// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/v8.h" #include "src/disassembler.h" #include "src/factory.h" #include "src/arm/simulator-arm.h" #include "src/arm/assembler-arm-inl.h" #include "test/cctest/cctest.h" using namespace v8::internal; // Define these function prototypes to match JSEntryFunction in execution.cc. typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F2)(int x, int y, int p2, int p3, int p4); typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4); typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4); #define __ assm. TEST(0) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); __ add(r0, r0, Operand(r1)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F2 f = FUNCTION_CAST<F2>(code->entry()); int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 3, 4, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(7, res); } TEST(1) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); Label L, C; __ mov(r1, Operand(r0)); __ mov(r0, Operand::Zero()); __ b(&C); __ bind(&L); __ add(r0, r0, Operand(r1)); __ sub(r1, r1, Operand(1)); __ bind(&C); __ teq(r1, Operand::Zero()); __ b(ne, &L); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F1 f = FUNCTION_CAST<F1>(code->entry()); int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 100, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(5050, res); } TEST(2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); Label L, C; __ mov(r1, Operand(r0)); __ mov(r0, Operand(1)); __ b(&C); __ bind(&L); __ mul(r0, r1, r0); __ sub(r1, r1, Operand(1)); __ bind(&C); __ teq(r1, Operand::Zero()); __ b(ne, &L); __ mov(pc, Operand(lr)); // some relocated stuff here, not executed __ RecordComment("dead code, just testing relocations"); __ mov(r0, Operand(isolate->factory()->true_value())); __ RecordComment("dead code, just testing immediate operands"); __ mov(r0, Operand(-1)); __ mov(r0, Operand(0xFF000000)); __ mov(r0, Operand(0xF0F0F0F0)); __ mov(r0, Operand(0xFFF0FFFF)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F1 f = FUNCTION_CAST<F1>(code->entry()); int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 10, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(3628800, res); } TEST(3) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int i; char c; int16_t s; } T; T t; Assembler assm(isolate, NULL, 0); Label L, C; __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ ldr(r0, MemOperand(r4, OFFSET_OF(T, i))); __ mov(r2, Operand(r0, ASR, 1)); __ str(r2, MemOperand(r4, OFFSET_OF(T, i))); __ ldrsb(r2, MemOperand(r4, OFFSET_OF(T, c))); __ add(r0, r2, Operand(r0)); __ mov(r2, Operand(r2, LSL, 2)); __ strb(r2, MemOperand(r4, OFFSET_OF(T, c))); __ ldrsh(r2, MemOperand(r4, OFFSET_OF(T, s))); __ add(r0, r2, Operand(r0)); __ mov(r2, Operand(r2, ASR, 3)); __ strh(r2, MemOperand(r4, OFFSET_OF(T, s))); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); t.i = 100000; t.c = 10; t.s = 1000; int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(101010, res); CHECK_EQ(100000/2, t.i); CHECK_EQ(10*4, t.c); CHECK_EQ(1000/8, t.s); } TEST(4) { // Test the VFP floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; int i; double j; double m; double n; float x; float y; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, NULL, 0); Label L, C; if (CpuFeatures::IsSupported(VFP3)) { CpuFeatureScope scope(&assm, VFP3); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ mov(r4, Operand(r0)); __ vldr(d6, r4, OFFSET_OF(T, a)); __ vldr(d7, r4, OFFSET_OF(T, b)); __ vadd(d5, d6, d7); __ vstr(d5, r4, OFFSET_OF(T, c)); __ vmla(d5, d6, d7); __ vmls(d5, d5, d6); __ vmov(r2, r3, d5); __ vmov(d4, r2, r3); __ vstr(d4, r4, OFFSET_OF(T, b)); // Load