// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #ifdef __linux__ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #endif #include <utility> #include "src/v8.h" #include "src/full-codegen.h" #include "src/global-handles.h" #include "src/snapshot.h" #include "test/cctest/cctest.h" using namespace v8::internal; TEST(MarkingDeque) { CcTest::InitializeVM(); int mem_size = 20 * kPointerSize; byte* mem = NewArray<byte>(20*kPointerSize); Address low = reinterpret_cast<Address>(mem); Address high = low + mem_size; MarkingDeque s; s.Initialize(low, high); Address original_address = reinterpret_cast<Address>(&s); Address current_address = original_address; while (!s.IsFull()) { s.PushBlack(HeapObject::FromAddress(current_address)); current_address += kPointerSize; } while (!s.IsEmpty()) { Address value = s.Pop()->address(); current_address -= kPointerSize; CHECK_EQ(current_address, value); } CHECK_EQ(original_address, current_address); DeleteArray(mem); } TEST(Promotion) { CcTest::InitializeVM(); TestHeap* heap = CcTest::test_heap(); heap->ConfigureHeap(1, 1, 1, 0); v8::HandleScope sc(CcTest::isolate()); // Allocate a fixed array in the new space. int array_length = (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) / (4 * kPointerSize); Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked(); Handle<FixedArray> array(FixedArray::cast(obj)); // Array should be in the new space. CHECK(heap->InSpace(*array, NEW_SPACE)); // Call mark compact GC, so array becomes an old object. heap->CollectGarbage(OLD_POINTER_SPACE); // Array now sits in the old space CHECK(heap->InSpace(*array, OLD_POINTER_SPACE)); } TEST(NoPromotion) { CcTest::InitializeVM(); TestHeap* heap = CcTest::test_heap(); heap->ConfigureHeap(1, 1, 1, 0); v8::HandleScope sc(CcTest::isolate()); // Allocate a big fixed array in the new space. int array_length = (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) / (2 * kPointerSize); Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked(); Handle<FixedArray> array(FixedArray::cast(obj)); // Array should be in the new space. CHECK(heap->InSpace(*array, NEW_SPACE)); // Simulate a full old space to make promotion fail. SimulateFullSpace(heap->old_pointer_space()); // Call mark compact GC, and it should pass. heap->CollectGarbage(OLD_POINTER_SPACE); } TEST(MarkCompactCollector) { FLAG_incremental_marking = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle<GlobalObject> global(isolate->context()->global_object()); // call mark-compact when heap is empty heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1"); // keep allocating garbage in new space until it fails const int ARRAY_SIZE = 100; AllocationResult allocation; do { allocation = heap->AllocateFixedArray(ARRAY_SIZE); } while (!allocation.IsRetry()); heap->CollectGarbage(NEW_SPACE, "trigger 2"); heap->AllocateFixedArray(ARRAY_SIZE).ToObjectChecked(); // keep allocating maps until it fails do { allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); } while (!allocation.IsRetry()); heap->CollectGarbage(MAP_SPACE, "trigger 3"); heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked(); { HandleScope scope(isolate); // allocate a garbage Handle<String> func_name = factory->InternalizeUtf8String("theFunction"); Handle<JSFunction> function = factory->NewFunction(func_name); JSReceiver::SetProperty(global, func_name, function, NONE, SLOPPY).Check(); factory->NewJSObject(function); } heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4"); { HandleScope scope(isolate); Handle<String> func_name = factory->InternalizeUtf8String("theFunction"); CHECK(JSReceiver::HasOwnProperty(global, func_name)); Handle<Object> func_value = Object::GetProperty(global, func_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle<JSFunction> function = Handle<JSFunction>::cast(func_value); Handle<JSObject> obj = factory->NewJSObject(function); Handle<String> obj_name = factory->InternalizeUtf8String("theObject"); JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check(); Handle<String> prop_name = factory->InternalizeUtf8String("theSlot"); Handle<Smi> twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); } heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5"); { HandleScope scope(isolate); Handle<String> obj_name = factory->InternalizeUtf8String("theObject"); CHECK(JSReceiver::HasOwnProperty(global, obj_name)); Handle<Object> object = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(object->IsJSObject()); Handle<String> prop_name = factory->InternalizeUtf8String("theSlot"); CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(), Smi::FromInt(23)); } } // TODO(1600): compaction of map space is temporary removed from GC. #if 0 static Handle<Map> CreateMap(Isolate* isolate) { return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); } TEST(MapCompact) { FLAG_max_map_space_pages = 16; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); { v8::HandleScope sc; // keep allocating maps while pointers are still encodable and thus // mark compact is permitted. Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap()); do { Handle<Map> map = CreateMap(); map->set_prototype(*root); root = factory->NewJSObjectFromMap(map); } while (CcTest::heap()->map_space()->MapPointersEncodable()); } // Now, as we don't have any handles to just allocated maps, we should // be able to trigger map compaction. // To give an additional chance to fail, try to force compaction which // should be impossible right now. CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask); // And now map pointers should be encodable again. CHECK(CcTest::heap()->map_space()->MapPointersEncodable()); } #endif static int NumberOfWeakCalls = 0; static void WeakPointerCallback( const v8::WeakCallbackData<v8::Value, void>& data) { std::pair<v8::Persistent<v8::Value>*, int>* p = reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>( data.GetParameter()); ASSERT_EQ(1234, p->second); NumberOfWeakCalls++; p->first->Reset(); } TEST(ObjectGroups) { FLAG_incremental_marking = false; CcTest::InitializeVM(); GlobalHandles* global_handles = CcTest::i_isolate()->global_handles(); TestHeap* heap = CcTest::test_heap(); NumberOfWeakCalls = 0; v8::HandleScope handle_scope(CcTest::isolate()); Handle<Object> g1s1 = global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked()); Handle<Object> g1s2 = global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked()); Handle<Object> g1c1 = global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked()); std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234); GlobalHandles::MakeWeak(g1s1.location(), reinterpret_cast<void*>(&g1s1_and_id), &WeakPointerCallback); std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234); GlobalHandles::MakeWeak(g1s2.location(), reinterpret_cast<void*>(&g1s2_and_id), &WeakPointerCallback); std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234); GlobalHandles::MakeWeak(g1c1.location(), reinterpret_cast<void*>(&g1c1_and_id), &WeakPointerCallback); Handle<Object> g2s1 = global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked()); Handle<Object> g2s2 = global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked()); Handle<Object> g2c1 = global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked()); std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234); GlobalHandles::MakeWeak(g2s1.location(), reinterpret_cast<void*>(&g2s1_and_id), &WeakPointerCallback); std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234); GlobalHandles::MakeWeak(g2s2.location(), reinterpret_cast<void*>(&g2s2_and_id), &WeakPointerCallback); std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234); GlobalHandles::MakeWeak(g2c1.location(), reinterpret_cast<void*>(&g2c1_and_id), &WeakPointerCallback); Handle<Object> root = global_handles->Create(*g1s1); // make a root. // Connect group 1 and 2, make a cycle. Handle<FixedArray>::cast(g1s2)->set(0, *g2s2); Handle<FixedArray>::cast(g2s1)->set(0, *g1s1); { Object** g1_objects[] = { g1s1.location(), g1s2.location() }; Object** g1_children[] = { g1c1.location() }; Object** g2_objects[] = { g2s1.location(), g2s2.location() }; Object** g2_children[] = { g2c1.location() }; global_handles->AddObjectGroup(g1_objects, 2, NULL); global_handles->AddImplicitReferences( Handle<HeapObject>::cast(g1s1).location(), g1_children, 1); global_handles->AddObjectGroup(g2_objects, 2, NULL); global_handles->AddImplicitReferences( Handle<HeapObject>::cast(g2s1).location(), g2_children, 1); } // Do a full GC heap->CollectGarbage(OLD_POINTER_SPACE); // All object should be alive. CHECK_EQ(0, NumberOfWeakCalls); // Weaken the root. std::pair<Handle<Object>*, int> root_and_id(&root, 1234); GlobalHandles::MakeWeak(root.location(), reinterpret_cast<void*>(&root_and_id), &WeakPointerCallback); // But make children strong roots---all the objects (except for children) // should be collectable now. global_handles->ClearWeakness(g1c1.location()); global_handles->ClearWeakness(g2c1.location()); // Groups are deleted, rebuild groups. { Object** g1_objects[] = { g1s1.location(), g1s2.location() }; Object** g1_children[] = { g1c1.location() }; Object** g2_objects[] = { g2s1.location(), g2s2.location() }; Object** g2_children[] = { g2c1.location() }; global_handles->AddObjectGroup(g1_objects, 2, NULL); global_handles->AddImplicitReferences( Handle<HeapObject>::cast(g1s1).location(), g1_children, 1); global_handles->AddObjectGroup(g2_objects, 2, NULL); global_handles->AddImplicitReferences( Handle<HeapObject>::cast(g2s1).location(), g2_children, 