//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Decl and DeclContext classes. // //===----------------------------------------------------------------------===// #include "clang/AST/DeclBase.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclContextInternals.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DependentDiagnostic.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/Type.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace clang; //===----------------------------------------------------------------------===// // Statistics //===----------------------------------------------------------------------===// #define DECL(DERIVED, BASE) static int n##DERIVED##s = 0; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" void Decl::updateOutOfDate(IdentifierInfo &II) const { getASTContext().getExternalSource()->updateOutOfDateIdentifier(II); } void *Decl::operator new(std::size_t Size, const ASTContext &Context, unsigned ID, std::size_t Extra) { // Allocate an extra 8 bytes worth of storage, which ensures that the // resulting pointer will still be 8-byte aligned. void *Start = Context.Allocate(Size + Extra + 8); void *Result = (char*)Start + 8; unsigned *PrefixPtr = (unsigned *)Result - 2; // Zero out the first 4 bytes; this is used to store the owning module ID. PrefixPtr[0] = 0; // Store the global declaration ID in the second 4 bytes. PrefixPtr[1] = ID; return Result; } void *Decl::operator new(std::size_t Size, const ASTContext &Ctx, DeclContext *Parent, std::size_t Extra) { assert(!Parent || &Parent->getParentASTContext() == &Ctx); return ::operator new(Size + Extra, Ctx); } Module *Decl::getOwningModuleSlow() const { assert(isFromASTFile() && "Not from AST file?"); return getASTContext().getExternalSource()->getModule(getOwningModuleID()); } const char *Decl::getDeclKindName() const { switch (DeclKind) { default: llvm_unreachable("Declaration not in DeclNodes.inc!"); #define DECL(DERIVED, BASE) case DERIVED: return #DERIVED; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } } void Decl::setInvalidDecl(bool Invalid) { InvalidDecl = Invalid; assert(!isa<TagDecl>(this) || !cast<TagDecl>(this)->isCompleteDefinition()); if (Invalid && !isa<ParmVarDecl>(this)) { // Defensive maneuver for ill-formed code: we're likely not to make it to // a point where we set the access specifier, so default it to "public" // to avoid triggering asserts elsewhere in the front end. setAccess(AS_public); } } const char *DeclContext::getDeclKindName() const { switch (DeclKind) { default: llvm_unreachable("Declaration context not in DeclNodes.inc!"); #define DECL(DERIVED, BASE) case Decl::DERIVED: return #DERIVED; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } } bool Decl::StatisticsEnabled = false; void Decl::EnableStatistics() { StatisticsEnabled = true; } void Decl::PrintStats() { llvm::errs() << "\n*** Decl Stats:\n"; int totalDecls = 0; #define DECL(DERIVED, BASE) totalDecls += n##DERIVED##s; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" llvm::errs() << " " << totalDecls << " decls total.\n"; int totalBytes = 0; #define DECL(DERIVED, BASE) \ if (n##DERIVED##s > 0) { \ totalBytes += (int)(n##DERIVED##s * sizeof(DERIVED##Decl)); \ llvm::errs() << " " << n##DERIVED##s << " " #DERIVED " decls, " \ << sizeof(DERIVED##Decl) << " each (" \ << n##DERIVED##s * sizeof(DERIVED##Decl) \ << " bytes)\n"; \ } #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" llvm::errs() << "Total bytes = " << totalBytes << "\n"; } void Decl::add(Kind k) { switch (k) { #define DECL(DERIVED, BASE) case DERIVED: ++n##DERIVED##s; break; #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } } bool Decl::isTemplateParameterPack() const { if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(this)) return TTP->isParameterPack(); if (const NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(this)) return NTTP->isParameterPack(); if (const TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(this)) return TTP->isParameterPack(); return false; } bool Decl::isParameterPack() const { if (const ParmVarDecl *Parm = dyn_cast<ParmVarDecl>(this)) return Parm->isParameterPack(); return isTemplateParameterPack(); } FunctionDecl *Decl::getAsFunction() { if (FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) return FD; if (const FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(this)) return FTD->getTemplatedDecl(); return nullptr; } bool Decl::isTemplateDecl() const { return isa<TemplateDecl>(this); } const DeclContext *Decl::getParentFunctionOrMethod() const { for (const DeclContext *DC = getDeclContext(); DC && !DC->isTranslationUnit() && !DC->isNamespace(); DC = DC->getParent()) if (DC->isFunctionOrMethod()) return DC; return nullptr; } //===----------------------------------------------------------------------===// // PrettyStackTraceDecl Implementation //===----------------------------------------------------------------------===// void PrettyStackTraceDecl::print(raw_ostream &OS) const { SourceLocation TheLoc = Loc; if (TheLoc.isInvalid() && TheDecl) TheLoc = TheDecl->getLocation(); if (TheLoc.isValid()) { TheLoc.print(OS, SM); OS << ": "; } OS << Message; if (const NamedDecl *DN = dyn_cast_or_null<NamedDecl>(TheDecl)) { OS << " '"; DN->printQualifiedName(OS); OS << '\''; } OS << '\n'; } //===----------------------------------------------------------------------===// // Decl Implementation //===----------------------------------------------------------------------===// // Out-of-line virtual method providing a home for Decl. Decl::~Decl() { } void Decl::setDeclContext(DeclContext *DC) { DeclCtx = DC; } void