// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_OBJECTS_H_ #define V8_OBJECTS_H_ #include "src/allocation.h" #include "src/assert-scope.h" #include "src/builtins.h" #include "src/elements-kind.h" #include "src/field-index.h" #include "src/flags.h" #include "src/list.h" #include "src/property-details.h" #include "src/smart-pointers.h" #include "src/unicode-inl.h" #if V8_TARGET_ARCH_ARM64 #include "src/arm64/constants-arm64.h" #elif V8_TARGET_ARCH_ARM #include "src/arm/constants-arm.h" #elif V8_TARGET_ARCH_MIPS #include "src/mips/constants-mips.h" #endif #include "src/v8checks.h" #include "src/zone.h" // // Most object types in the V8 JavaScript are described in this file. // // Inheritance hierarchy: // - Object // - Smi (immediate small integer) // - HeapObject (superclass for everything allocated in the heap) // - JSReceiver (suitable for property access) // - JSObject // - JSArray // - JSArrayBuffer // - JSArrayBufferView // - JSTypedArray // - JSDataView // - JSSet // - JSMap // - JSSetIterator // - JSMapIterator // - JSWeakCollection // - JSWeakMap // - JSWeakSet // - JSRegExp // - JSFunction // - JSGeneratorObject // - JSModule // - GlobalObject // - JSGlobalObject // - JSBuiltinsObject // - JSGlobalProxy // - JSValue // - JSDate // - JSMessageObject // - JSProxy // - JSFunctionProxy // - FixedArrayBase // - ByteArray // - FixedArray // - DescriptorArray // - HashTable // - Dictionary // - StringTable // - CompilationCacheTable // - CodeCacheHashTable // - MapCache // - OrderedHashTable // - OrderedHashSet // - OrderedHashMap // - Context // - JSFunctionResultCache // - ScopeInfo // - TransitionArray // - FixedDoubleArray // - ExternalArray // - ExternalUint8ClampedArray // - ExternalInt8Array // - ExternalUint8Array // - ExternalInt16Array // - ExternalUint16Array // - ExternalInt32Array // - ExternalUint32Array // - ExternalFloat32Array // - Name // - String // - SeqString // - SeqOneByteString // - SeqTwoByteString // - SlicedString // - ConsString // - ExternalString // - ExternalAsciiString // - ExternalTwoByteString // - InternalizedString // - SeqInternalizedString // - SeqOneByteInternalizedString // - SeqTwoByteInternalizedString // - ConsInternalizedString // - ExternalInternalizedString // - ExternalAsciiInternalizedString // - ExternalTwoByteInternalizedString // - Symbol // - HeapNumber // - Cell // - PropertyCell // - Code // - Map // - Oddball // - Foreign // - SharedFunctionInfo // - Struct // - Box // - DeclaredAccessorDescriptor // - AccessorInfo // - DeclaredAccessorInfo // - ExecutableAccessorInfo // - AccessorPair // - AccessCheckInfo // - InterceptorInfo // - CallHandlerInfo // - TemplateInfo // - FunctionTemplateInfo // - ObjectTemplateInfo // - Script // - SignatureInfo // - TypeSwitchInfo // - DebugInfo // - BreakPointInfo // - CodeCache // // Formats of Object*: // Smi: [31 bit signed int] 0 // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01 namespace v8 { namespace internal { enum KeyedAccessStoreMode { STANDARD_STORE, STORE_TRANSITION_SMI_TO_OBJECT, STORE_TRANSITION_SMI_TO_DOUBLE, STORE_TRANSITION_DOUBLE_TO_OBJECT, STORE_TRANSITION_HOLEY_SMI_TO_OBJECT, STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE, STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT, STORE_AND_GROW_NO_TRANSITION, STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT, STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE, STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT, STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT, STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE, STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT, STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS, STORE_NO_TRANSITION_HANDLE_COW }; enum ContextualMode { NOT_CONTEXTUAL, CONTEXTUAL }; static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION - STANDARD_STORE; STATIC_ASSERT(STANDARD_STORE == 0); STATIC_ASSERT(kGrowICDelta == STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT - STORE_TRANSITION_SMI_TO_OBJECT); STATIC_ASSERT(kGrowICDelta == STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE - STORE_TRANSITION_SMI_TO_DOUBLE); STATIC_ASSERT(kGrowICDelta == STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT - STORE_TRANSITION_DOUBLE_TO_OBJECT); static inline KeyedAccessStoreMode GetGrowStoreMode( KeyedAccessStoreMode store_mode) { if (store_mode < STORE_AND_GROW_NO_TRANSITION) { store_mode = static_cast<KeyedAccessStoreMode>( static_cast<int>(store_mode) + kGrowICDelta); } return store_mode; } static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) { return store_mode > STANDARD_STORE && store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT && store_mode != STORE_AND_GROW_NO_TRANSITION; } static inline KeyedAccessStoreMode GetNonTransitioningStoreMode( KeyedAccessStoreMode store_mode) { if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { return store_mode; } if (store_mode >= STORE_AND_GROW_NO_TRANSITION) { return STORE_AND_GROW_NO_TRANSITION; } return STANDARD_STORE; } static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) { return store_mode >= STORE_AND_GROW_NO_TRANSITION && store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; } // Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER. enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER }; // Indicates whether a value can be loaded as a constant. enum StoreMode { ALLOW_AS_CONSTANT, FORCE_FIELD }; // PropertyNormalizationMode is used to specify whether to keep // inobject properties when normalizing properties of a JSObject. enum PropertyNormalizationMode { CLEAR_INOBJECT_PROPERTIES, KEEP_INOBJECT_PROPERTIES }; // NormalizedMapSharingMode is used to specify whether a map may be shared // by different objects with normalized properties. enum NormalizedMapSharingMode { UNIQUE_NORMALIZED_MAP, SHARED_NORMALIZED_MAP }; // Indicates whether transitions can be added to a source map or not. enum TransitionFlag { INSERT_TRANSITION, OMIT_TRANSITION }; enum DebugExtraICState { DEBUG_BREAK, DEBUG_PREPARE_STEP_IN }; // Indicates whether the transition is simple: the target map of the transition // either extends the current map with a new property, or it modifies the // property that was added last to the current map. enum SimpleTransitionFlag { SIMPLE_TRANSITION, FULL_TRANSITION }; // Indicates whether we are only interested in the descriptors of a particular // map, or in all descriptors in the descriptor array. enum DescriptorFlag { ALL_DESCRIPTORS, OWN_DESCRIPTORS }; // The GC maintains a bit of information, the MarkingParity, which toggles // from odd to even and back every time marking is completed. Incremental // marking can visit an object twice during a marking phase, so algorithms that // that piggy-back on marking can use the parity to ensure that they only // perform an operation on an object once per marking phase: they record the // MarkingParity when they visit an object, and only re-visit the object when it // is marked again and the MarkingParity changes. enum MarkingParity { NO_MARKING_PARITY, ODD_MARKING_PARITY, EVEN_MARKING_PARITY }; // ICs store extra state in a Code object. The default extra state is // kNoExtraICState. typedef int ExtraICState; static const ExtraICState kNoExtraICState = 0; // Instance size sentinel for objects of variable size. const int kVariableSizeSentinel = 0; const int kStubMajorKeyBits = 7; const int kStubMinorKeyBits = kBitsPerInt - kSmiTagSize - kStubMajorKeyBits; // All Maps have a field instance_type containing a InstanceType. // It describes the type of the instances. // // As an example, a JavaScript object is a heap object and its map // instance_type is JS_OBJECT_TYPE. // // The names of the string instance types are intended to systematically // mirror their encoding in the instance_type field of the map. The default // encoding is considered TWO_BYTE. It is not mentioned in the name. ASCII // encoding is mentioned explicitly in the name. Likewise, the default // representation is considered sequential. It is not mentioned in the // name. The other representations (e.g. CONS, EXTERNAL) are explicitly // mentioned. Finally, the string is either a STRING_TYPE (if it is a normal // string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string). // // NOTE: The following things are some that depend on the string types having // instance_types that are less than those of all other types: // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and // Object::IsString. // // NOTE: Everything following JS_VALUE_TYPE is considered a // JSObject for GC purposes. The first four entries here have typeof // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'. #define INSTANCE_TYPE_LIST(V) \ V(STRING_TYPE) \ V(ASCII_STRING_TYPE) \ V(CONS_STRING_TYPE) \ V(CONS_ASCII_STRING_TYPE) \ V(SLICED_STRING_TYPE) \ V(SLICED_ASCII_STRING_TYPE) \ V(EXTERNAL_STRING_TYPE) \ V(EXTERNAL_ASCII_STRING_TYPE) \ V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \ V(SHORT_EXTERNAL_STRING_TYPE) \ V(SHORT_EXTERNAL_ASCII_STRING_TYPE) \ V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \ \ V(INTERNALIZED_STRING_TYPE) \ V(ASCII_INTERNALIZED_STRING_TYPE) \ V(EXTERNAL_INTERNALIZED_STRING_TYPE) \ V(EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE) \ V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \ V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \ V(SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE) \ V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \ \ V(SYMBOL_TYPE) \ \ V(MAP_TYPE) \ V(CODE_TYPE) \ V(ODDBALL_TYPE) \ V(CELL_TYPE) \ V(PROPERTY_CELL_TYPE) \ \ V(HEAP_NUMBER_TYPE) \ V(FOREIGN_TYPE) \ V(BYTE_ARRAY_TYPE) \ V(FREE_SPACE_TYPE) \ /* Note: the order of these external array */ \ /* types is relied upon in */ \ /* Object::IsExternalArray(). */ \ V(EXTERNAL_INT8_ARRAY_TYPE) \ V(EXTERNAL_UINT8_ARRAY_TYPE) \ V(EXTERNAL_INT16_ARRAY_TYPE) \ V(EXTERNAL_UINT16_ARRAY_TYPE) \ V(EXTERNAL_INT32_ARRAY_TYPE) \ V(EXTERNAL_UINT32_ARRAY_TYPE) \ V(EXTERNAL_FLOAT32_ARRAY_TYPE) \ V(EXTERNAL_FLOAT64_ARRAY_TYPE) \ V(EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE) \ \ V(FIXED_INT8_ARRAY_TYPE) \ V(FIXED_UINT8_ARRAY_TYPE) \ V(FIXED_INT16_ARRAY_TYPE) \ V(FIXED_UINT16_ARRAY_TYPE) \ V(FIXED_INT32_ARRAY_TYPE) \ V(FIXED_UINT32_ARRAY_TYPE) \ V(FIXED_FLOAT32_ARRAY_TYPE) \ V(FIXED_FLOAT64_ARRAY_TYPE) \ V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \ \ V(FILLER_TYPE) \ \ V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \ V(DECLARED_ACCESSOR_INFO_TYPE) \ V(EXECUTABLE_ACCESSOR_INFO_TYPE) \ V(ACCESSOR_PAIR_TYPE) \ V(ACCESS_CHECK_INFO_TYPE) \ V(INTERCEPTOR_INFO_TYPE) \ V(CALL_HANDLER_INFO_TYPE) \ V(FUNCTION_TEMPLATE_INFO_TYPE) \ V(OBJECT_TEMPLATE_INFO_TYPE) \ V(SIGNATURE_INFO_TYPE) \ V(TYPE_SWITCH_INFO_TYPE) \ V(ALLOCATION_MEMENTO_TYPE) \ V(ALLOCATION_SITE_TYPE) \ V(SCRIPT_TYPE) \ V(CODE_CACHE_TYPE) \ V(POLYMORPHIC_CODE_CACHE_TYPE) \ V(TYPE_FEEDBACK_INFO_TYPE) \ V(ALIASED_ARGUMENTS_ENTRY_TYPE) \ V(BOX_TYPE) \ \ V(FIXED_ARRAY_TYPE) \ V(FIXED_DOUBLE_ARRAY_TYPE) \ V(CONSTANT_POOL_ARRAY_TYPE) \ V(SHARED_FUNCTION_INFO_TYPE) \ \ V(JS_MESSAGE_OBJECT_TYPE) \ \ V(JS_VALUE_TYPE) \ V(JS_DATE_TYPE) \ V(JS_OBJECT_TYPE) \ V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \ V(JS_GENERATOR_OBJECT_TYPE) \ V(JS_MODULE_TYPE) \ V(JS_GLOBAL_OBJECT_TYPE) \ V(JS_BUILTINS_OBJECT_TYPE) \ V(JS_GLOBAL_PROXY_TYPE) \ V(JS_ARRAY_TYPE) \ V(JS_ARRAY_BUFFER_TYPE) \ V(JS_TYPED_ARRAY_TYPE) \ V(JS_DATA_VIEW_TYPE) \ V(JS_PROXY_TYPE) \ V(JS_SET_TYPE) \ V(JS_MAP_TYPE) \ V(JS_SET_ITERATOR_TYPE) \ V(JS_MAP_ITERATOR_TYPE) \ V(JS_WEAK_MAP_TYPE) \ V(JS_WEAK_SET_TYPE) \ V(JS_REGEXP_TYPE) \ \ V(JS_FUNCTION_TYPE) \ V(JS_FUNCTION_PROXY_TYPE) \ V(DEBUG_INFO_TYPE) \ V(BREAK_POINT_INFO_TYPE) // Since string types are not consecutive, this macro is used to // iterate over them. #define STRING_TYPE_LIST(V) \ V(STRING_TYPE, \ kVariableSizeSentinel, \ string, \ String) \ V(ASCII_STRING_TYPE, \ kVariableSizeSentinel, \ ascii_string, \ AsciiString) \ V(CONS_STRING_TYPE, \ ConsString::kSize, \ cons_string, \ ConsString) \ V(CONS_ASCII_STRING_TYPE, \ ConsString::kSize, \ cons_ascii_string, \ ConsAsciiString) \ V(SLICED_STRING_TYPE, \ SlicedString::kSize, \ sliced_string, \ SlicedString) \ V(SLICED_ASCII_STRING_TYPE, \ SlicedString::kSize, \ sliced_ascii_string, \ SlicedAsciiString) \ V(EXTERNAL_STRING_TYPE, \ ExternalTwoByteString::kSize, \ external_string, \ ExternalString) \ V(EXTERNAL_ASCII_STRING_TYPE, \ ExternalAsciiString::kSize, \ external_ascii_string, \ ExternalAsciiString) \ V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \ ExternalTwoByteString::kSize, \ external_string_with_one_byte_data, \ ExternalStringWithOneByteData) \ V(SHORT_EXTERNAL_STRING_TYPE, \ ExternalTwoByteString::kShortSize, \ short_external_string, \ ShortExternalString) \ V(SHORT_EXTERNAL_ASCII_STRING_TYPE, \ ExternalAsciiString::kShortSize, \ short_external_ascii_string, \ ShortExternalAsciiString) \ V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \ ExternalTwoByteString::kShortSize, \ short_external_string_with_one_byte_data, \ ShortExternalStringWithOneByteData) \ \ V(INTERNALIZED_STRING_TYPE, \ kVariableSizeSentinel, \ internalized_string, \ InternalizedString) \ V(ASCII_INTERNALIZED_STRING_TYPE, \ kVariableSizeSentinel, \ ascii_internalized_string, \ AsciiInternalizedString) \ V(EXTERNAL_INTERNALIZED_STRING_TYPE, \ ExternalTwoByteString::kSize, \ external_internalized_string, \ ExternalInternalizedString) \ V(EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE, \ ExternalAsciiString::kSize, \ external_ascii_internalized_string, \ ExternalAsciiInternalizedString) \ V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \ ExternalTwoByteString::kSize, \ external_internalized_string_with_one_byte_data, \ ExternalInternalizedStringWithOneByteData) \ V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \ ExternalTwoByteString::kShortSize, \ short_external_internalized_string, \ ShortExternalInternalizedString) \ V(SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE, \ ExternalAsciiString::kShortSize, \ short_external_ascii_internalized_string, \ ShortExternalAsciiInternalizedString) \ V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \ ExternalTwoByteString::kShortSize, \ short_external_internalized_string_with_one_byte_data, \ ShortExternalInternalizedStringWithOneByteData) \ // A struct is a simple object a set of object-valued fields. Including an // object type in this causes the compiler to generate most of the boilerplate // code for the class including allocation and garbage collection routines, // casts and predicates. All you need to define is the class, methods and // object verification routines. Easy, no? // // Note that for subtle reasons related to the ordering or numerical values of // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST // manually. #define STRUCT_LIST(V) \ V(BOX, Box, box) \ V(DECLARED_ACCESSOR_DESCRIPTOR, \ DeclaredAccessorDescriptor, \ declared_accessor_descriptor) \ V(DECLARED_ACCESSOR_INFO, DeclaredAccessorInfo, declared_accessor_info) \ V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, executable_accessor_info)\ V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \ V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \ V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \ V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \ V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \ V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \ V(SIGNATURE_INFO, SignatureInfo, signature_info) \ V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \ V(SCRIPT, Script, script) \ V(ALLOCATION_SITE, AllocationSite, allocation_site) \ V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \ V(CODE_CACHE, CodeCache, code_cache) \ V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \ V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \ V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \ V(DEBUG_INFO, DebugInfo, debug_info) \ V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) // We use the full 8 bits of the instance_type field to encode heap object // instance types. The high-order bit (bit 7) is set if the object is not a // string, and cleared if it is a string. const uint32_t kIsNotStringMask = 0x80; const uint32_t kStringTag = 0x0; const uint32_t kNotStringTag = 0x80; // Bit 6 indicates that the object is an internalized string (if set) or not. // Bit 7 has to be clear as well. const uint32_t kIsNotInternalizedMask = 0x40; const uint32_t kNotInternalizedTag = 0x40; const uint32_t kInternalizedTag = 0x0; // If bit 7 is clear then bit 2 indicates whether the string consists of // two-byte characters or one-byte characters. const uint32_t kStringEncodingMask = 0x4; const uint32_t kTwoByteStringTag = 0x0; const uint32_t kOneByteStringTag = 0x4; // If bit 7 is clear, the low-order 2 bits indicate the representation // of the string. const uint32_t kStringRepresentationMask = 0x03; enum StringRepresentationTag { kSeqStringTag = 0x0, kConsStringTag = 0x1, kExternalStringTag = 0x2, kSlicedStringTag = 0x3 }; const uint32_t kIsIndirectStringMask = 0x1; const uint32_t kIsIndirectStringTag = 0x1; STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT STATIC_ASSERT((kConsStringTag & kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT STATIC_ASSERT((kSlicedStringTag & kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT // Use this mask to distinguish between cons and slice only after making // sure that the string is one of the two (an indirect string). const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag; STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask)); // If bit 7 is clear, then bit 3 indicates whether this two-byte // string actually contains one byte data. const uint32_t kOneByteDataHintMask = 0x08; const uint32_t kOneByteDataHintTag = 0x08; // If bit 7 is clear and string representation indicates an external string, // then bit 4 indicates whether the data pointer is cached. const uint32_t kShortExternalStringMask = 0x10; const uint32_t kShortExternalStringTag = 0x10; // A ConsString with an empty string as the right side is a candidate // for being shortcut by the garbage collector unless it is internalized. // It's not common to have non-flat internalized strings, so we do not // shortcut them thereby avoiding turning internalized strings into strings. // See heap.cc and mark-compact.cc. const uint32_t kShortcutTypeMask = kIsNotStringMask | kIsNotInternalizedMask | kStringRepresentationMask; const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag; enum InstanceType { // String types. INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag | kInternalizedTag, ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag | kSeqStringTag | kInternalizedTag, EXTERNAL_INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kExternalStringTag | kInternalizedTag, EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE = kOneByteStringTag | kExternalStringTag | kInternalizedTag, EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag | kInternalizedTag, SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE | kShortExternalStringTag | kInternalizedTag, SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE = EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kShortExternalStringTag | kInternalizedTag, SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE = EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE | kShortExternalStringTag | kInternalizedTag, STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag, ASCII_STRING_TYPE = ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag, CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag, CONS_ASCII_STRING_TYPE = kOneByteStringTag | kConsStringTag | kNotInternalizedTag, SLICED_STRING_TYPE = kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag, SLICED_ASCII_STRING_TYPE = kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag, EXTERNAL_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag, EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag, EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE = EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE | kNotInternalizedTag, SHORT_EXTERNAL_STRING_TYPE = SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag, SHORT_EXTERNAL_ASCII_STRING_TYPE = SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE | kNotInternalizedTag, SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE = SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE | kNotInternalizedTag, // Non-string names SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE // Objects allocated in their own spaces (never in new space). MAP_TYPE, CODE_TYPE, ODDBALL_TYPE, CELL_TYPE, PROPERTY_CELL_TYPE, // "Data", objects that cannot contain non-map-word pointers to heap // objects. HEAP_NUMBER_TYPE, FOREIGN_TYPE, BYTE_ARRAY_TYPE, FREE_SPACE_TYPE, EXTERNAL_INT8_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE EXTERNAL_UINT8_ARRAY_TYPE, EXTERNAL_INT16_ARRAY_TYPE, EXTERNAL_UINT16_ARRAY_TYPE, EXTERNAL_INT32_ARRAY_TYPE, EXTERNAL_UINT32_ARRAY_TYPE, EXTERNAL_FLOAT32_ARRAY_TYPE, EXTERNAL_FLOAT64_ARRAY_TYPE, EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE, FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE, FIXED_FLOAT32_ARRAY_TYPE, FIXED_FLOAT64_ARRAY_TYPE, FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE FIXED_DOUBLE_ARRAY_TYPE, FILLER_TYPE, // LAST_DATA_TYPE // Structs. DECLARED_ACCESSOR_DESCRIPTOR_TYPE, DECLARED_ACCESSOR_INFO_TYPE, EXECUTABLE_ACCESSOR_INFO_TYPE, ACCESSOR_PAIR_TYPE, ACCESS_CHECK_INFO_TYPE, INTERCEPTOR_INFO_TYPE, CALL_HANDLER_INFO_TYPE, FUNCTION_TEMPLATE_INFO_TYPE, OBJECT_TEMPLATE_INFO_TYPE, SIGNATURE_INFO_TYPE, TYPE_SWITCH_INFO_TYPE, ALLOCATION_SITE_TYPE, ALLOCATION_MEMENTO_TYPE, SCRIPT_TYPE, CODE_CACHE_TYPE, POLYMORPHIC_CODE_CACHE_TYPE, TYPE_FEEDBACK_INFO_TYPE, ALIASED_ARGUMENTS_ENTRY_TYPE, BOX_TYPE, DEBUG_INFO_TYPE, BREAK_POINT_INFO_TYPE, FIXED_ARRAY_TYPE, CONSTANT_POOL_ARRAY_TYPE, SHARED_FUNCTION_INFO_TYPE, // All the following types are subtypes of JSReceiver, which corresponds to // objects in the JS sense. The first and the last type in this range are // the two forms of function. This organization enables using the same // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the // NONCALLABLE_JS_OBJECT range. JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE JS_MESSAGE_OBJECT_TYPE, JS_DATE_TYPE, JS_OBJECT_TYPE, JS_CONTEXT_EXTENSION_OBJECT_TYPE, JS_GENERATOR_OBJECT_TYPE, JS_MODULE_TYPE, JS_GLOBAL_OBJECT_TYPE, JS_BUILTINS_OBJECT_TYPE, JS_GLOBAL_PROXY_TYPE, JS_ARRAY_TYPE, JS_ARRAY_BUFFER_TYPE, JS_TYPED_ARRAY_TYPE, JS_DATA_VIEW_TYPE, JS_SET_TYPE, JS_MAP_TYPE, JS_SET_ITERATOR_TYPE, JS_MAP_ITERATOR_TYPE, JS_WEAK_MAP_TYPE, JS_WEAK_SET_TYPE, JS_REGEXP_TYPE, JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE // Pseudo-types FIRST_TYPE = 0x0, LAST_TYPE = JS_FUNCTION_TYPE, FIRST_NAME_TYPE = FIRST_TYPE, LAST_NAME_TYPE = SYMBOL_TYPE, FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE, LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE, FIRST_NONSTRING_TYPE = SYMBOL_TYPE, // Boundaries for testing for an external array. FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_INT8_ARRAY_TYPE, LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE, // Boundaries