// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_ARM64_TEST_UTILS_ARM64_H_ #define V8_ARM64_TEST_UTILS_ARM64_H_ #include "src/v8.h" #include "src/macro-assembler.h" #include "src/arm64/macro-assembler-arm64.h" #include "src/arm64/utils-arm64.h" #include "test/cctest/cctest.h" using namespace v8::internal; // RegisterDump: Object allowing integer, floating point and flags registers // to be saved to itself for future reference. class RegisterDump { public: RegisterDump() : completed_(false) {} // The Dump method generates code to store a snapshot of the register values. // It needs to be able to use the stack temporarily, and requires that the // current stack pointer is csp, and is properly aligned. // // The dumping code is generated though the given MacroAssembler. No registers // are corrupted in the process, but the stack is used briefly. The flags will // be corrupted during this call. void Dump(MacroAssembler* assm); // Register accessors. inline int32_t wreg(unsigned code) const { if (code == kSPRegInternalCode) { return wspreg(); } ASSERT(RegAliasesMatch(code)); return dump_.w_[code]; } inline int64_t xreg(unsigned code) const { if (code == kSPRegInternalCode) { return spreg(); } ASSERT(RegAliasesMatch(code)); return dump_.x_[code]; } // FPRegister accessors. inline uint32_t sreg_bits(unsigned code) const { ASSERT(FPRegAliasesMatch(code)); return dump_.s_[code]; } inline float sreg(unsigned code) const { return rawbits_to_float(sreg_bits(code)); } inline uint64_t dreg_bits(unsigned code) const { ASSERT(FPRegAliasesMatch(code)); return dump_.d_[code]; } inline double dreg(unsigned code) const { return rawbits_to_double(dreg_bits(code)); } // Stack pointer accessors. inline int64_t spreg() const { ASSERT(SPRegAliasesMatch()); return dump_.sp_; } inline int64_t wspreg() const { ASSERT(SPRegAliasesMatch()); return dump_.wsp_; } // Flags accessors. inline uint64_t flags_nzcv() const { ASSERT(IsComplete()); ASSERT((dump_.flags_ & ~Flags_mask) == 0); return dump_.flags_ & Flags_mask; } inline bool IsComplete() const { return completed_; } private: // Indicate whether the dump operation has been completed. bool completed_; // Check that the lower 32 bits of x<code> exactly match the 32 bits of // w<code>. A failure of this test most likely represents a failure in the // ::Dump method, or a failure in the simulator. bool RegAliasesMatch(unsigned code) const { ASSERT(IsComplete()); ASSERT(code < kNumberOfRegisters); return ((dump_.x_[code] & kWRegMask) == dump_.w_[code]); } // As RegAliasesMatch, but for the stack pointer. bool SPRegAliasesMatch() const { ASSERT(IsComplete()); return ((dump_.sp_ & kWRegMask) == dump_.wsp_); } // As RegAliasesMatch, but for floating-point registers. bool FPRegAliasesMatch(unsigned code) const { ASSERT(IsComplete()); ASSERT(code < kNumberOfFPRegisters); return (dump_.d_[code] & kSRegMask) == dump_.s_[code]; } // Store all the dumped elements in a simple struct so the implementation can // use offsetof to quickly find the correct field. struct dump_t { // Core registers. uint64_t x_[kNumberOfRegisters]; uint32_t w_[kNumberOfRegisters]; // Floating-point registers, as raw bits. uint64_t d_[kNumberOfFPRegisters]; uint32_t s_[kNumberOfFPRegisters]; // The stack pointer. uint64_t sp_; uint64_t wsp_; // NZCV flags, stored in bits 28 to 31. // bit[31] : Negative // bit[30] : Zero // bit[29] : Carry // bit[28] : oVerflow uint64_t flags_; } dump_; static dump_t for_sizeof(); STATIC_ASSERT(sizeof(for_sizeof().d_[0]) == kDRegSize); STATIC_ASSERT(sizeof(for_sizeof().s_[0]) == kSRegSize); STATIC_ASSERT(sizeof(for_sizeof().d_[0]) == kXRegSize); STATIC_ASSERT(sizeof(for_sizeof().s_[0]) == kWRegSize); STATIC_ASSERT(sizeof(for_sizeof().x_[0]) == kXRegSize); STATIC_ASSERT(sizeof(for_sizeof().w_[0]) == kWRegSize); }; // Some of these methods don't use the RegisterDump argument, but they have to // accept them so that they can overload those that take register arguments. bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result); bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result); bool EqualFP32(float expected, const RegisterDump*, float result); bool EqualFP64(double expected, const RegisterDump*, double result); bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg); bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg); bool EqualFP32(float expected, const RegisterDump* core, const FPRegister& fpreg); bool EqualFP64(double expected, const RegisterDump* core, const FPRegister& fpreg); bool Equal64(const Register& reg0, const RegisterDump* core, const Register& reg1); bool EqualNzcv(uint32_t expected, uint32_t result); bool EqualRegisters(const RegisterDump* a, const RegisterDump* b); // Populate the w, x and r arrays with registers from the 'allowed' mask. The // r array will be populated with <reg_size>-sized registers, // // This allows for tests which use large, parameterized blocks of registers // (such as the push and pop tests), but where certain registers must be // avoided as they are used for other purposes. // // Any of w, x, or r can be NULL if they are not required. // // The return value is a RegList indicating which registers were allocated. RegList PopulateRegisterArray(Register* w, Register* x, Register* r, int reg_size, int reg_count, RegList allowed); // As PopulateRegisterArray, but for floating-point registers. RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v, int reg_size, int reg_count, RegList allowed); // Ovewrite the contents of the specified registers. This enables tests to // check that register contents are written in cases where it's likely that the // correct outcome could already be stored in the register. // // This always overwrites X-sized registers. If tests are operating on W // registers, a subsequent write into an aliased W register should clear the // top word anyway, so clobbering the full X registers should make tests more // rigorous. void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value = 0xfedcba9876543210UL); // As Clobber, but for FP registers. void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value = kFP64SignallingNaN); // As Clobber, but for a CPURegList with either FP or integer registers. When // using this method, the clobber value is always the default for the basic // Clobber or ClobberFP functions. void Clobber(MacroAssembler* masm, CPURegList reg_list); #endif // V8_ARM64_TEST_UTILS_ARM64_H_