t.x and t.y, switch values, and store back to the struct. __ vldr(s0, r4, OFFSET_OF(T, x)); __ vldr(s31, r4, OFFSET_OF(T, y)); __ vmov(s16, s0); __ vmov(s0, s31); __ vmov(s31, s16); __ vstr(s0, r4, OFFSET_OF(T, x)); __ vstr(s31, r4, OFFSET_OF(T, y)); // Move a literal into a register that can be encoded in the instruction. __ vmov(d4, 1.0); __ vstr(d4, r4, OFFSET_OF(T, e)); // Move a literal into a register that requires 64 bits to encode. // 0x3ff0000010000000 = 1.000000059604644775390625 __ vmov(d4, 1.000000059604644775390625); __ vstr(d4, r4, OFFSET_OF(T, d)); // Convert from floating point to integer. __ vmov(d4, 2.0); __ vcvt_s32_f64(s31, d4); __ vstr(s31, r4, OFFSET_OF(T, i)); // Convert from integer to floating point. __ mov(lr, Operand(42)); __ vmov(s31, lr); __ vcvt_f64_s32(d4, s31); __ vstr(d4, r4, OFFSET_OF(T, f)); // Convert from fixed point to floating point. __ mov(lr, Operand(2468)); __ vmov(s8, lr); __ vcvt_f64_s32(d4, 2); __ vstr(d4, r4, OFFSET_OF(T, j)); // Test vabs. __ vldr(d1, r4, OFFSET_OF(T, g)); __ vabs(d0, d1); __ vstr(d0, r4, OFFSET_OF(T, g)); __ vldr(d2, r4, OFFSET_OF(T, h)); __ vabs(d0, d2); __ vstr(d0, r4, OFFSET_OF(T, h)); // Test vneg. __ vldr(d1, r4, OFFSET_OF(T, m)); __ vneg(d0, d1); __ vstr(d0, r4, OFFSET_OF(T, m)); __ vldr(d1, r4, OFFSET_OF(T, n)); __ vneg(d0, d1); __ vstr(d0, r4, OFFSET_OF(T, n)); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); t.a = 1.5; t.b = 2.75; t.c = 17.17; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.g = -2718.2818; t.h = 31415926.5; t.i = 0; t.j = 0; t.m = -2718.2818; t.n = 123.456; t.x = 4.5; t.y = 9.0; Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(4.5, t.y); CHECK_EQ(9.0, t.x); CHECK_EQ(-123.456, t.n); CHECK_EQ(2718.2818, t.m); CHECK_EQ(2, t.i); CHECK_EQ(2718.2818, t.g); CHECK_EQ(31415926.5, t.h); CHECK_EQ(617.0, t.j); CHECK_EQ(42.0, t.f); CHECK_EQ(1.0, t.e); CHECK_EQ(1.000000059604644775390625, t.d); CHECK_EQ(4.25, t.c); CHECK_EQ(-4.1875, t.b); CHECK_EQ(1.5, t.a); } } TEST(5) { // Test the ARMv7 bitfield instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(&assm, ARMv7); // On entry, r0 = 0xAAAAAAAA = 0b10..10101010. __ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555 __ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11 __ bfc(r0, 1, 3); // 0b11..111111110001 = -15 __ mov(r1, Operand(7)); __ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7 __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F1 f = FUNCTION_CAST<F1>(code->entry()); int res = reinterpret_cast<int>( CALL_GENERATED_CODE(f, 0xAAAAAAAA, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(-7, res); } } TEST(6) { // Test saturating instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(&assm, ARMv7); __ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF. __ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F. __ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0. __ add(r0, r1, Operand(r2)); __ add(r0, r0, Operand(r3)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F1 f = FUNCTION_CAST<F1>(code->entry()); int res = reinterpret_cast<int>( CALL_GENERATED_CODE(f, 0xFFFF, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(382, res); } } enum VCVTTypes { s32_f64, u32_f64 }; static void TestRoundingMode(VCVTTypes types, VFPRoundingMode mode, double value, int expected, bool expected_exception = false) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); if (CpuFeatures::IsSupported(VFP3)) { CpuFeatureScope scope(&assm, VFP3); Label wrong_exception; __ vmrs(r1); // Set custom FPSCR. __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask)); __ orr(r2, r2, Operand(mode)); __ vmsr(r2); // Load