-name> ::= D0 # deleting destructor // ::= D1 # complete object destructor // ::= D2 # base object destructor // switch (T) { case Dtor_Deleting: Out << "D0"; break; case Dtor_Complete: Out << "D1"; break; case Dtor_Base: Out << "D2"; break; } } void CXXNameMangler::mangleTemplateArgs( const ASTTemplateArgumentListInfo &TemplateArgs) { // <template-args> ::= I <template-arg>+ E Out << 'I'; for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i) mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument()); Out << 'E'; } void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) { // <template-args> ::= I <template-arg>+ E Out << 'I'; for (unsigned i = 0, e = AL.size(); i != e; ++i) mangleTemplateArg(AL[i]); Out << 'E'; } void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { // <template-args> ::= I <template-arg>+ E Out << 'I'; for (unsigned i = 0; i != NumTemplateArgs; ++i) mangleTemplateArg(TemplateArgs[i]); Out << 'E'; } void CXXNameMangler::mangleTemplateArg(TemplateArgument A) { // <template-arg> ::= <type> # type or template // ::= X <expression> E # expression // ::= <expr-primary> # simple expressions // ::= J <template-arg>* E # argument pack if (!A.isInstantiationDependent() || A.isDependent()) A = Context.getASTContext().getCanonicalTemplateArgument(A); switch (A.getKind()) { case TemplateArgument::Null: llvm_unreachable("Cannot mangle NULL template argument"); case TemplateArgument::Type: mangleType(A.getAsType()); break; case TemplateArgument::Template: // This is mangled as <type>. mangleType(A.getAsTemplate()); break; case TemplateArgument::TemplateExpansion: // <type> ::= Dp <type> # pack expansion (C++0x) Out << "Dp"; mangleType(A.getAsTemplateOrTemplatePattern()); break; case TemplateArgument::Expression: { // It's possible to end up with a DeclRefExpr here in certain // dependent cases, in which case we should mangle as a // declaration. const Expr *E = A.getAsExpr()->IgnoreParens(); if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { const ValueDecl *D = DRE->getDecl(); if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { Out << "L"; mangle(D, "_Z"); Out << 'E'; break; } } Out << 'X'; mangleExpression(E); Out << 'E'; break; } case TemplateArgument::Integral: mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); break; case TemplateArgument::Declaration: { // <expr-primary> ::= L <mangled-name> E # external name // Clang produces AST's where pointer-to-member-function expressions // and pointer-to-function expressions are represented as a declaration not // an expression. We compensate for it here to produce the correct mangling. ValueDecl *D = A.getAsDecl(); bool compensateMangling = !A.isDeclForReferenceParam(); if (compensateMangling) { Out << 'X'; mangleOperatorName(OO_Amp, 1); } Out << 'L'; // References to external entities use the mangled name; if the name would // not normally be manged then mangle it as unqualified. // // FIXME: The ABI specifies that external names here should have _Z, but // gcc leaves this off. if (compensateMangling) mangle(D, "_Z"); else mangle(D, "Z"); Out << 'E'; if (compensateMangling) Out << 'E'; break; } case TemplateArgument::NullPtr: { // <expr-primary> ::= L <type> 0 E Out << 'L'; mangleType(A.getNullPtrType()); Out << "0E"; break; } case TemplateArgument::Pack: { // <template-arg> ::= J <template-arg>* E Out << 'J'; for (TemplateArgument::pack_iterator PA = A.pack_begin(), PAEnd = A.pack_end(); PA != PAEnd; ++PA) mangleTemplateArg(*PA); Out << 'E'; } } } void CXXNameMangler::mangleTemplateParameter(unsigned Index) { // <template-param> ::= T_ # first template parameter // ::= T <parameter-2 non-negative number> _ if (Index == 0) Out << "T_"; else Out << 'T' << (Index - 1) << '_'; } void CXXNameMangler::mangleSeqID(unsigned SeqID) { if (SeqID == 1) Out << '0'; else if (SeqID > 1) { SeqID--; // <seq-id> is encoded in base-36, using digits and upper case letters. char Buffer[7]; // log(2**32) / log(36) ~= 7 MutableArrayRef<char> BufferRef(Buffer); MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); for (; SeqID != 0; SeqID /= 36) { unsigned C = SeqID % 36; *I++ = (C < 10 ? '0' + C : 'A' + C - 10); } Out.write(I.base(), I - BufferRef.rbegin()); } Out << '_'; } void CXXNameMangler::mangleExistingSubstitution(QualType type) { bool result = mangleSubstitution(type); assert(result && "no existing substitution for type"); (void) result; } void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { bool result = mangleSubstitution(tname); assert(result && "no existing substitution for template name"); (void) result; } // <substitution> ::= S <seq-id> _ // ::= S_ bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { // Try one of the standard substitutions first. if (mangleStandardSubstitution(ND)) return true; ND = cast<NamedDecl>(ND->getCanonicalDecl()); return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); } /// \brief Determine whether the given type has any qualifiers that are /// relevant for substitutions. static bool hasMangledSubstitutionQualifiers(QualType T) { Qualifiers Qs = T.getQualifiers(); return Qs.getCVRQualifiers() || Qs.hasAddressSpace(); } bool