Decl::setLexicalDeclContext(DeclContext *DC) { if (DC == getLexicalDeclContext()) return; if (isInSemaDC()) { setDeclContextsImpl(getDeclContext(), DC, getASTContext()); } else { getMultipleDC()->LexicalDC = DC; } } void Decl::setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC, ASTContext &Ctx) { if (SemaDC == LexicalDC) { DeclCtx = SemaDC; } else { Decl::MultipleDC *MDC = new (Ctx) Decl::MultipleDC(); MDC->SemanticDC = SemaDC; MDC->LexicalDC = LexicalDC; DeclCtx = MDC; } } bool Decl::isInAnonymousNamespace() const { const DeclContext *DC = getDeclContext(); do { if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC)) if (ND->isAnonymousNamespace()) return true; } while ((DC = DC->getParent())); return false; } bool Decl::isInStdNamespace() const { return getDeclContext()->isStdNamespace(); } TranslationUnitDecl *Decl::getTranslationUnitDecl() { if (TranslationUnitDecl *TUD = dyn_cast<TranslationUnitDecl>(this)) return TUD; DeclContext *DC = getDeclContext(); assert(DC && "This decl is not contained in a translation unit!"); while (!DC->isTranslationUnit()) { DC = DC->getParent(); assert(DC && "This decl is not contained in a translation unit!"); } return cast<TranslationUnitDecl>(DC); } ASTContext &Decl::getASTContext() const { return getTranslationUnitDecl()->getASTContext(); } ASTMutationListener *Decl::getASTMutationListener() const { return getASTContext().getASTMutationListener(); } unsigned Decl::getMaxAlignment() const { if (!hasAttrs()) return 0; unsigned Align = 0; const AttrVec &V = getAttrs(); ASTContext &Ctx = getASTContext(); specific_attr_iterator<AlignedAttr> I(V.begin()), E(V.end()); for (; I != E; ++I) Align = std::max(Align, I->getAlignment(Ctx)); return Align; } bool Decl::isUsed(bool CheckUsedAttr) const { if (Used) return true; // Check for used attribute. if (CheckUsedAttr && hasAttr<UsedAttr>()) return true; return false; } void Decl::markUsed(ASTContext &C) { if (Used) return; if (C.getASTMutationListener()) C.getASTMutationListener()->DeclarationMarkedUsed(this); Used = true; } bool Decl::isReferenced() const { if (Referenced) return true; // Check redeclarations. for (auto I : redecls()) if (I->Referenced) return true; return false; } /// \brief Determine the availability of the given declaration based on /// the target platform. /// /// When it returns an availability result other than \c AR_Available, /// if the \p Message parameter is non-NULL, it will be set to a /// string describing why the entity is unavailable. /// /// FIXME: Make these strings localizable, since they end up in /// diagnostics. static AvailabilityResult CheckAvailability(ASTContext &Context, const AvailabilityAttr *A, std::string *Message) { StringRef TargetPlatform = Context.getTargetInfo().getPlatformName(); StringRef PrettyPlatformName = AvailabilityAttr::getPrettyPlatformName(TargetPlatform); if (PrettyPlatformName.empty()) PrettyPlatformName = TargetPlatform; VersionTuple TargetMinVersion = Context.getTargetInfo().getPlatformMinVersion(); if (TargetMinVersion.empty()) return AR_Available; // Match the platform name. if (A->getPlatform()->getName() != TargetPlatform) return AR_Available; std::string HintMessage; if (!A->getMessage().empty()) { HintMessage = " - "; HintMessage += A->getMessage(); } // Make sure that this declaration has not been marked 'unavailable'. if (A->getUnavailable()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); Out << "not available on " << PrettyPlatformName << HintMessage; } return AR_Unavailable; } // Make sure that this declaration has already been introduced. if (!A->getIntroduced().empty() && TargetMinVersion < A->getIntroduced()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); Out << "introduced in " << PrettyPlatformName << ' ' << A->getIntroduced() << HintMessage; } return AR_NotYetIntroduced; } // Make sure that this declaration hasn't been obsoleted. if (!A->getObsoleted().empty() && TargetMinVersion >= A->getObsoleted()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); Out << "obsoleted in " << PrettyPlatformName << ' ' << A->getObsoleted() << HintMessage; } return AR_Unavailable; } // Make sure that this declaration hasn't been deprecated. if (!A->getDeprecated().empty() && TargetMinVersion >= A->getDeprecated()) { if (Message) { Message->clear(); llvm::raw_string_ostream Out(*Message); Out << "first deprecated in " << PrettyPlatformName << ' ' << A->getDeprecated() << HintMessage; } return AR_Deprecated; } return AR_Available; } AvailabilityResult Decl::getAvailability(std::string *Message) const { AvailabilityResult Result = AR_Available; std::string ResultMessage; for (const auto *A : attrs()) { if (const auto *Deprecated = dyn_cast<DeprecatedAttr>(A)) { if (Result >= AR_Deprecated) continue; if (Message) ResultMessage = Deprecated->getMessage(); Result = AR_Deprecated; continue; } if (const auto *Unavailable = dyn_cast<UnavailableAttr>(A)) { if (Message) *Message = Unavailable->getMessage(); return AR_Unavailable; } if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) { AvailabilityResult AR = CheckAvailability(getASTContext(), Availability, Message); if (AR == AR_Unavailable) return AR_Unavailable; if (AR > Result) { Result = AR; if (Message) ResultMessage.swap(*Message); } continue; } } if (Message) Message->swap(ResultMessage); return Result; } bool Decl::canBeWeakImported(bool &IsDefinition) const { IsDefinition = false; // Variables, if they aren't definitions. if (const VarDecl *Var = dyn_cast<VarDecl>(this)) { if (Var->isThisDeclarationADefinition()) { IsDefinition = true; return false; } return true; // Functions, if they