value, convert, and move back result to r0 if everything went well. __ vmov(d1, value); switch (types) { case s32_f64: __ vcvt_s32_f64(s0, d1, kFPSCRRounding); break; case u32_f64: __ vcvt_u32_f64(s0, d1, kFPSCRRounding); break; default: UNREACHABLE(); break; } // Check for vfp exceptions __ vmrs(r2); __ tst(r2, Operand(kVFPExceptionMask)); // Check that we behaved as expected. __ b(&wrong_exception, expected_exception ? eq : ne); // There was no exception. Retrieve the result and return. __ vmov(r0, s0); __ mov(pc, Operand(lr)); // The exception behaviour is not what we expected. // Load a special value and return. __ bind(&wrong_exception); __ mov(r0, Operand(11223344)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F1 f = FUNCTION_CAST<F1>(code->entry()); int res = reinterpret_cast<int>( CALL_GENERATED_CODE(f, 0, 0, 0, 0, 0)); ::printf("res = %d\n", res); CHECK_EQ(expected, res); } } TEST(7) { CcTest::InitializeVM(); // Test vfp rounding modes. // s32_f64 (double to integer). TestRoundingMode(s32_f64, RN, 0, 0); TestRoundingMode(s32_f64, RN, 0.5, 0); TestRoundingMode(s32_f64, RN, -0.5, 0); TestRoundingMode(s32_f64, RN, 1.5, 2); TestRoundingMode(s32_f64, RN, -1.5, -2); TestRoundingMode(s32_f64, RN, 123.7, 124); TestRoundingMode(s32_f64, RN, -123.7, -124); TestRoundingMode(s32_f64, RN, 123456.2, 123456); TestRoundingMode(s32_f64, RN, -123456.2, -123456); TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt); TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true); TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt); TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt); TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true); TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true); TestRoundingMode(s32_f64, RM, 0, 0); TestRoundingMode(s32_f64, RM, 0.5, 0); TestRoundingMode(s32_f64, RM, -0.5, -1); TestRoundingMode(s32_f64, RM, 123.7, 123); TestRoundingMode(s32_f64, RM, -123.7, -124); TestRoundingMode(s32_f64, RM, 123456.2, 123456); TestRoundingMode(s32_f64, RM, -123456.2, -123457); TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt); TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true); TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt); TestRoundingMode(s32_f64, RZ, 0, 0); TestRoundingMode(s32_f64, RZ, 0.5, 0); TestRoundingMode(s32_f64, RZ, -0.5, 0); TestRoundingMode(s32_f64, RZ, 123.7, 123); TestRoundingMode(s32_f64, RZ, -123.7, -123); TestRoundingMode(s32_f64, RZ, 123456.2, 123456); TestRoundingMode(s32_f64, RZ, -123456.2, -123456); TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt); TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true); TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt); TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt); TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true); // u32_f64 (double to integer). // Negative values. TestRoundingMode(u32_f64, RN, -0.5, 0); TestRoundingMode(u32_f64, RN, -123456.7, 0, true); TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true); TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true); TestRoundingMode(u32_f64, RM, -0.5, 0, true); TestRoundingMode(u32_f64, RM, -123456.7, 0, true); TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true); TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true); TestRoundingMode(u32_f64, RZ, -0.5, 0); TestRoundingMode(u32_f64, RZ, -123456.7, 0, true); TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true); TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true); // Positive values. // kMaxInt is the maximum *signed* integer: 0x7fffffff. static const uint32_t kMaxUInt = 0xffffffffu; TestRoundingMode(u32_f64, RZ, 