CXXNameMangler::mangleSubstitution(QualType T) { if (!hasMangledSubstitutionQualifiers(T)) { if (const RecordType *RT = T->getAs<RecordType>()) return mangleSubstitution(RT->getDecl()); } uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); return mangleSubstitution(TypePtr); } bool CXXNameMangler::mangleSubstitution(TemplateName Template) { if (TemplateDecl *TD = Template.getAsTemplateDecl()) return mangleSubstitution(TD); Template = Context.getASTContext().getCanonicalTemplateName(Template); return mangleSubstitution( reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); } bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); if (I == Substitutions.end()) return false; unsigned SeqID = I->second; Out << 'S'; mangleSeqID(SeqID); return true; } static bool isCharType(QualType T) { if (T.isNull()) return false; return T->isSpecificBuiltinType(BuiltinType::Char_S) || T->isSpecificBuiltinType(BuiltinType::Char_U); } /// isCharSpecialization - Returns whether a given type is a template /// specialization of a given name with a single argument of type char. static bool isCharSpecialization(QualType T, const char *Name) { if (T.isNull()) return false; const RecordType *RT = T->getAs<RecordType>(); if (!RT) return false; const ClassTemplateSpecializationDecl *SD = dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); if (!SD) return false; if (!isStdNamespace(getEffectiveDeclContext(SD))) return false; const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); if (TemplateArgs.size() != 1) return false; if (!isCharType(TemplateArgs[0].getAsType())) return false; return SD->getIdentifier()->getName() == Name; } template <std::size_t StrLen> static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, const char (&Str)[StrLen]) { if (!SD->getIdentifier()->isStr(Str)) return false; const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); if (TemplateArgs.size() != 2) return false; if (!isCharType(TemplateArgs[0].getAsType())) return false; if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) return false; return true; } bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { // <substitution> ::= St # ::std:: if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { if (isStd(NS)) { Out << "St"; return true; } } if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { if (!isStdNamespace(getEffectiveDeclContext(TD))) return false; // <substitution> ::= Sa # ::std::allocator if (TD->getIdentifier()->isStr("allocator")) { Out << "Sa"; return true; } // <<substitution> ::= Sb # ::std::basic_string if (TD->getIdentifier()->isStr("basic_string")) { Out << "Sb"; return true; } } if (const ClassTemplateSpecializationDecl *SD = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { if (!isStdNamespace(getEffectiveDeclContext(SD))) return false; // <substitution> ::= Ss # ::std::basic_string<char, // ::std::char_traits<char>, // ::std::allocator<char> > if (SD->getIdentifier()->isStr("basic_string")) { const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); if (TemplateArgs.size() != 3) return false; if (!isCharType(TemplateArgs[0].getAsType())) return false; if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) return false; if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) return false; Out << "Ss"; return true; } // <substitution> ::= Si # ::std::basic_istream<char, // ::std::char_traits<char> > if (isStreamCharSpecialization(SD, "basic_istream")) { Out << "Si"; return true; } // <substitution> ::= So # ::std::basic_ostream<char, // ::std::char_traits<char> > if (isStreamCharSpecialization(SD, "basic_ostream")) { Out << "So"; return true; } // <substitution> ::= Sd # ::std::basic_iostream<char, // ::std::char_traits<char> > if (isStreamCharSpecialization(SD, "basic_iostream")) { Out << "Sd"; return true; } } return false; } void CXXNameMangler::addSubstitution(QualType T) { if (!hasMangledSubstitutionQualifiers(T)) { if (const RecordType *RT = T->getAs<RecordType>()) { addSubstitution(RT->getDecl()); return; } } uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); addSubstitution(TypePtr); } void CXXNameMangler::addSubstitution(TemplateName Template) { if (TemplateDecl *TD = Template.getAsTemplateDecl()) return addSubstitution(TD); Template = Context.getASTContext().getCanonicalTemplateName(Template); addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); } void CXXNameMangler::addSubstitution(uintptr_t Ptr) { assert(!Substitutions.count(Ptr) && "Substitution already exists!"); Substitutions[Ptr] = SeqID++; } // /// \brief Mangles the name of the declaration D and emits that name to the /// given output stream. /// /// If the declaration D requires a mangled name, this routine will emit that /// mangled name to \p os and return true. Otherwise, \p os will be unchanged /// and this routine will return false. In this case, the caller should just /// emit the identifier of the declaration (\c D->getIdentifier()) as its /// name. void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D, raw_ostream &Out) { assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && "Invalid mangleName() call, argument is not a variable or