aren't definitions. } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) { if (FD->hasBody()) { IsDefinition = true; return false; } return true; // Objective-C classes, if this is the non-fragile runtime. } else if (isa<ObjCInterfaceDecl>(this) && getASTContext().getLangOpts().ObjCRuntime.hasWeakClassImport()) { return true; // Nothing else. } else { return false; } } bool Decl::isWeakImported() const { bool IsDefinition; if (!canBeWeakImported(IsDefinition)) return false; for (const auto *A : attrs()) { if (isa<WeakImportAttr>(A)) return true; if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) { if (CheckAvailability(getASTContext(), Availability, nullptr) == AR_NotYetIntroduced) return true; } } return false; } unsigned Decl::getIdentifierNamespaceForKind(Kind DeclKind) { switch (DeclKind) { case Function: case CXXMethod: case CXXConstructor: case CXXDestructor: case CXXConversion: case EnumConstant: case Var: case ImplicitParam: case ParmVar: case NonTypeTemplateParm: case ObjCMethod: case ObjCProperty: case MSProperty: return IDNS_Ordinary; case Label: return IDNS_Label; case IndirectField: return IDNS_Ordinary | IDNS_Member; case ObjCCompatibleAlias: case ObjCInterface: return IDNS_Ordinary | IDNS_Type; case Typedef: case TypeAlias: case TypeAliasTemplate: case UnresolvedUsingTypename: case TemplateTypeParm: return IDNS_Ordinary | IDNS_Type; case UsingShadow: return 0; // we'll actually overwrite this later case UnresolvedUsingValue: return IDNS_Ordinary | IDNS_Using; case Using: return IDNS_Using; case ObjCProtocol: return IDNS_ObjCProtocol; case Field: case ObjCAtDefsField: case ObjCIvar: return IDNS_Member; case Record: case CXXRecord: case Enum: return IDNS_Tag | IDNS_Type; case Namespace: case NamespaceAlias: return IDNS_Namespace; case FunctionTemplate: case VarTemplate: return IDNS_Ordinary; case ClassTemplate: case TemplateTemplateParm: return IDNS_Ordinary | IDNS_Tag | IDNS_Type; // Never have names. case Friend: case FriendTemplate: case AccessSpec: case LinkageSpec: case FileScopeAsm: case StaticAssert: case ObjCPropertyImpl: case Block: case Captured: case TranslationUnit: case UsingDirective: case ClassTemplateSpecialization: case ClassTemplatePartialSpecialization: case ClassScopeFunctionSpecialization: case VarTemplateSpecialization: case VarTemplatePartialSpecialization: case ObjCImplementation: case ObjCCategory: case ObjCCategoryImpl: case Import: case OMPThreadPrivate: case Empty: // Never looked up by name. return 0; } llvm_unreachable("Invalid DeclKind!"); } void Decl::setAttrsImpl(const AttrVec &attrs, ASTContext &Ctx) { assert(!HasAttrs && "Decl already contains attrs."); AttrVec &AttrBlank = Ctx.getDeclAttrs(this); assert(AttrBlank.empty() && "HasAttrs was wrong?"); AttrBlank = attrs; HasAttrs = true; } void Decl::dropAttrs() { if (!HasAttrs) return; HasAttrs = false; getASTContext().eraseDeclAttrs(this); } const AttrVec &Decl::getAttrs() const { assert(HasAttrs && "No attrs to get!"); return getASTContext().getDeclAttrs(this); } Decl *Decl::castFromDeclContext (const DeclContext *D) { Decl::Kind DK = D->getDeclKind(); switch(DK) { #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) \ case Decl::NAME: \ return static_cast<NAME##Decl*>(const_cast<DeclContext*>(D)); #define DECL_CONTEXT_BASE(NAME) #include "clang/AST/DeclNodes.inc" default: #define DECL(NAME, BASE) #define DECL_CONTEXT_BASE(NAME) \ if (DK >= first##NAME && DK <= last##NAME) \ return static_cast<NAME##Decl*>(const_cast<DeclContext*>(D)); #include "clang/AST/DeclNodes.inc" llvm_unreachable("a decl that inherits DeclContext isn't handled"); } } DeclContext *Decl::castToDeclContext(const Decl *D) { Decl::Kind DK = D->getKind(); switch(DK) { #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) \ case Decl::NAME: \ return static_cast<NAME##Decl*>(const_cast<Decl*>(D)); #define DECL_CONTEXT_BASE(NAME) #include "clang/AST/DeclNodes.inc" default: #define DECL(NAME, BASE) #define DECL_CONTEXT_BASE(NAME) \ if (DK >= first##NAME && DK <= last##NAME) \ return static_cast<NAME##Decl*>(const_cast<Decl*>(D)); #include "clang/AST/DeclNodes.inc" llvm_unreachable("a decl that inherits DeclContext isn't handled"); } } SourceLocation Decl::getBodyRBrace() const { // Special handling of FunctionDecl to avoid de-serializing the body from PCH. // FunctionDecl stores EndRangeLoc for this purpose. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) { const FunctionDecl *Definition; if (FD->hasBody(Definition)) return Definition->getSourceRange().getEnd(); return SourceLocation(); } if (Stmt *Body = getBody()) return Body->getSourceRange().getEnd(); return SourceLocation(); } bool Decl::AccessDeclContextSanity() const { #ifndef NDEBUG // Suppress this check if any of the following hold: // 1. this is the translation unit (and thus has no parent) // 2. this is a template parameter (and thus doesn't belong to its context) // 3. this is a non-type template parameter // 4. the context is not a record // 5. it's invalid // 6. it's a C++0x static_assert. if (isa<TranslationUnitDecl>(this) || isa<TemplateTypeParmDecl>(this) || isa<NonTypeTemplateParmDecl>(this) || !isa<CXXRecordDecl>(getDeclContext()) || isInvalidDecl() || isa<StaticAssertDecl>(this) || // FIXME: a ParmVarDecl can have ClassTemplateSpecialization // as DeclContext (?). isa<ParmVarDecl>(this) || // FIXME: a ClassTemplateSpecialization or CXXRecordDecl can have // AS_none as access specifier. isa<CXXRecordDecl>(this) || isa<ClassScopeFunctionSpecializationDecl>(this)) return true; assert(Access != AS_none && "Access specifier is AS_none inside a record decl"); #endif