// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HYDROGEN_UNIQUE_H_ #define V8_HYDROGEN_UNIQUE_H_ #include "src/handles.h" #include "src/objects.h" #include "src/utils.h" #include "src/zone.h" namespace v8 { namespace internal { template <typename T> class UniqueSet; // Represents a handle to an object on the heap, but with the additional // ability of checking for equality and hashing without accessing the heap. // // Creating a Unique<T> requires first dereferencing the handle to obtain // the address of the object, which is used as the hashcode and the basis for // comparison. The object can be moved later by the GC, but comparison // and hashing use the old address of the object, without dereferencing it. // // Careful! Comparison of two Uniques is only correct if both were created // in the same "era" of GC or if at least one is a non-movable object. template <typename T> class Unique V8_FINAL { public: // TODO(titzer): make private and introduce a uniqueness scope. explicit Unique(Handle<T> handle) { if (handle.is_null()) { raw_address_ = NULL; } else { // This is a best-effort check to prevent comparing Unique<T>'s created // in different GC eras; we require heap allocation to be disallowed at // creation time. // NOTE: we currently consider maps to be non-movable, so no special // assurance is required for creating a Unique<Map>. // TODO(titzer): other immortable immovable objects are also fine. ASSERT(!AllowHeapAllocation::IsAllowed() || handle->IsMap()); raw_address_ = reinterpret_cast<Address>(*handle); ASSERT_NE(raw_address_, NULL); // Non-null should imply non-zero address. } handle_ = handle; } // TODO(titzer): this is a hack to migrate to Unique<T> incrementally. Unique(Address raw_address, Handle<T> handle) : raw_address_(raw_address), handle_(handle) { } // Constructor for handling automatic up casting. // Eg. Unique<JSFunction> can be passed when Unique<Object> is expected. template <class S> Unique(Unique<S> uniq) { #ifdef DEBUG T* a = NULL; S* b = NULL; a = b; // Fake assignment to enforce type checks. USE(a); #endif raw_address_ = uniq.raw_address_; handle_ = uniq.handle_; } template <typename U> inline bool operator==(const Unique<U>& other) const { ASSERT(IsInitialized() && other.IsInitialized()); return raw_address_ == other.raw_address_; } template <typename U> inline bool operator!=(const Unique<U>& other) const { ASSERT(IsInitialized() && other.IsInitialized()); return raw_address_ != other.raw_address_; } inline intptr_t Hashcode() const { ASSERT(IsInitialized()); return reinterpret_cast<intptr_t>(raw_address_); } inline bool IsNull() const { ASSERT(IsInitialized()); return raw_address_ == NULL; } inline bool IsKnownGlobal(void* global) const { ASSERT(IsInitialized()); return raw_address_ == reinterpret_cast<Address>(global); } inline Handle<T> handle() const { return handle_; } template <class S> static Unique<T> cast(Unique<S> that) { return Unique<T>(that.raw_address_, Handle<T>::cast(that.handle_)); } inline bool IsInitialized() const { return raw_address_ != NULL || handle_.is_null(); } // TODO(titzer): this is a hack to migrate to Unique<T> incrementally. static Unique<T> CreateUninitialized(Handle<T> handle) { return Unique<T>(reinterpret_cast<Address>(NULL), handle); } static Unique<T> CreateImmovable(Handle<T> handle) { return Unique<T>(reinterpret_cast<Address>(*handle), handle); } friend class UniqueSet<T>; // Uses internal details for speed. template <class U> friend class Unique; // For comparing raw_address values. private: Unique<T>() : raw_address_(NULL) { } Address raw_address_; Handle<T> handle_; friend class SideEffectsTracker; }; template <typename T> class UniqueSet V8_FINAL : public ZoneObject { public: // Constructor. A new set will be empty. UniqueSet() : size_(0), capacity_(0), array_(NULL) { } // Capacity constructor. A new set will be empty. UniqueSet(int capacity, Zone* zone) : size_(0), capacity_(capacity), array_(zone->NewArray<Unique<T> >(capacity)) { ASSERT(capacity <= kMaxCapacity); } // Singleton constructor. UniqueSet(Unique<T> uniq, Zone* zone) : size_(1), capacity_(1), array_(zone->NewArray<Unique<T> >(1)) { array_[0] = uniq; } // Add a new element to this unique set. Mutates this set. O(|this|). void Add(Unique<T> uniq, Zone* zone) { ASSERT(uniq.IsInitialized()); // Keep the set sorted by the {raw_address} of the unique elements. for (int i = 0; i < size_; i++) { if (array_[i] == uniq) return; if (array_[i].raw_address_ > uniq.raw_address_) { // Insert in the middle. Grow(size_ + 1, zone); for (int j = size_ - 1; j >= i; j--) array_[j + 1] = array_[j]; array_[i] = uniq; size_++; return; } } // Append the element to the the end. Grow(size_ + 1, zone); array_[size_++] = uniq; } // Remove an element from this set. Mutates this set. O(|this|) void Remove(Unique<T> uniq) { for (int i = 0; i < size_; i++) { if (array_[i] == uniq) { while (++i < size_) array_[i - 1] = array_[i]; size_--; return; } } } // Compare this set against another set. O(|this|). bool Equals(const UniqueSet<T>* that) const { if (that->size_ != this->size_) return false; for (int i = 0; i < this->size_; i++) { if (this->array_[i] != that->array_[i]) return false; } return true; } // Check whether this set contains the given element. O(|this|) // TODO(titzer): use binary search for large sets to make this O(log|this|) template <typename U> bool Contains(const Unique<U> elem) const { for (int i = 0; i < this->size_; ++i) { Unique<T> cand = this->array_[i]; if (cand.raw_address_ >= elem.raw_address_) { return cand.raw_address_ == elem.raw_address_; } } return false; } // Check if this set is a subset of the given set. O(|this| + |that|). bool IsSubset(const UniqueSet<T>* that) const { if (that->size_ < this->size_) return false; int j = 0; for (int i = 0; i < this->size_; i++) { Unique<T> sought = this->array_[i]; while (true) { if (sought == that->array_[j++]) break; // Fail whenever there are more elements in {this} than {that}. if ((this->size_ - i) > (that->size_ - j)) return false; } } return true; } // Returns a new set representing the intersection of this set and the other. // O(|this| + |that|). UniqueSet<T>* Intersect(const UniqueSet<T>* that, Zone* zone) const { if (that->size_ == 0 || this->size_ == 0) return new(zone) UniqueSet<T>(); UniqueSet<T>* out = new(zone) UniqueSet<T>( Min(this->size_, that->size_), zone); int i = 0, j = 0, k = 0; while (i < this->size_ && j < that->size_) { Unique<T> a = this->array_[i]; Unique<T> b = that->array_[j]; if (a == b) { out->array_[k++] = a; i++; j++; } else if (a.raw_address_ < b.raw_address_) { i++; } else { j++; } } out->size_ = k; return out; } // Returns a new set representing the union of this set and the other. // O(|this| + |that|). UniqueSet<T>* Union(const UniqueSet<T>* that, Zone* zone) const { if (that->size_ == 0) return this->Copy(zone); if (this->size_ == 0) return that->Copy(zone); UniqueSet<T>* out = new(zone) UniqueSet<T>( this->size_ + that->size_, zone); int i = 0, j = 0, k = 0; while (i < this->size_ && j < that->size_) { Unique<T> a = this->array_[i]; Unique<T> b = that->array_[j]; if (a == b) { out->array_[k++] = a; i++; j++; } else if (a.raw_address_ < b.raw_address_) { out->array_[k++] = a; i++; } else { out->array_[k++] = b; j++; } } while (i < this->size_) out->array_[k++] = this->array_[i++]; while (j < that->size_) out->array_[k++] = that->array_[j++]; out->size_ = k; return out; } // Returns a new set representing all elements from this set which are not in // that set. O(|this| * |that|). UniqueSet<T>* Subtract(const UniqueSet<T>* that, Zone* zone) const { if (that->size_ == 0) return this->Copy(zone); UniqueSet<T>* out = new(zone) UniqueSet<T>(this->size_, zone); int i = 0, j = 0; while (i < this->size_) { Unique<T> cand = this->array_[i]; if (!that->Contains(cand)) { out->array_[j++] = cand; } i++; } out->size_ = j; return out; } // Makes an exact copy of this set. O(|this|). UniqueSet<T>* Copy(Zone* zone) const { UniqueSet<T>* copy = new(zone) UniqueSet<T>(this->size_, zone); copy->size_ = this->size_; memcpy(copy->array_, this->array_, this->size_ * sizeof(Unique<T>)); return copy; } void Clear() { size_ = 0; } inline int size() const { return size_; } inline Unique<T> at(int index) const { ASSERT(index >= 0 && index < size_); return array_[index]; } private: // These sets should be small, since operations are implemented with simple // linear algorithms. Enforce a maximum size. static const int kMaxCapacity = 65535; uint16_t size_; uint16_t capacity_; Unique<T>* array_; // Grow the size of internal storage to be at least {size} elements. void Grow(int size, Zone* zone) { CHECK(size < kMaxCapacity); // Enforce maximum size. if (capacity_ < size) { int new_capacity = 2 * capacity_ + size; if (new_capacity > kMaxCapacity) new_capacity = kMaxCapacity; Unique<T>* new_array = zone->NewArray<Unique<T> >(new_capacity); if (size_ > 0) { memcpy(new_array, array_, size_ * sizeof(Unique<T>)); } capacity_ = new_capacity; array_ = new_array; } } }; } } // namespace v8::internal #endif // V8_HYDROGEN_UNIQUE_H_