function!"); assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && "Invalid mangleName() call on 'structor decl!"); PrettyStackTraceDecl CrashInfo(D, SourceLocation(), getASTContext().getSourceManager(), "Mangling declaration"); CXXNameMangler Mangler(*this, Out, D); return Mangler.mangle(D); } void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, raw_ostream &Out) { CXXNameMangler Mangler(*this, Out, D, Type); Mangler.mangle(D); } void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, raw_ostream &Out) { CXXNameMangler Mangler(*this, Out, D, Type); Mangler.mangle(D); } void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, raw_ostream &Out) { // <special-name> ::= T <call-offset> <base encoding> // # base is the nominal target function of thunk // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> // # base is the nominal target function of thunk // # first call-offset is 'this' adjustment // # second call-offset is result adjustment assert(!isa<CXXDestructorDecl>(MD) && "Use mangleCXXDtor for destructor decls!"); CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZT"; if (!Thunk.Return.isEmpty()) Mangler.getStream() << 'c'; // Mangle the 'this' pointer adjustment. Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.Virtual.Itanium.VCallOffsetOffset); // Mangle the return pointer adjustment if there is one. if (!Thunk.Return.isEmpty()) Mangler.mangleCallOffset(Thunk.Return.NonVirtual, Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); Mangler.mangleFunctionEncoding(MD); } void ItaniumMangleContextImpl::mangleCXXDtorThunk( const CXXDestructorDecl *DD, CXXDtorType Type, const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { // <special-name> ::= T <call-offset> <base encoding> // # base is the nominal target function of thunk CXXNameMangler Mangler(*this, Out, DD, Type); Mangler.getStream() << "_ZT"; // Mangle the 'this' pointer adjustment. Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); Mangler.mangleFunctionEncoding(DD); } /// mangleGuardVariable - Returns the mangled name for a guard variable /// for the passed in VarDecl. void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) { // <special-name> ::= GV <object name> # Guard variable for one-time // # initialization CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZGV"; Mangler.mangleName(D); } void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, raw_ostream &Out) { // These symbols are internal in the Itanium ABI, so the names don't matter. // Clang has traditionally used this symbol and allowed LLVM to adjust it to // avoid duplicate symbols. Out << "__cxx_global_var_init"; } void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, raw_ostream &Out) { // Prefix the mangling of D with __dtor_. CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "__dtor_"; if (shouldMangleDeclName(D)) Mangler.mangle(D); else Mangler.getStream() << D->getName(); } void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &Out) { // <special-name> ::= TH <object name> CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTH"; Mangler.mangleName(D); } void ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &Out) { // <special-name> ::= TW <object name> CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTW"; Mangler.mangleName(D); } void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, raw_ostream &Out) { // We match the GCC mangling here. // <special-name> ::= GR <object name> CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZGR"; Mangler.mangleName(D); assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); Mangler.mangleSeqID(ManglingNumber - 1); } void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &Out) { // <special-name> ::= TV <type> # virtual table CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTV"; Mangler.mangleNameOrStandardSubstitution(RD); } void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &Out) { // <special-name> ::= TT <type> # VTT structure CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTT"; Mangler.mangleNameOrStandardSubstitution(RD); } void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, raw_ostream &Out) { // <special-name> ::= TC <type> <offset number> _ <base type> CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTC"; Mangler.mangleNameOrStandardSubstitution(RD); Mangler.getStream() << Offset; Mangler.getStream() << '_'; Mangler.mangleNameOrStandardSubstitution(Type); } void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { // <special-name> ::= TI <type> # typeinfo structure assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTI"; Mangler.mangleType(Ty); } void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, raw_ostream &Out) { // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) CXXNameMangler Mangler(*this, Out); Mangler.getStream() << "_ZTS"; Mangler.mangleType(Ty); } void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { mangleCXXRTTIName(Ty, Out); } void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { llvm_unreachable("Can't mangle string literals"); } ItaniumMangleContext * ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { return new ItaniumMangleContextImpl(Context, Diags); }