// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_STORE_BUFFER_H_ #define V8_STORE_BUFFER_H_ #include "src/allocation.h" #include "src/checks.h" #include "src/globals.h" #include "src/platform.h" namespace v8 { namespace internal { class Page; class PagedSpace; class StoreBuffer; typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); typedef void (StoreBuffer::*RegionCallback)(Address start, Address end, ObjectSlotCallback slot_callback, bool clear_maps); // Used to implement the write barrier by collecting addresses of pointers // between spaces. class StoreBuffer { public: explicit StoreBuffer(Heap* heap); static void StoreBufferOverflow(Isolate* isolate); inline Address TopAddress(); void SetUp(); void TearDown(); // This is used by the mutator to enter addresses into the store buffer. inline void Mark(Address addr); // This is used by the heap traversal to enter the addresses into the store // buffer that should still be in the store buffer after GC. It enters // addresses directly into the old buffer because the GC starts by wiping the // old buffer and thereafter only visits each cell once so there is no need // to attempt to remove any dupes. During the first part of a GC we // are using the store buffer to access the old spaces and at the same time // we are rebuilding the store buffer using this function. There is, however // no issue of overwriting the buffer we are iterating over, because this // stage of the scavenge can only reduce the number of addresses in the store // buffer (some objects are promoted so pointers to them do not need to be in // the store buffer). The later parts of the GC scan the pages that are // exempt from the store buffer and process the promotion queue. These steps // can overflow this buffer. We check for this and on overflow we call the // callback set up with the StoreBufferRebuildScope object. inline void EnterDirectlyIntoStoreBuffer(Address addr); // Iterates over all pointers that go from old space to new space. It will // delete the store buffer as it starts so the callback should reenter // surviving old-to-new pointers into the store buffer to rebuild it. void IteratePointersToNewSpace(ObjectSlotCallback callback); // Same as IteratePointersToNewSpace but additonally clears maps in objects // referenced from the store buffer that do not contain a forwarding pointer. void IteratePointersToNewSpaceAndClearMaps(ObjectSlotCallback callback); static const int kStoreBufferOverflowBit = 1 << (14 + kPointerSizeLog2); static const int kStoreBufferSize = kStoreBufferOverflowBit; static const int kStoreBufferLength = kStoreBufferSize / sizeof(Address); static const int kOldStoreBufferLength = kStoreBufferLength * 16; static const int kHashSetLengthLog2 = 12; static const int kHashSetLength = 1 << kHashSetLengthLog2; void Compact(); void GCPrologue(); void GCEpilogue(); Object*** Limit() { return reinterpret_cast<Object***>(old_limit_); } Object*** Start() { return reinterpret_cast<Object***>(old_start_); } Object*** Top() { return reinterpret_cast<Object***>(old_top_); } void SetTop(Object*** top) { ASSERT(top >= Start()); ASSERT(top <= Limit()); old_top_ = reinterpret_cast<Address*>(top); } bool old_buffer_is_sorted() { return old_buffer_is_sorted_; } bool old_buffer_is_filtered() { return old_buffer_is_filtered_; } // Goes through the store buffer removing pointers to things that have // been promoted. Rebuilds the store buffer completely if it overflowed. void SortUniq(); void EnsureSpace(intptr_t space_needed); void Verify(); bool PrepareForIteration(); #ifdef DEBUG void Clean(); // Slow, for asserts only. bool CellIsInStoreBuffer(Address cell); #endif void Filter(int flag); private: Heap* heap_; // The store buffer is divided up into a new buffer that is constantly being // filled by mutator activity and an old buffer that is filled with the data // from the new buffer after compression. Address* start_; Address* limit_; Address* old_start_; Address* old_limit_; Address* old_top_; Address* old_reserved_limit_; VirtualMemory* old_virtual_memory_; bool old_buffer_is_sorted_; bool old_buffer_is_filtered_; bool during_gc_; // The garbage collector iterates over many pointers to new space that are not // handled by the store buffer. This flag indicates whether the pointers // found by the callbacks should be added to the store buffer or not. bool store_buffer_rebuilding_enabled_; StoreBufferCallback callback_; bool may_move_store_buffer_entries_; VirtualMemory* virtual_memory_; // Two hash sets used for filtering. // If address is in the hash set then it is guaranteed to be in the // old part of the store buffer. uintptr_t* hash_set_1_; uintptr_t* hash_set_2_; bool hash_sets_are_empty_; void ClearFilteringHashSets(); bool SpaceAvailable(intptr_t space_needed); void Uniq(); void ExemptPopularPages(int prime_sample_step, int threshold); // Set the map field of the object to NULL if contains a map. inline void ClearDeadObject(HeapObject *object); void IteratePointersToNewSpace(ObjectSlotCallback callback, bool clear_maps); void FindPointersToNewSpaceInRegion(Address start, Address end, ObjectSlotCallback slot_callback, bool clear_maps); // For each region of pointers on a page in use from an old space call // visit_pointer_region callback. // If either visit_pointer_region or callback can cause an allocation // in old space and changes in allocation watermark then // can_preallocate_during_iteration should be set to true. void IteratePointersOnPage( PagedSpace* space, Page* page, RegionCallback region_callback, ObjectSlotCallback slot_callback); void FindPointersToNewSpaceInMaps( Address start, Address end, ObjectSlotCallback slot_callback, bool clear_maps); void FindPointersToNewSpaceInMapsRegion( Address start, Address end, ObjectSlotCallback slot_callback, bool clear_maps); void IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback, bool clear_maps); #ifdef VERIFY_HEAP void VerifyPointers(LargeObjectSpace* space); #endif friend class StoreBufferRebuildScope; friend class DontMoveStoreBufferEntriesScope; }; class StoreBufferRebuildScope { public: explicit StoreBufferRebuildScope(Heap* heap, StoreBuffer* store_buffer, StoreBufferCallback callback) : store_buffer_(store_buffer), stored_state_(store_buffer->store_buffer_rebuilding_enabled_), stored_callback_(store_buffer->callback_) { store_buffer_->store_buffer_rebuilding_enabled_ = true; store_buffer_->callback_ = callback; (*callback)(heap, NULL, kStoreBufferStartScanningPagesEvent); } ~StoreBufferRebuildScope() { store_buffer_->callback_ = stored_callback_; store_buffer_->store_buffer_rebuilding_enabled_ = stored_state_; } private: StoreBuffer* store_buffer_; bool stored_state_; StoreBufferCallback stored_callback_; }; class DontMoveStoreBufferEntriesScope { public: explicit DontMoveStoreBufferEntriesScope(StoreBuffer* store_buffer) : store_buffer_(store_buffer), stored_state_(store_buffer->may_move_store_buffer_entries_) { store_buffer_->may_move_store_buffer_entries_ = false; } ~DontMoveStoreBufferEntriesScope() { store_buffer_->may_move_store_buffer_entries_ = stored_state_; } private: StoreBuffer* store_buffer_; bool stored_state_; }; } } // namespace v8::internal #endif // V8_STORE_BUFFER_H_