return true; } static Decl::Kind getKind(const Decl *D) { return D->getKind(); } static Decl::Kind getKind(const DeclContext *DC) { return DC->getDeclKind(); } const FunctionType *Decl::getFunctionType(bool BlocksToo) const { QualType Ty; if (const ValueDecl *D = dyn_cast<ValueDecl>(this)) Ty = D->getType(); else if (const TypedefNameDecl *D = dyn_cast<TypedefNameDecl>(this)) Ty = D->getUnderlyingType(); else return nullptr; if (Ty->isFunctionPointerType()) Ty = Ty->getAs<PointerType>()->getPointeeType(); else if (BlocksToo && Ty->isBlockPointerType()) Ty = Ty->getAs<BlockPointerType>()->getPointeeType(); return Ty->getAs<FunctionType>(); } /// Starting at a given context (a Decl or DeclContext), look for a /// code context that is not a closure (a lambda, block, etc.). template <class T> static Decl *getNonClosureContext(T *D) { if (getKind(D) == Decl::CXXMethod) { CXXMethodDecl *MD = cast<CXXMethodDecl>(D); if (MD->getOverloadedOperator() == OO_Call && MD->getParent()->isLambda()) return getNonClosureContext(MD->getParent()->getParent()); return MD; } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { return FD; } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { return MD; } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) { return getNonClosureContext(BD->getParent()); } else if (CapturedDecl *CD = dyn_cast<CapturedDecl>(D)) { return getNonClosureContext(CD->getParent()); } else { return nullptr; } } Decl *Decl::getNonClosureContext() { return ::getNonClosureContext(this); } Decl *DeclContext::getNonClosureAncestor() { return ::getNonClosureContext(this); } //===----------------------------------------------------------------------===// // DeclContext Implementation //===----------------------------------------------------------------------===// bool DeclContext::classof(const Decl *D) { switch (D->getKind()) { #define DECL(NAME, BASE) #define DECL_CONTEXT(NAME) case Decl::NAME: #define DECL_CONTEXT_BASE(NAME) #include "clang/AST/DeclNodes.inc" return true; default: #define DECL(NAME, BASE) #define DECL_CONTEXT_BASE(NAME) \ if (D->getKind() >= Decl::first##NAME && \ D->getKind() <= Decl::last##NAME) \ return true; #include "clang/AST/DeclNodes.inc" return false; } } DeclContext::~DeclContext() { } /// \brief Find the parent context of this context that will be /// used for unqualified name lookup. /// /// Generally, the parent lookup context is the semantic context. However, for /// a friend function the parent lookup context is the lexical context, which /// is the class in which the friend is declared. DeclContext *DeclContext::getLookupParent() { // FIXME: Find a better way to identify friends if (isa<FunctionDecl>(this)) if (getParent()->getRedeclContext()->isFileContext() && getLexicalParent()->getRedeclContext()->isRecord()) return getLexicalParent(); return getParent(); } bool DeclContext::isInlineNamespace() const { return isNamespace() && cast<NamespaceDecl>(this)->isInline(); } bool DeclContext::isStdNamespace() const { if (!isNamespace()) return false; const NamespaceDecl *ND = cast<NamespaceDecl>(this); if (ND->isInline()) { return ND->getParent()->isStdNamespace(); } if (!getParent()->getRedeclContext()->isTranslationUnit()) return false; const IdentifierInfo *II = ND->getIdentifier(); return II && II->isStr("std"); } bool DeclContext::isDependentContext() const { if (isFileContext()) return false; if (isa<ClassTemplatePartialSpecializationDecl>(this)) return true; if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(this)) { if (Record->getDescribedClassTemplate()) return true; if (Record->isDependentLambda()) return true; } if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(this)) { if (Function->getDescribedFunctionTemplate()) return true; // Friend function declarations are dependent if their *lexical* // context is dependent. if (cast<Decl>(this)->getFriendObjectKind()) return getLexicalParent()->isDependentContext(); } return getParent() && getParent()->isDependentContext(); } bool DeclContext::isTransparentContext() const { if (DeclKind == Decl::Enum) return !cast<EnumDecl>(this)->isScoped(); else if (DeclKind == Decl::LinkageSpec) return true; return false; } static bool isLinkageSpecContext(const DeclContext *DC, LinkageSpecDecl::LanguageIDs ID) { while (DC->getDeclKind() != Decl::TranslationUnit) { if (DC->getDeclKind() == Decl::LinkageSpec) return cast<LinkageSpecDecl>(DC)->getLanguage() == ID; DC = DC->getLexicalParent(); } return false; } bool DeclContext::isExternCContext() const { return isLinkageSpecContext(this, clang::LinkageSpecDecl::lang_c); } bool DeclContext::isExternCXXContext() const { return isLinkageSpecContext(this, clang::LinkageSpecDecl::lang_cxx); } bool DeclContext::Encloses(const DeclContext *DC) const { if (getPrimaryContext() != this) return getPrimaryContext()->Encloses(DC); for (; DC; DC = DC->getParent()) if (DC->getPrimaryContext() == this) return true; return false; } DeclContext *DeclContext::getPrimaryContext() { switch (DeclKind) { case Decl::TranslationUnit: case Decl::LinkageSpec: case Decl::Block: case Decl::Captured: // There is only one DeclContext for these entities. return this; case Decl::Namespace: // The original namespace is our primary context. return static_cast<NamespaceDecl*>(this)->getOriginalNamespace(); case Decl::ObjCMethod: return this; case Decl::ObjCInterface: if (ObjCInterfaceDecl *Def = cast<ObjCInterfaceDecl>(this)->getDefinition()) return Def; return this; case Decl::ObjCProtocol: if (ObjCProtocolDecl *Def = cast<ObjCProtocolDecl>(this)->getDefinition()) return Def; return this; case Decl::ObjCCategory: return