0, 0); TestRoundingMode(u32_f64, RZ, 0.5, 0); TestRoundingMode(u32_f64, RZ, 123.7, 123); TestRoundingMode(u32_f64, RZ, 123456.2, 123456); TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0), static_cast<uint32_t>(kMaxInt) + 1); TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt); TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true); TestRoundingMode(u32_f64, RM, 0, 0); TestRoundingMode(u32_f64, RM, 0.5, 0); TestRoundingMode(u32_f64, RM, 123.7, 123); TestRoundingMode(u32_f64, RM, 123456.2, 123456); TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt); TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0), static_cast<uint32_t>(kMaxInt) + 1); TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt); TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true); TestRoundingMode(u32_f64, RN, 0, 0); TestRoundingMode(u32_f64, RN, 0.5, 0); TestRoundingMode(u32_f64, RN, 1.5, 2); TestRoundingMode(u32_f64, RN, 123.7, 124); TestRoundingMode(u32_f64, RN, 123456.2, 123456); TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt); TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt); TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5), static_cast<uint32_t>(kMaxInt) + 1); TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt); TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true); TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true); } TEST(8) { // Test VFP multi load/store with ia_w. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, NULL, 0); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ add(r4, r0, Operand(OFFSET_OF(D, a))); __ vldm(ia_w, r4, d0, d3); __ vldm(ia_w, r4, d4, d7); __ add(r4, r0, Operand(OFFSET_OF(D, a))); __ vstm(ia_w, r4, d6, d7); __ vstm(ia_w, r4, d0, d5); __ add(r4, r1, Operand(OFFSET_OF(F, a))); __ vldm(ia_w, r4, s0, s3); __ vldm(ia_w, r4, s4, s7); __ add(r4, r1, Operand(OFFSET_OF(F, a))); __ vstm(ia_w, r4, s6, s7); __ vstm(ia_w, r4, s0, s5); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F4 fn = FUNCTION_CAST<F4>(code->entry()); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0); USE(dummy); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0, f.a); CHECK_EQ(8.0, f.b); CHECK_EQ(1.0, f.c); CHECK_EQ(2.0, f.d); CHECK_EQ(3.0, f.e); CHECK_EQ(4.0, f.f); CHECK_EQ(5.0, f.g); CHECK_EQ(6.0, f.h); } TEST(9) { // Test VFP multi load/store with ia. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, NULL, 0); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ add(r4, r0, Operand(OFFSET_OF(D, a))); __ vldm(ia, r4, d0, d3); __ add(r4, r4, Operand(4 * 8)); __ vldm(ia, r4, d4, d7); __ add(r4, r0, Operand(OFFSET_OF(D, a))); __ vstm(ia, r4, d6, d7); __ add(r4, r4, Operand(2 * 8)); __ vstm(ia, r4, d0, d5); __ add(r4, r1, Operand(OFFSET_OF(F, a))); __ vldm(ia, r4, s0, s3); __ add(r4, r4, Operand(4 * 4)); __ vldm(ia, r4, s4, s7); __ add(r4, r1, Operand(OFFSET_OF(F, a))); __ vstm(ia, r4, s6, s7); __ add(r4, r4, Operand(2 * 4)); __ vstm(ia, r4, s0, s5); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F4 fn = FUNCTION_CAST<F4>(code->entry()); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0); USE(dummy); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0, f.a); CHECK_EQ(8.0, f.b); CHECK_EQ(1.0, f.c); CHECK_EQ(2.0, f.d); CHECK_EQ(3.0, f.e); CHECK_EQ(4.0, f.f); CHECK_EQ(5.0, f.g); CHECK_EQ(6.0, f.h); } TEST(10) { // Test VFP multi load/store with db_w. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; } D; D d; typedef struct { float a; float b; float c; float d; float e; float f; float g; float h; } F; F f; // Create a function that uses vldm/vstm to move some double and // single precision values around in memory. Assembler assm(isolate, NULL, 0); __ mov(ip, Operand(sp)); __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); __ sub(fp, ip, Operand(4)); __ add(r4, r0, Operand(OFFSET_OF(D, h) + 8)); __ vldm(db_w, r4, d4, d7); __ vldm(db_w, r4, d0, d3); __ add(r4, r0, Operand(OFFSET_OF(D, h) + 8)); __ vstm(db_w, r4, d0, d5); __ vstm(db_w, r4, d6, d7); __ add(r4, r1, Operand(OFFSET_OF(F, h) + 4)); __ vldm(db_w, r4, s4, s7); __ vldm(db_w, r4, s0, s3); __ add(r4, r1, Operand(OFFSET_OF(F, h) + 4)); __ vstm(db_w, r4, s0, s5); __ vstm(db_w, r4, s6, s7); __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F4 fn = FUNCTION_CAST<F4>(code->entry()); d.a = 1.1; d.b = 2.2; d.c = 3.3; d.d = 4.4; d.e = 5.5; d.f = 6.6; d.g = 7.7; d.h = 8.8; f.a = 1.0; f.b = 2.0; f.c = 3.0; f.d = 4.0; f.e = 5.0; f.f = 6.0; f.g = 7.0; f.h = 8.0; Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0); USE(dummy); CHECK_EQ(7.7, d.a); CHECK_EQ(8.8, d.b); CHECK_EQ(1.1, d.c); CHECK_EQ(2.2, d.d); CHECK_EQ(3.3, d.e); CHECK_EQ(4.4, d.f); CHECK_EQ(5.5, d.g); CHECK_EQ(6.6, d.h); CHECK_EQ(7.0, f.a); CHECK_EQ(8.0, f.b); CHECK_EQ(1.0, f.c); CHECK_EQ(2.0, f.d); CHECK_EQ(3.0, f.e); CHECK_EQ(4.0, f.f); CHECK_EQ(5.0, f.g); CHECK_EQ(6.0, f.h); } TEST(11) { // Test instructions using the carry flag. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t a; int32_t b; int32_t c; int32_t d; } I; I i; i.a = 0xabcd0001; i.b = 0xabcd0000; Assembler assm(isolate, NULL, 0); // Test HeapObject untagging. __ ldr(r1, MemOperand(r0, OFFSET_OF(I, a))); __ mov(r1, Operand(r1, ASR, 1), SetCC); __ adc(r1, r1, Operand(r1), LeaveCC, cs); __ str(r1, MemOperand(r0, OFFSET_OF(I, a))); __ ldr(r2, MemOperand(r0, OFFSET_OF(I, b))); __ mov(r2, Operand(r2, ASR, 1), SetCC); __ adc(r2, r2, Operand(r2), LeaveCC, cs); __ str(r2, MemOperand(r0, OFFSET_OF(I, b))); // Test corner cases. __ mov(r1, Operand(0xffffffff)); __ mov(r2, Operand::Zero()); __ mov(r3, Operand(r1, ASR, 1), SetCC); // Set the carry. __ adc(r3, r1, Operand(r2)); __ str(r3, MemOperand(r0, OFFSET_OF(I, c))); __ mov(r1, Operand(0xffffffff)); __ mov(r2, Operand::Zero()); __ mov(r3, Operand(r2, ASR, 1), SetCC); // Unset the carry. __ adc(r3, r1, Operand(r2)); __ str(r3, MemOperand(r0, OFFSET_OF(I, d))); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); Object* dummy = CALL_GENERATED_CODE(f, &i, 0, 0, 0, 0); USE(dummy); CHECK_EQ(0xabcd0001, i.a); CHECK_EQ(static_cast<int32_t>(0xabcd0000) >> 1, i.b); CHECK_EQ(0x00000000, i.c); CHECK_EQ(0xffffffff, i.d); } TEST(12) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); Label target; __ b(eq, &target); __ b(ne, &target); __ bind(&target); __ nop(); } TEST(13) { // Test VFP instructions using registers d16-d31. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); if (!CpuFeatures::IsSupported(VFP32DREGS)) { return; } typedef struct { double a; double b; double c; double x; double y; double z; double i; double j; double k; uint32_t low; uint32_t high; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, NULL, 0); Label L, C; if (CpuFeatures::IsSupported(VFP3)) { CpuFeatureScope scope(&assm, VFP3); __ stm(db_w, sp, r4.bit() | lr.bit()); // Load a, b, c into d16, d17, d18. __ mov(r4, Operand(r0)); __ vldr(d16, r4, OFFSET_OF(T, a)); __ vldr(d17, r4, OFFSET_OF(T, b)); __ vldr(d18, r4, OFFSET_OF(T, c)); __ vneg(d25, d16); __ vadd(d25, d25, d17); __ vsub(d25, d25, d18); __ vmul(d25, d25, d25); __ vdiv(d25, d25, d18); __ vmov(d16, d25); __ vsqrt(d17, d25); __ vneg(d17, d17); __ vabs(d17, d17); __ vmla(d18, d16, d17); // Store d16, d17, d18 into a, b, c. __ mov(r4, Operand(r0)); __ vstr(d16, r4, OFFSET_OF(T, a)); __ vstr(d17, r4, OFFSET_OF(T, b)); __ vstr(d18, r4, OFFSET_OF(T, c)); // Load