1); } heap->CollectGarbage(OLD_POINTER_SPACE); // All objects should be gone. 5 global handles in total. CHECK_EQ(5, NumberOfWeakCalls); // And now make children weak again and collect them. GlobalHandles::MakeWeak(g1c1.location(), reinterpret_cast<void*>(&g1c1_and_id), &WeakPointerCallback); GlobalHandles::MakeWeak(g2c1.location(), reinterpret_cast<void*>(&g2c1_and_id), &WeakPointerCallback); heap->CollectGarbage(OLD_POINTER_SPACE); CHECK_EQ(7, NumberOfWeakCalls); } class TestRetainedObjectInfo : public v8::RetainedObjectInfo { public: TestRetainedObjectInfo() : has_been_disposed_(false) {} bool has_been_disposed() { return has_been_disposed_; } virtual void Dispose() { ASSERT(!has_been_disposed_); has_been_disposed_ = true; } virtual bool IsEquivalent(v8::RetainedObjectInfo* other) { return other == this; } virtual intptr_t GetHash() { return 0; } virtual const char* GetLabel() { return "whatever"; } private: bool has_been_disposed_; }; TEST(EmptyObjectGroups) { CcTest::InitializeVM(); GlobalHandles* global_handles = CcTest::i_isolate()->global_handles(); v8::HandleScope handle_scope(CcTest::isolate()); Handle<Object> object = global_handles->Create( CcTest::test_heap()->AllocateFixedArray(1).ToObjectChecked()); TestRetainedObjectInfo info; global_handles->AddObjectGroup(NULL, 0, &info); ASSERT(info.has_been_disposed()); global_handles->AddImplicitReferences( Handle<HeapObject>::cast(object).location(), NULL, 0); } #if defined(__has_feature) #if __has_feature(address_sanitizer) #define V8_WITH_ASAN 1 #endif #endif // Here is a memory use test that uses /proc, and is therefore Linux-only. We // do not care how much memory the simulator uses, since it is only there for // debugging purposes. Testing with ASAN doesn't make sense, either. #if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN) static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) { char* end_address = buffer + *position; uintptr_t result = strtoul(buffer + *position, &end_address, base); CHECK(result != ULONG_MAX || errno != ERANGE); CHECK(end_address > buffer + *position); *position = end_address - buffer; return result; } // The memory use computed this way is not entirely accurate and depends on // the way malloc allocates memory. That's why the memory use may seem to // increase even though the sum of the allocated object sizes decreases. It // also means that the memory use depends on the kernel and stdlib. static intptr_t MemoryInUse() { intptr_t memory_use = 0; int fd = open("/proc/self/maps", O_RDONLY); if (fd < 0) return -1; const int kBufSize = 10000; char buffer[kBufSize]; int length = read(fd, buffer, kBufSize); intptr_t line_start = 0; CHECK_LT(length, kBufSize); // Make the buffer bigger. CHECK_GT(length, 0); // We have to find some data in the file. while (line_start < length) { if (buffer[line_start] == '\n') { line_start++; continue; } intptr_t position = line_start; uintptr_t start = ReadLong(buffer, &position, 16); CHECK_EQ(buffer[position++], '-'); uintptr_t end = ReadLong(buffer, &position, 16); CHECK_EQ(buffer[position++], ' '); CHECK(buffer[position] == '-' || buffer[position] == 'r'); bool read_permission = (buffer[position++] == 'r'); CHECK(buffer[position] == '-' || buffer[position] == 'w'); bool write_permission = (buffer[position++] == 'w'); CHECK(buffer[position] == '-' || buffer[position] == 'x'); bool execute_permission = (buffer[position++] == 'x'); CHECK(buffer[position] == '-' || buffer[position] == 'p'); bool private_mapping = (buffer[position++] == 'p'); CHECK_EQ(buffer[position++], ' '); uintptr_t offset = ReadLong(buffer, &position, 16); USE(offset); CHECK_EQ(buffer[position++], ' '); uintptr_t major = ReadLong(buffer, &position, 16); USE(major); CHECK_EQ(buffer[position++], ':'); uintptr_t minor = ReadLong(buffer, &position, 16); USE(minor); CHECK_EQ(buffer[position++], ' '); uintptr_t inode = ReadLong(buffer, &position, 10); while (position < length && buffer[position] != '\n') position++; if ((read_permission || write_permission || execute_permission) && private_mapping && inode == 0) { memory_use += (end - start); } line_start = position; } close(fd); return memory_use; } intptr_t ShortLivingIsolate() { v8::Isolate* isolate = v8::Isolate::New(); { v8::Isolate::Scope isolate_scope(isolate); v8::Locker lock(isolate); v8::HandleScope handle_scope(isolate); v8::Local<v8::Context> context = v8::Context::New(isolate); CHECK(!context.IsEmpty()); } isolate->Dispose(); return MemoryInUse(); } TEST(RegressJoinThreadsOnIsolateDeinit) { intptr_t size_limit = ShortLivingIsolate() * 2; for (int i = 0; i < 10; i++) { CHECK_GT(size_limit, ShortLivingIsolate()); } } #endif // __linux__ and !USE_SIMULATOR