this; case Decl::ObjCImplementation: case Decl::ObjCCategoryImpl: return this; default: if (DeclKind >= Decl::firstTag && DeclKind <= Decl::lastTag) { // If this is a tag type that has a definition or is currently // being defined, that definition is our primary context. TagDecl *Tag = cast<TagDecl>(this); if (TagDecl *Def = Tag->getDefinition()) return Def; if (const TagType *TagTy = dyn_cast<TagType>(Tag->getTypeForDecl())) { // Note, TagType::getDecl returns the (partial) definition one exists. TagDecl *PossiblePartialDef = TagTy->getDecl(); if (PossiblePartialDef->isBeingDefined()) return PossiblePartialDef; } else { assert(isa<InjectedClassNameType>(Tag->getTypeForDecl())); } return Tag; } assert(DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction && "Unknown DeclContext kind"); return this; } } void DeclContext::collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts){ Contexts.clear(); if (DeclKind != Decl::Namespace) { Contexts.push_back(this); return; } NamespaceDecl *Self = static_cast<NamespaceDecl *>(this); for (NamespaceDecl *N = Self->getMostRecentDecl(); N; N = N->getPreviousDecl()) Contexts.push_back(N); std::reverse(Contexts.begin(), Contexts.end()); } std::pair<Decl *, Decl *> DeclContext::BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded) { // Build up a chain of declarations via the Decl::NextInContextAndBits field. Decl *FirstNewDecl = nullptr; Decl *PrevDecl = nullptr; for (unsigned I = 0, N = Decls.size(); I != N; ++I) { if (FieldsAlreadyLoaded && isa<FieldDecl>(Decls[I])) continue; Decl *D = Decls[I]; if (PrevDecl) PrevDecl->NextInContextAndBits.setPointer(D); else FirstNewDecl = D; PrevDecl = D; } return std::make_pair(FirstNewDecl, PrevDecl); } /// \brief We have just acquired external visible storage, and we already have /// built a lookup map. For every name in the map, pull in the new names from /// the external storage. void DeclContext::reconcileExternalVisibleStorage() const { assert(NeedToReconcileExternalVisibleStorage && LookupPtr.getPointer()); NeedToReconcileExternalVisibleStorage = false; for (auto &Lookup : *LookupPtr.getPointer()) Lookup.second.setHasExternalDecls(); } /// \brief Load the declarations within this lexical storage from an /// external source. void DeclContext::LoadLexicalDeclsFromExternalStorage() const { ExternalASTSource *Source = getParentASTContext().getExternalSource(); assert(hasExternalLexicalStorage() && Source && "No external storage?"); // Notify that we have a DeclContext that is initializing. ExternalASTSource::Deserializing ADeclContext(Source); // Load the external declarations, if any. SmallVector<Decl*, 64> Decls; ExternalLexicalStorage = false; switch (Source->FindExternalLexicalDecls(this, Decls)) { case ELR_Success: break; case ELR_Failure: case ELR_AlreadyLoaded: return; } if (Decls.empty()) return; // We may have already loaded just the fields of this record, in which case // we need to ignore them. bool FieldsAlreadyLoaded = false; if (const RecordDecl *RD = dyn_cast<RecordDecl>(this)) FieldsAlreadyLoaded = RD->LoadedFieldsFromExternalStorage; // Splice the newly-read declarations into the beginning of the list // of declarations. Decl *ExternalFirst, *ExternalLast; std::tie(ExternalFirst, ExternalLast) = BuildDeclChain(Decls, FieldsAlreadyLoaded); ExternalLast->NextInContextAndBits.setPointer(FirstDecl); FirstDecl = ExternalFirst; if (!LastDecl) LastDecl = ExternalLast; } DeclContext::lookup_result ExternalASTSource::SetNoExternalVisibleDeclsForName(const DeclContext *DC, DeclarationName Name) { ASTContext &Context = DC->getParentASTContext(); StoredDeclsMap *Map; if (!(Map = DC->LookupPtr.getPointer())) Map = DC->CreateStoredDeclsMap(Context); if (DC->NeedToReconcileExternalVisibleStorage) DC->reconcileExternalVisibleStorage(); (*Map)[Name].removeExternalDecls(); return DeclContext::lookup_result(); } DeclContext::lookup_result ExternalASTSource::SetExternalVisibleDeclsForName(const DeclContext *DC, DeclarationName Name, ArrayRef<NamedDecl*> Decls) { ASTContext &Context = DC->getParentASTContext(); StoredDeclsMap *Map; if (!(Map = DC->LookupPtr.getPointer())) Map = DC->CreateStoredDeclsMap(Context); if (DC->NeedToReconcileExternalVisibleStorage) DC->reconcileExternalVisibleStorage(); StoredDeclsList &List = (*Map)[Name]; // Clear out any old external visible declarations, to avoid quadratic // performance in the redeclaration checks below. List.removeExternalDecls(); if (!List.isNull()) { // We have both existing declarations and new declarations for this name. // Some of the declarations may simply replace existing ones. Handle those // first. llvm::SmallVector<unsigned, 8> Skip; for (unsigned I = 0, N = Decls.size(); I != N; ++I) if (List.HandleRedeclaration(Decls[I])) Skip.push_back(I); Skip.push_back(Decls.size()); // Add in any new declarations. unsigned SkipPos = 0; for (unsigned I = 0, N = Decls.size(); I != N; ++I) { if (I == Skip[SkipPos]) ++SkipPos; else List.AddSubsequentDecl(Decls[I]); } } else { // Convert the array to a StoredDeclsList. for (ArrayRef<NamedDecl*>::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { if (List.isNull()) List.setOnlyValue(*I); else List.AddSubsequentDecl(*I); } } return List.getLookupResult(); } DeclContext::decl_iterator DeclContext::decls_begin() const { if (hasExternalLexicalStorage()) LoadLexicalDeclsFromExternalStorage(); return decl_iterator(FirstDecl); } bool DeclContext::decls_empty() const { if (hasExternalLexicalStorage()) LoadLexicalDeclsFromExternalStorage(); return !FirstDecl; } bool DeclContext::containsDecl(Decl *D) const { return (D->getLexicalDeclContext() == this && (D->NextInContextAndBits.getPointer() || D == LastDecl)); } void DeclContext::removeDecl(Decl *D) { assert(D->getLexicalDeclContext() == this && "decl being removed from non-lexical context"); assert((D->NextInContextAndBits.getPointer() || D == LastDecl) && "decl is not in decls list"); // Remove D from the decl chain. This is O(n) but hopefully rare. if (D == FirstDecl) { if (D == LastDecl) FirstDecl = LastDecl = nullptr; else FirstDecl = D->NextInContextAndBits.getPointer(); } else { for (Decl *I = FirstDecl; true; I = I->NextInContextAndBits.getPointer()) { assert(I && "decl not found in linked list"); if (I->NextInContextAndBits.getPointer() == D) { I->NextInContextAndBits.setPointer(D->NextInContextAndBits.getPointer()); if (D == LastDecl) LastDecl = I; break; } } } // Mark that D is no longer in the decl chain. D->NextInContextAndBits.setPointer(nullptr); // Remove D from the lookup table if necessary. if (isa<NamedDecl>(D)) { NamedDecl *ND = cast<NamedDecl>(D); // Remove only decls that have a name if (!ND->getDeclName()) return; StoredDeclsMap *Map = getPrimaryContext()->LookupPtr.getPointer(); if (!Map) return; StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName()); assert(Pos != Map->end() && "no lookup entry for decl"); if (Pos->second.getAsVector() || Pos->second.getAsDecl() == ND) Pos->second.remove(ND); } } void DeclContext::addHiddenDecl(Decl *D) { assert(D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context"); assert(!D->getNextDeclInContext() && D != LastDecl && "Decl already inserted into a DeclContext"); if (FirstDecl) { LastDecl->NextInContextAndBits.setPointer(D); LastDecl = D; } else { FirstDecl = LastDecl = D; } // Notify a C++ record declaration that we've added a member, so it can // update it's class-specific state. if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(this)) Record->addedMember(D); // If this is a newly-created (not de-serialized) import declaration, wire // it in to the list of local import declarations. if (!D->isFromASTFile()) { if (ImportDecl *Import = dyn_cast<ImportDecl>(D)) D->getASTContext().addedLocalImportDecl(Import); } } void DeclContext::addDecl(Decl *D) { addHiddenDecl(D); if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) ND->getDeclContext()->getPrimaryContext()-> makeDeclVisibleInContextWithFlags(ND, false, true); } void DeclContext::addDeclInternal(Decl *D) { addHiddenDecl(D); if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) ND->getDeclContext()->getPrimaryContext()-> makeDeclVisibleInContextWithFlags(ND, true, true); } /// shouldBeHidden - Determine whether a declaration which was declared /// within its semantic context should be invisible to qualified name lookup. static bool shouldBeHidden(NamedDecl *D) { // Skip unnamed declarations. if (!D->getDeclName()) return true; // Skip entities that can't be found by name lookup into a particular // context. if ((D->getIdentifierNamespace() == 0 && !isa<UsingDirectiveDecl>(D)) || D->isTemplateParameter()) return true; // Skip template specializations. // FIXME: This feels like a hack. Should DeclarationName support // template-ids, or is there a better way to keep specializations // from being visible? if (isa<ClassTemplateSpecializationDecl>(D)) return true; if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) if (FD->isFunctionTemplateSpecialization()) return true; return false; } /// buildLookup - Build the lookup data structure with all of the /// declarations in this DeclContext (and any other contexts linked /// to it or transparent contexts nested within it) and return it. /// /// Note that the produced map may miss out declarations from an /// external source. If it does, those entries will be marked with /// the 'hasExternalDecls' flag. StoredDeclsMap *DeclContext::buildLookup() { assert(this == getPrimaryContext() && "buildLookup called on non-primary DC"); // FIXME: Should we keep going if hasExternalVisibleStorage? if (!LookupPtr.getInt()) return LookupPtr.getPointer(); SmallVector<DeclContext *, 2> Contexts; collectAllContexts(Contexts); for (unsigned I = 0, N = Contexts.size(); I != N; ++I) buildLookupImpl<&DeclContext::decls_begin, &DeclContext::decls_end>(Contexts[I]); // We no longer have any lazy decls. LookupPtr.setInt(false); return LookupPtr.getPointer(); } /// buildLookupImpl - Build part of the lookup data structure for the /// declarations contained within DCtx, which will either be this /// DeclContext, a DeclContext linked to it, or a transparent context /// nested within it. template<DeclContext::decl_iterator (DeclContext::*Begin)() const, DeclContext::decl_iterator (DeclContext::*End)() const> void DeclContext::buildLookupImpl(DeclContext *DCtx) { for (decl_iterator I = (DCtx->*Begin)(), E = (DCtx->*End)(); I != E; ++I) { Decl *D = *I; // Insert this declaration into the lookup structure, but only if // it's semantically within its decl context. Any other decls which // should be found in this context are added eagerly. // // If it's from an AST file, don't add it now. It'll get handled by // FindExternalVisibleDeclsByName if needed. Exception: if we're not // in C++, we do not track external visible decls for the TU, so in // that case we need to collect them all here. if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) if (ND->getDeclContext() == DCtx && !shouldBeHidden(ND) && (!ND->isFromASTFile() || (isTranslationUnit() && !getParentASTContext().getLangOpts().CPlusPlus))) makeDeclVisibleInContextImpl(ND, false); // If this declaration is itself a transparent declaration context // or inline namespace, add the