x, y, z into d29-d31. __ add(r4, r0, Operand(OFFSET_OF(T, x))); __ vldm(ia_w, r4, d29, d31); // Swap d29 and d30 via r registers. __ vmov(r1, r2, d29); __ vmov(d29, d30); __ vmov(d30, r1, r2); // Convert to and from integer. __ vcvt_s32_f64(s1, d31); __ vcvt_f64_u32(d31, s1); // Store d29-d31 into x, y, z. __ add(r4, r0, Operand(OFFSET_OF(T, x))); __ vstm(ia_w, r4, d29, d31); // Move constants into d20, d21, d22 and store into i, j, k. __ vmov(d20, 14.7610017472335499); __ vmov(d21, 16.0); __ mov(r1, Operand(372106121)); __ mov(r2, Operand(1079146608)); __ vmov(d22, VmovIndexLo, r1); __ vmov(d22, VmovIndexHi, r2); __ add(r4, r0, Operand(OFFSET_OF(T, i))); __ vstm(ia_w, r4, d20, d22); // Move d22 into low and high. __ vmov(r4, VmovIndexLo, d22); __ str(r4, MemOperand(r0, OFFSET_OF(T, low))); __ vmov(r4, VmovIndexHi, d22); __ str(r4, MemOperand(r0, OFFSET_OF(T, high))); __ ldm(ia_w, sp, r4.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); t.a = 1.5; t.b = 2.75; t.c = 17.17; t.x = 1.5; t.y = 2.75; t.z = 17.17; Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(14.7610017472335499, t.a); CHECK_EQ(3.84200491244266251, t.b); CHECK_EQ(73.8818412254460241, t.c); CHECK_EQ(2.75, t.x); CHECK_EQ(1.5, t.y); CHECK_EQ(17.0, t.z); CHECK_EQ(14.7610017472335499, t.i); CHECK_EQ(16.0, t.j); CHECK_EQ(73.8818412254460241, t.k); CHECK_EQ(372106121, t.low); CHECK_EQ(1079146608, t.high); } } TEST(14) { // Test the VFP Canonicalized Nan mode. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double left; double right; double add_result; double sub_result; double mul_result; double div_result; } T; T t; // Create a function that makes the four basic operations. Assembler assm(isolate, NULL, 0); // Ensure FPSCR state (as JSEntryStub does). Label fpscr_done; __ vmrs(r1); __ tst(r1, Operand(kVFPDefaultNaNModeControlBit)); __ b(ne, &fpscr_done); __ orr(r1, r1, Operand(kVFPDefaultNaNModeControlBit)); __ vmsr(r1); __ bind(&fpscr_done); __ vldr(d0, r0, OFFSET_OF(T, left)); __ vldr(d1, r0, OFFSET_OF(T, right)); __ vadd(d2, d0, d1); __ vstr(d2, r0, OFFSET_OF(T, add_result)); __ vsub(d2, d0, d1); __ vstr(d2, r0, OFFSET_OF(T, sub_result)); __ vmul(d2, d0, d1); __ vstr(d2, r0, OFFSET_OF(T, mul_result)); __ vdiv(d2, d0, d1); __ vstr(d2, r0, OFFSET_OF(T, div_result)); __ mov(pc, Operand(lr)); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); t.left = BitCast<double>(kHoleNanInt64); t.right = 1; t.add_result = 0; t.sub_result = 0; t.mul_result = 0; t.div_result = 0; Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); USE(dummy); const uint32_t kArmNanUpper32 = 0x7ff80000; const uint32_t kArmNanLower32 = 0x00000000; #ifdef DEBUG const uint64_t kArmNanInt64 = (static_cast<uint64_t>(kArmNanUpper32) << 32) | kArmNanLower32; ASSERT(kArmNanInt64 != kHoleNanInt64); #endif // With VFP2 the sign of the canonicalized Nan is undefined. So // we remove the sign bit for the upper tests. CHECK_EQ(kArmNanUpper32, (BitCast<int64_t>(t.add_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, BitCast<int64_t>(t.add_result) & 0xffffffffu); CHECK_EQ(kArmNanUpper32, (BitCast<int64_t>(t.sub_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, BitCast<int64_t>(t.sub_result) & 0xffffffffu); CHECK_EQ(kArmNanUpper32, (BitCast<int64_t>(t.mul_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, BitCast<int64_t>(t.mul_result) & 0xffffffffu); CHECK_EQ(kArmNanUpper32, (BitCast<int64_t>(t.div_result) >> 32) & 0x7fffffff); CHECK_EQ(kArmNanLower32, BitCast<int64_t>(t.div_result) & 0xffffffffu); } TEST(15) { // Test the Neon instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t src0; uint32_t src1; uint32_t src2; uint32_t src3; uint32_t