members of this declaration of that // context (recursively). if (DeclContext *InnerCtx = dyn_cast<DeclContext>(D)) if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace()) buildLookupImpl<Begin, End>(InnerCtx); } } DeclContext::lookup_result DeclContext::lookup(DeclarationName Name) { assert(DeclKind != Decl::LinkageSpec && "Should not perform lookups into linkage specs!"); DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) return PrimaryContext->lookup(Name); if (hasExternalVisibleStorage()) { if (NeedToReconcileExternalVisibleStorage) reconcileExternalVisibleStorage(); StoredDeclsMap *Map = LookupPtr.getPointer(); if (LookupPtr.getInt()) Map = buildLookup(); if (!Map) Map = CreateStoredDeclsMap(getParentASTContext()); // If we have a lookup result with no external decls, we are done. std::pair<StoredDeclsMap::iterator, bool> R = Map->insert(std::make_pair(Name, StoredDeclsList())); if (!R.second && !R.first->second.hasExternalDecls()) return R.first->second.getLookupResult(); ExternalASTSource *Source = getParentASTContext().getExternalSource(); if (Source->FindExternalVisibleDeclsByName(this, Name) || !R.second) { if (StoredDeclsMap *Map = LookupPtr.getPointer()) { StoredDeclsMap::iterator I = Map->find(Name); if (I != Map->end()) return I->second.getLookupResult(); } } return lookup_result(lookup_iterator(nullptr), lookup_iterator(nullptr)); } StoredDeclsMap *Map = LookupPtr.getPointer(); if (LookupPtr.getInt()) Map = buildLookup(); if (!Map) return lookup_result(lookup_iterator(nullptr), lookup_iterator(nullptr)); StoredDeclsMap::iterator I = Map->find(Name); if (I == Map->end()) return lookup_result(lookup_iterator(nullptr), lookup_iterator(nullptr)); return I->second.getLookupResult(); } DeclContext::lookup_result DeclContext::noload_lookup(DeclarationName Name) { assert(DeclKind != Decl::LinkageSpec && "Should not perform lookups into linkage specs!"); if (!hasExternalVisibleStorage()) return lookup(Name); DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) return PrimaryContext->noload_lookup(Name); StoredDeclsMap *Map = LookupPtr.getPointer(); if (LookupPtr.getInt()) { // Carefully build the lookup map, without deserializing anything. SmallVector<DeclContext *, 2> Contexts; collectAllContexts(Contexts); for (unsigned I = 0, N = Contexts.size(); I != N; ++I) buildLookupImpl<&DeclContext::noload_decls_begin, &DeclContext::noload_decls_end>(Contexts[I]); // We no longer have any lazy decls. LookupPtr.setInt(false); // There may now be names for which we have local decls but are // missing the external decls. FIXME: Just set the hasExternalDecls // flag on those names that have external decls. NeedToReconcileExternalVisibleStorage = true; Map = LookupPtr.getPointer(); } if (!Map) return lookup_result(lookup_iterator(nullptr), lookup_iterator(nullptr)); StoredDeclsMap::iterator I = Map->find(Name); return I != Map->end() ? I->second.getLookupResult() : lookup_result(lookup_iterator(nullptr), lookup_iterator(nullptr)); } void DeclContext::localUncachedLookup(DeclarationName Name, SmallVectorImpl<NamedDecl *> &Results) { Results.clear(); // If there's no external storage, just perform a normal lookup and copy // the results. if (!hasExternalVisibleStorage() && !hasExternalLexicalStorage() && Name) { lookup_result LookupResults = lookup(Name); Results.insert(Results.end(), LookupResults.begin(), LookupResults.end()); return; } // If we have a lookup table, check there first. Maybe we'll get lucky. if (Name && !LookupPtr.getInt()) { if (StoredDeclsMap *Map = LookupPtr.getPointer()) { StoredDeclsMap::iterator Pos = Map->find(Name); if (Pos != Map->end()) { Results.insert(Results.end(), Pos->second.getLookupResult().begin(), Pos->second.getLookupResult().end()); return; } } } // Slow case: grovel through the declarations in our chain looking for // matches. for (Decl *D = FirstDecl; D; D = D->getNextDeclInContext()) { if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) if (ND->getDeclName() == Name) Results.push_back(ND); } } DeclContext *DeclContext::getRedeclContext() { DeclContext *Ctx = this; // Skip through transparent contexts. while (Ctx->isTransparentContext()) Ctx = Ctx->getParent(); return Ctx; } DeclContext *DeclContext::getEnclosingNamespaceContext() { DeclContext *Ctx = this; // Skip through non-namespace, non-translation-unit contexts. while (!Ctx->isFileContext()) Ctx = Ctx->getParent(); return Ctx->getPrimaryContext(); } bool DeclContext::InEnclosingNamespaceSetOf(const DeclContext *O) const { // For non-file contexts, this is equivalent to Equals. if (!isFileContext()) return O->Equals(this); do { if (O->Equals(this)) return true; const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(O); if (!NS || !NS->isInline()) break; O = NS->getParent(); } while (O); return false; } void DeclContext::makeDeclVisibleInContext(NamedDecl *D) { DeclContext *PrimaryDC = this->getPrimaryContext(); DeclContext *DeclDC = D->getDeclContext()->getPrimaryContext(); // If the decl is being added outside of its semantic decl context, we // need to ensure that we eagerly build the lookup information for it. PrimaryDC->makeDeclVisibleInContextWithFlags(D, false, PrimaryDC == DeclDC); } void DeclContext::makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal, bool Recoverable) { assert(this == getPrimaryContext() && "expected a primary DC"); // Skip declarations within functions. if (isFunctionOrMethod()) return; // Skip declarations which should be invisible to name lookup. if (shouldBeHidden(D)) return; // If we already have a lookup data structure, perform the insertion into // it. If we might