src4; uint32_t src5; uint32_t src6; uint32_t src7; uint32_t dst0; uint32_t dst1; uint32_t dst2; uint32_t dst3; uint32_t dst4; uint32_t dst5; uint32_t dst6; uint32_t dst7; uint32_t srcA0; uint32_t srcA1; uint32_t dstA0; uint32_t dstA1; uint32_t dstA2; uint32_t dstA3; uint32_t dstA4; uint32_t dstA5; uint32_t dstA6; uint32_t dstA7; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, NULL, 0); if (CpuFeatures::IsSupported(NEON)) { CpuFeatureScope scope(&assm, NEON); __ stm(db_w, sp, r4.bit() | lr.bit()); // Move 32 bytes with neon. __ add(r4, r0, Operand(OFFSET_OF(T, src0))); __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4)); __ add(r4, r0, Operand(OFFSET_OF(T, dst0))); __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4)); // Expand 8 bytes into 8 words(16 bits). __ add(r4, r0, Operand(OFFSET_OF(T, srcA0))); __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(r4)); __ vmovl(NeonU8, q0, d0); __ add(r4, r0, Operand(OFFSET_OF(T, dstA0))); __ vst1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(r4)); // The same expansion, but with different source and destination registers. __ add(r4, r0, Operand(OFFSET_OF(T, srcA0))); __ vld1(Neon8, NeonListOperand(d1), NeonMemOperand(r4)); __ vmovl(NeonU8, q1, d1); __ add(r4, r0, Operand(OFFSET_OF(T, dstA4))); __ vst1(Neon8, NeonListOperand(d2, 2), NeonMemOperand(r4)); __ ldm(ia_w, sp, r4.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); t.src0 = 0x01020304; t.src1 = 0x11121314; t.src2 = 0x21222324; t.src3 = 0x31323334; t.src4 = 0x41424344; t.src5 = 0x51525354; t.src6 = 0x61626364; t.src7 = 0x71727374; t.dst0 = 0; t.dst1 = 0; t.dst2 = 0; t.dst3 = 0; t.dst4 = 0; t.dst5 = 0; t.dst6 = 0; t.dst7 = 0; t.srcA0 = 0x41424344; t.srcA1 = 0x81828384; t.dstA0 = 0; t.dstA1 = 0; t.dstA2 = 0; t.dstA3 = 0; t.dstA4 = 0; t.dstA5 = 0; t.dstA6 = 0; t.dstA7 = 0; Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(0x01020304, t.dst0); CHECK_EQ(0x11121314, t.dst1); CHECK_EQ(0x21222324, t.dst2); CHECK_EQ(0x31323334, t.dst3); CHECK_EQ(0x41424344, t.dst4); CHECK_EQ(0x51525354, t.dst5); CHECK_EQ(0x61626364, t.dst6); CHECK_EQ(0x71727374, t.dst7); CHECK_EQ(0x00430044, t.dstA0); CHECK_EQ(0x00410042, t.dstA1); CHECK_EQ(0x00830084, t.dstA2); CHECK_EQ(0x00810082, t.dstA3); CHECK_EQ(0x00430044, t.dstA4); CHECK_EQ(0x00410042, t.dstA5); CHECK_EQ(0x00830084, t.dstA6); CHECK_EQ(0x00810082, t.dstA7); } } TEST(16) { // Test the pkh, uxtb, uxtab and uxtb16 instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t src0; uint32_t src1; uint32_t src2; uint32_t dst0; uint32_t dst1; uint32_t dst2; uint32_t dst3; uint32_t dst4; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles and floats. Assembler assm(isolate, NULL, 0); __ stm(db_w, sp, r4.bit() | lr.bit()); __ mov(r4, Operand(r0)); __ ldr(r0, MemOperand(r4, OFFSET_OF(T, src0))); __ ldr(r1, MemOperand(r4, OFFSET_OF(T, src1))); __ pkhbt(r2, r0, Operand(r1, LSL, 8)); __ str(r2, MemOperand(r4, OFFSET_OF(T, dst0))); __ pkhtb(r2, r0, Operand(r1, ASR, 8)); __ str(r2, MemOperand(r4, OFFSET_OF(T, dst1))); __ uxtb16(r2, Operand(r0, ROR, 8)); __ str(r2, MemOperand(r4, OFFSET_OF(T, dst2))); __ uxtb(r2, Operand(r0, ROR, 8)); __ str(r2, MemOperand(r4, OFFSET_OF(T, dst3))); __ ldr(r0, MemOperand(r4, OFFSET_OF(T, src2))); __ uxtab(r2, r0, Operand(r1, ROR, 8)); __ str(r2, MemOperand(r4, OFFSET_OF(T, dst4))); __ ldm(ia_w, sp, r4.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); t.src0 = 0x01020304; t.src1 = 0x11121314; t.src2 = 0x11121300; t.dst0 = 0; t.dst1 = 0; t.dst2 = 0; t.dst3 = 0; t.dst4 = 0; Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(0x12130304, t.dst0); CHECK_EQ(0x01021213, t.dst1); CHECK_EQ(0x00010003, t.dst2); CHECK_EQ(0x00000003, t.dst3); CHECK_EQ(0x11121313, t.dst4); } TEST(17) { // Test generating labels at high addresses. // Should not assert. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); // Generate a code segment that will be longer than 2^24 bytes. Assembler assm(isolate, NULL, 0); for (size_t i = 0; i < 1 << 23 ; ++i) { // 2^23 __ nop(); } Label target; __ b(eq, &target); __ bind(&target); __ nop(); } #define TEST_SDIV(expected_, dividend_, divisor_) \ t.dividend = dividend_; \ t.divisor = divisor_; \ t.result = 0; \ dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); \ CHECK_EQ(expected_, t.result); TEST(18) { // Test the sdiv. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t dividend; uint32_t divisor; uint32_t result; } T; T t; Assembler assm(isolate, NULL, 0); if (CpuFeatures::IsSupported(SUDIV)) { CpuFeatureScope scope(&assm, SUDIV); __ mov(r3, Operand(r0)); __ ldr(r0, MemOperand(r3, OFFSET_OF(T, dividend))); __ ldr(r1, MemOperand(r3, OFFSET_OF(T, divisor))); __ sdiv(r2, r0, r1); __ str(r2, MemOperand(r3, OFFSET_OF(T, result))); __ bx(lr); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle<Code>()); #ifdef DEBUG code->Print(); #endif F3 f = FUNCTION_CAST<F3>(code->entry()); Object* dummy; TEST_SDIV(1073741824, kMinInt, -2); TEST_SDIV(kMinInt, kMinInt, -1); TEST_SDIV(5, 10, 2); TEST_SDIV(3, 10, 3); TEST_SDIV(-5, 10, -2); TEST_SDIV(-3, 10, -3); TEST_SDIV(-5, -10, 2); TEST_SDIV(-3, -10, 3); TEST_SDIV(5, -10, -2); TEST_SDIV(3, -10, -3); USE(dummy); } } #undef TEST_SDIV TEST(code_relative_offset) { // Test extracting the offset of a label from the beginning of the code // in a register. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); // Initialize a code object that will contain the code. Handle<Object> code_object(isolate->heap()->undefined_value(), isolate); Assembler assm(isolate, NULL, 0); Label start, target_away, target_faraway; __ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit()); // r3 is used as the address zero, the test will crash when we load it. __ mov(r3, Operand::Zero()); // r5 will be a pointer to the start of the code. __ mov(r5, Operand(code_object)); __ mov_label_offset(r4, &start); __ mov_label_offset(r1, &target_faraway); __ str(r1, MemOperand(sp, kPointerSize, NegPreIndex)); __ mov_label_offset(r1, &target_away); // Jump straight to 'target_away' the first time and use the relative // position the second time. This covers the case when extracting the // position of a label which is linked. __ mov(r2, Operand::Zero()); __ bind(&start); __ cmp(r2, Operand::Zero()); __ b(eq, &target_away); __ add(pc, r5, r1); // Emit invalid instructions to push the label between 2^8 and 2^16 // instructions away. The test will crash if they are reached. for (int i = 0; i < (1 << 10); i++) { __ ldr(r3, MemOperand(r3)); } __ bind(&target_away); // This will be hit twice: r0 = r0 + 5 + 5. __ add(r0, r0, Operand(5)); __ ldr(r1, MemOperand(sp, kPointerSize, PostIndex), ne); __ add(pc, r5, r4, LeaveCC, ne); __ mov(r2, Operand(1)); __ b(&start); // Emit invalid instructions to push the label between 2^16 and 2^24 // instructions away. The test will crash if they are reached. for (int i = 0; i < (1 << 21); i++) { __ ldr(r3, MemOperand(r3)); } __ bind(&target_faraway); // r0 = r0 + 5 + 5 + 11 __ add(r0, r0, Operand(11)); __ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit()); CodeDesc desc; assm.GetCode(&desc); Handle<Code> code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), code_object); F1 f = FUNCTION_CAST<F1>(code->entry()); int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 21, 0, 0, 0, 0)); ::printf("f() = %d\n", res); CHECK_EQ(42, res); } #undef __