have externally-stored decls with this name, look them // up and perform the insertion. If this decl was declared outside its // semantic context, buildLookup won't add it, so add it now. // // FIXME: As a performance hack, don't add such decls into the translation // unit unless we're in C++, since qualified lookup into the TU is never // performed. if (LookupPtr.getPointer() || hasExternalVisibleStorage() || ((!Recoverable || D->getDeclContext() != D->getLexicalDeclContext()) && (getParentASTContext().getLangOpts().CPlusPlus || !isTranslationUnit()))) { // If we have lazily omitted any decls, they might have the same name as // the decl which we are adding, so build a full lookup table before adding // this decl. buildLookup(); makeDeclVisibleInContextImpl(D, Internal); } else { LookupPtr.setInt(true); } // If we are a transparent context or inline namespace, insert into our // parent context, too. This operation is recursive. if (isTransparentContext() || isInlineNamespace()) getParent()->getPrimaryContext()-> makeDeclVisibleInContextWithFlags(D, Internal, Recoverable); Decl *DCAsDecl = cast<Decl>(this); // Notify that a decl was made visible unless we are a Tag being defined. if (!(isa<TagDecl>(DCAsDecl) && cast<TagDecl>(DCAsDecl)->isBeingDefined())) if (ASTMutationListener *L = DCAsDecl->getASTMutationListener()) L->AddedVisibleDecl(this, D); } void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal) { // Find or create the stored declaration map. StoredDeclsMap *Map = LookupPtr.getPointer(); if (!Map) { ASTContext *C = &getParentASTContext(); Map = CreateStoredDeclsMap(*C); } // If there is an external AST source, load any declarations it knows about // with this declaration's name. // If the lookup table contains an entry about this name it means that we // have already checked the external source. if (!Internal) if (ExternalASTSource *Source = getParentASTContext().getExternalSource()) if (hasExternalVisibleStorage() && Map->find(D->getDeclName()) == Map->end()) Source->FindExternalVisibleDeclsByName(this, D->getDeclName()); // Insert this declaration into the map. StoredDeclsList &DeclNameEntries = (*Map)[D->getDeclName()]; if (Internal) { // If this is being added as part of loading an external declaration, // this may not be the only external declaration with this name. // In this case, we never try to replace an existing declaration; we'll // handle that when we finalize the list of declarations for this name. DeclNameEntries.setHasExternalDecls(); DeclNameEntries.AddSubsequentDecl(D); return; } else if (DeclNameEntries.isNull()) { DeclNameEntries.setOnlyValue(D); return; } if (DeclNameEntries.HandleRedeclaration(D)) { // This declaration has replaced an existing one for which // declarationReplaces returns true. return; } // Put this declaration into the appropriate slot. DeclNameEntries.AddSubsequentDecl(D); } /// Returns iterator range [First, Last) of UsingDirectiveDecls stored within /// this context. DeclContext::udir_range DeclContext::using_directives() const { // FIXME: Use something more efficient than normal lookup for using // directives. In C++, using directives are looked up more than anything else. lookup_const_result Result = lookup(UsingDirectiveDecl::getName()); return udir_range( reinterpret_cast<UsingDirectiveDecl *const *>(Result.begin()), reinterpret_cast<UsingDirectiveDecl *const *>(Result.end())); } //===----------------------------------------------------------------------===// // Creation and Destruction of StoredDeclsMaps. // //===----------------------------------------------------------------------===// StoredDeclsMap *DeclContext::CreateStoredDeclsMap(ASTContext &C) const { assert(!LookupPtr.getPointer() && "context already has a decls map"); assert(getPrimaryContext() == this && "creating decls map on non-primary context"); StoredDeclsMap *M; bool Dependent = isDependentContext(); if (Dependent) M = new DependentStoredDeclsMap(); else M = new StoredDeclsMap(); M->Previous = C.LastSDM; C.LastSDM = llvm::PointerIntPair<StoredDeclsMap*,1>(M, Dependent); LookupPtr.setPointer(M); return M; } void ASTContext::ReleaseDeclContextMaps() { // It's okay to delete DependentStoredDeclsMaps via a StoredDeclsMap // pointer because the subclass doesn't add anything that needs to // be deleted. StoredDeclsMap::DestroyAll(LastSDM.getPointer(), LastSDM.getInt()); } void StoredDeclsMap::DestroyAll(StoredDeclsMap *Map, bool Dependent) { while (Map) { // Advance the iteration before we invalidate memory. llvm::PointerIntPair<StoredDeclsMap*,1> Next = Map->Previous; if (Dependent) delete static_cast<DependentStoredDeclsMap*>(Map); else delete Map; Map = Next.getPointer(); Dependent = Next.getInt(); } } DependentDiagnostic *DependentDiagnostic::Create(ASTContext &C, DeclContext *Parent, const PartialDiagnostic &PDiag) { assert(Parent->isDependentContext() && "cannot iterate dependent diagnostics of non-dependent context"); Parent = Parent->getPrimaryContext(); if (!Parent->LookupPtr.getPointer()) Parent->CreateStoredDeclsMap(C); DependentStoredDeclsMap *Map = static_cast<DependentStoredDeclsMap*>(Parent->LookupPtr.getPointer()); // Allocate the copy of the PartialDiagnostic via the ASTContext's // BumpPtrAllocator, rather than the ASTContext itself. PartialDiagnostic::Storage *DiagStorage = nullptr; if (PDiag.hasStorage()) DiagStorage = new (C) PartialDiagnostic::Storage; DependentDiagnostic *DD = new (C) DependentDiagnostic(PDiag, DiagStorage); // TODO: Maybe we shouldn't reverse the order during insertion. DD->NextDiagnostic = Map->FirstDiagnostic; Map->FirstDiagnostic = DD; return DD; }