for testing for a fixed typed array. FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE, LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE, // Boundary for promotion to old data space/old pointer space. LAST_DATA_TYPE = FILLER_TYPE, // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy). // Note that there is no range for JSObject or JSProxy, since their subtypes // are not continuous in this enum! The enum ranges instead reflect the // external class names, where proxies are treated as either ordinary objects, // or functions. FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE, LAST_JS_RECEIVER_TYPE = LAST_TYPE, // Boundaries for testing the types represented as JSObject FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE, LAST_JS_OBJECT_TYPE = LAST_TYPE, // Boundaries for testing the types represented as JSProxy FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE, LAST_JS_PROXY_TYPE = JS_PROXY_TYPE, // Boundaries for testing whether the type is a JavaScript object. FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE, LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE, // Boundaries for testing the types for which typeof is "object". FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE, LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE, // Note that the types for which typeof is "function" are not continuous. // Define this so that we can put assertions on discrete checks. NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2 }; const int kExternalArrayTypeCount = LAST_EXTERNAL_ARRAY_TYPE - FIRST_EXTERNAL_ARRAY_TYPE + 1; STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType); STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType); STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType); STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType); #define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \ V(FAST_ELEMENTS_SUB_TYPE) \ V(DICTIONARY_ELEMENTS_SUB_TYPE) \ V(FAST_PROPERTIES_SUB_TYPE) \ V(DICTIONARY_PROPERTIES_SUB_TYPE) \ V(MAP_CODE_CACHE_SUB_TYPE) \ V(SCOPE_INFO_SUB_TYPE) \ V(STRING_TABLE_SUB_TYPE) \ V(DESCRIPTOR_ARRAY_SUB_TYPE) \ V(TRANSITION_ARRAY_SUB_TYPE) enum FixedArraySubInstanceType { #define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name, FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE) #undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE }; enum CompareResult { LESS = -1, EQUAL = 0, GREATER = 1, NOT_EQUAL = GREATER }; #define DECL_BOOLEAN_ACCESSORS(name) \ inline bool name(); \ inline void set_##name(bool value); \ #define DECL_ACCESSORS(name, type) \ inline type* name(); \ inline void set_##name(type* value, \ WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \ class AccessorPair; class AllocationSite; class AllocationSiteCreationContext; class AllocationSiteUsageContext; class DictionaryElementsAccessor; class ElementsAccessor; class FixedArrayBase; class GlobalObject; class ObjectVisitor; class LookupIterator; class StringStream; // We cannot just say "class HeapType;" if it is created from a template... =8-? template<class> class TypeImpl; struct HeapTypeConfig; typedef TypeImpl<HeapTypeConfig> HeapType; // A template-ized version of the IsXXX functions. template <class C> inline bool Is(Object* obj); #ifdef VERIFY_HEAP #define DECLARE_VERIFIER(Name) void Name##Verify(); #else #define DECLARE_VERIFIER(Name) #endif #ifdef OBJECT_PRINT #define DECLARE_PRINTER(Name) void Name##Print(FILE* out = stdout); #else #define DECLARE_PRINTER(Name) #endif #define OBJECT_TYPE_LIST(V) \ V(Smi) \ V(HeapObject) \ V(Number) \ #define HEAP_OBJECT_TYPE_LIST(V) \ V(HeapNumber) \ V(Name) \ V(UniqueName) \ V(String) \ V(SeqString) \ V(ExternalString) \ V(ConsString) \ V(SlicedString) \ V(ExternalTwoByteString) \ V(ExternalAsciiString) \ V(SeqTwoByteString) \ V(SeqOneByteString) \ V(InternalizedString) \ V(Symbol) \ \ V(ExternalArray) \ V(ExternalInt8Array) \ V(ExternalUint8Array) \ V(ExternalInt16Array) \ V(ExternalUint16Array) \ V(ExternalInt32Array) \ V(ExternalUint32Array) \ V(ExternalFloat32Array) \ V(ExternalFloat64Array) \ V(ExternalUint8ClampedArray) \ V(FixedTypedArrayBase) \ V(FixedUint8Array) \ V(FixedInt8Array) \ V(FixedUint16Array) \ V(FixedInt16Array) \ V(FixedUint32Array) \ V(FixedInt32Array) \ V(FixedFloat32Array) \ V(FixedFloat64Array) \ V(FixedUint8ClampedArray) \ V(ByteArray) \ V(FreeSpace) \ V(JSReceiver) \ V(JSObject) \ V(JSContextExtensionObject) \ V(JSGeneratorObject) \ V(JSModule) \ V(Map) \ V(DescriptorArray) \ V(TransitionArray) \ V(DeoptimizationInputData) \ V(DeoptimizationOutputData) \ V(DependentCode) \ V(FixedArray) \ V(FixedDoubleArray) \ V(ConstantPoolArray) \ V(Context) \ V(NativeContext) \ V(ScopeInfo) \ V(JSFunction) \ V(Code) \ V(Oddball) \ V(SharedFunctionInfo) \ V(JSValue) \ V(JSDate) \ V(JSMessageObject) \ V(StringWrapper) \ V(Foreign) \ V(Boolean) \ V(JSArray) \ V(JSArrayBuffer) \ V(JSArrayBufferView) \ V(JSTypedArray) \ V(JSDataView) \ V(JSProxy) \ V(JSFunctionProxy) \ V(JSSet) \ V(JSMap) \ V(JSSetIterator) \ V(JSMapIterator) \ V(JSWeakCollection) \ V(JSWeakMap) \ V(JSWeakSet) \ V(JSRegExp) \ V(HashTable) \ V(Dictionary) \ V(StringTable) \ V(JSFunctionResultCache) \ V(NormalizedMapCache) \ V(CompilationCacheTable) \ V(CodeCacheHashTable) \ V(PolymorphicCodeCacheHashTable) \ V(MapCache) \ V(Primitive) \ V(GlobalObject) \ V(JSGlobalObject) \ V(JSBuiltinsObject) \ V(JSGlobalProxy) \ V(UndetectableObject) \ V(AccessCheckNeeded) \ V(Cell) \ V(PropertyCell) \ V(ObjectHashTable) \ V(WeakHashTable) \ V(OrderedHashTable) #define ERROR_MESSAGES_LIST(V) \ V(kNoReason, "no reason") \ \ V(k32BitValueInRegisterIsNotZeroExtended, \ "32 bit value in register is not zero-extended") \ V(kAlignmentMarkerExpected, "Alignment marker expected") \ V(kAllocationIsNotDoubleAligned, "Allocation is not double aligned") \ V(kAPICallReturnedInvalidObject, "API call returned invalid object") \ V(kArgumentsObjectValueInATestContext, \ "Arguments object value in a test context") \ V(kArrayBoilerplateCreationFailed, "Array boilerplate creation failed") \ V(kArrayIndexConstantValueTooBig, "Array index constant value too big") \ V(kAssignmentToArguments, "Assignment to arguments") \ V(kAssignmentToLetVariableBeforeInitialization, \ "Assignment to let variable before initialization") \ V(kAssignmentToLOOKUPVariable, "Assignment to LOOKUP variable") \ V(kAssignmentToParameterFunctionUsesArgumentsObject, \ "Assignment to parameter, function uses arguments object") \ V(kAssignmentToParameterInArgumentsObject, \ "Assignment to parameter in arguments object") \ V(kAttemptToUseUndefinedCache, "Attempt to use undefined cache") \ V(kBadValueContextForArgumentsObjectValue, \ "Bad value context for arguments object value") \ V(kBadValueContextForArgumentsValue, \ "Bad value context for arguments value") \ V(kBailedOutDueToDependencyChange, "Bailed out due to dependency change") \ V(kBailoutWasNotPrepared, "Bailout was not prepared") \ V(kBinaryStubGenerateFloatingPointCode, \ "BinaryStub_GenerateFloatingPointCode") \ V(kBothRegistersWereSmisInSelectNonSmi, \ "Both registers were smis in SelectNonSmi") \ V(kCallToAJavaScriptRuntimeFunction, \ "Call to a JavaScript runtime function") \ V(kCannotTranslatePositionInChangedArea, \ "Cannot translate position in changed area") \ V(kCodeGenerationFailed, "Code generation failed") \ V(kCodeObjectNotProperlyPatched, "Code object not properly patched") \ V(kCompoundAssignmentToLookupSlot, "Compound assignment to lookup slot") \ V(kContextAllocatedArguments, "Context-allocated arguments") \ V(kCopyBuffersOverlap, "Copy buffers overlap") \ V(kCouldNotGenerateZero, "Could not generate +0.0") \ V(kCouldNotGenerateNegativeZero, "Could not generate -0.0") \ V(kDebuggerHasBreakPoints, "Debugger has break points") \ V(kDebuggerStatement, "DebuggerStatement") \ V(kDeclarationInCatchContext, "Declaration in catch context") \ V(kDeclarationInWithContext, "Declaration in with context") \ V(kDefaultNaNModeNotSet, "Default NaN mode not set") \ V(kDeleteWithGlobalVariable, "Delete with global variable") \ V(kDeleteWithNonGlobalVariable, "Delete with non-global variable") \ V(kDestinationOfCopyNotAligned, "Destination of copy not aligned") \ V(kDontDeleteCellsCannotContainTheHole, \ "DontDelete cells can't contain the hole") \ V(kDoPushArgumentNotImplementedForDoubleType, \ "DoPushArgument not implemented for double type") \ V(kEliminatedBoundsCheckFailed, "Eliminated bounds check failed") \ V(kEmitLoadRegisterUnsupportedDoubleImmediate, \ "EmitLoadRegister: Unsupported double immediate") \ V(kEval, "eval") \ V(kExpected0AsASmiSentinel, "Expected 0 as a Smi sentinel") \ V(kExpectedAlignmentMarker, "Expected alignment marker") \ V(kExpectedAllocationSite, "Expected allocation site") \ V(kExpectedFunctionObject, "Expected function object in register") \ V(kExpectedHeapNumber, "Expected HeapNumber") \ V(kExpectedNativeContext, "Expected native context") \ V(kExpectedNonIdenticalObjects, "Expected non-identical objects") \ V(kExpectedNonNullContext, "Expected non-null context") \ V(kExpectedPositiveZero, "Expected +0.0") \ V(kExpectedAllocationSiteInCell, \ "Expected AllocationSite in property cell") \ V(kExpectedFixedArrayInFeedbackVector, \ "Expected fixed array in feedback vector") \ V(kExpectedFixedArrayInRegisterA2, \ "Expected fixed array in register a2") \ V(kExpectedFixedArrayInRegisterEbx, \ "Expected fixed array in register ebx") \ V(kExpectedFixedArrayInRegisterR2, \ "Expected fixed array in register r2") \ V(kExpectedFixedArrayInRegisterRbx, \ "Expected fixed array in register rbx") \ V(kExpectedNewSpaceObject, "Expected new space object") \ V(kExpectedSmiOrHeapNumber, "Expected smi or HeapNumber") \ V(kExpectedUndefinedOrCell, \ "Expected undefined or cell in register") \ V(kExpectingAlignmentForCopyBytes, \ "Expecting alignment for CopyBytes") \ V(kExportDeclaration, "Export declaration") \ V(kExternalStringExpectedButNotFound, \ "External string expected, but not found") \ V(kFailedBailedOutLastTime, "Failed/bailed out last time") \ V(kForInStatementIsNotFastCase, "ForInStatement is not fast case") \ V(kForInStatementOptimizationIsDisabled, \ "ForInStatement optimization is disabled") \ V(kForInStatementWithNonLocalEachVariable, \ "ForInStatement with non-local each variable") \ V(kForOfStatement, "ForOfStatement") \ V(kFrameIsExpectedToBeAligned, "Frame is expected to be aligned") \ V(kFunctionCallsEval, "Function calls eval") \ V(kFunctionIsAGenerator, "Function is a generator") \ V(kFunctionWithIllegalRedeclaration, "Function with illegal redeclaration") \ V(kGeneratedCodeIsTooLarge, "Generated code is too large") \ V(kGeneratorFailedToResume, "Generator failed to resume") \ V(kGenerator, "Generator") \ V(kGlobalFunctionsMustHaveInitialMap, \ "Global functions must have initial map") \ V(kHeapNumberMapRegisterClobbered, "HeapNumberMap register clobbered") \ V(kHydrogenFilter, "Optimization disabled by filter") \ V(kImportDeclaration, "Import declaration") \ V(kImproperObjectOnPrototypeChainForStore, \ "Improper object on prototype chain for store") \ V(kIndexIsNegative, "Index is negative") \ V(kIndexIsTooLarge, "Index is too large") \ V(kInlinedRuntimeFunctionClassOf, "Inlined runtime function: ClassOf") \ V(kInlinedRuntimeFunctionFastAsciiArrayJoin, \ "Inlined runtime function: FastAsciiArrayJoin") \ V(kInlinedRuntimeFunctionGeneratorNext, \ "Inlined runtime function: GeneratorNext") \ V(kInlinedRuntimeFunctionGeneratorThrow, \ "Inlined runtime function: GeneratorThrow") \ V(kInlinedRuntimeFunctionGetFromCache, \ "Inlined runtime function: GetFromCache") \ V(kInlinedRuntimeFunctionIsNonNegativeSmi, \ "Inlined runtime function: IsNonNegativeSmi") \ V(kInlinedRuntimeFunctionIsStringWrapperSafeForDefaultValueOf, \ "Inlined runtime function: IsStringWrapperSafeForDefaultValueOf") \ V(kInliningBailedOut, "Inlining bailed out") \ V(kInputGPRIsExpectedToHaveUpper32Cleared, \ "Input GPR is expected to have upper32 cleared") \ V(kInputStringTooLong, "Input string too long") \ V(kInstanceofStubUnexpectedCallSiteCacheCheck, \ "InstanceofStub unexpected call site cache (check)") \ V(kInstanceofStubUnexpectedCallSiteCacheCmp1, \ "InstanceofStub unexpected call site cache (cmp 1)") \ V(kInstanceofStubUnexpectedCallSiteCacheCmp2, \ "InstanceofStub unexpected call site cache (cmp 2)") \ V(kInstanceofStubUnexpectedCallSiteCacheMov, \ "InstanceofStub unexpected call site cache (mov)") \ V(kInteger32ToSmiFieldWritingToNonSmiLocation, \ "Integer32ToSmiField writing to non-smi location") \ V(kInvalidCaptureReferenced, "Invalid capture referenced") \ V(kInvalidElementsKindForInternalArrayOrInternalPackedArray, \ "Invalid ElementsKind for InternalArray or InternalPackedArray") \ V(kInvalidFullCodegenState, "invalid full-codegen state") \ V(kInvalidHandleScopeLevel, "Invalid HandleScope level") \ V(kInvalidLeftHandSideInAssignment, "Invalid left-hand side in assignment") \ V(kInvalidLhsInCompoundAssignment, "Invalid lhs in compound assignment") \ V(kInvalidLhsInCountOperation, "Invalid lhs in count operation") \ V(kInvalidMinLength, "Invalid min_length") \ V(kJSGlobalObjectNativeContextShouldBeANativeContext, \ "JSGlobalObject::native_context should be a native context") \ V(kJSGlobalProxyContextShouldNotBeNull, \ "JSGlobalProxy::context() should not be null") \ V(kJSObjectWithFastElementsMapHasSlowElements, \ "JSObject with fast elements map has slow elements") \ V(kLetBindingReInitialization, "Let binding re-initialization") \ V(kLhsHasBeenClobbered, "lhs has been clobbered") \ V(kLiveBytesCountOverflowChunkSize, "Live Bytes Count overflow chunk size") \ V(kLiveEditFrameDroppingIsNotSupportedOnARM64, \ "LiveEdit frame dropping is not supported on arm64") \ V(kLiveEditFrameDroppingIsNotSupportedOnArm, \ "LiveEdit frame dropping is not supported on arm") \ V(kLiveEditFrameDroppingIsNotSupportedOnMips, \ "LiveEdit frame dropping is not supported on mips") \ V(kLiveEdit, "LiveEdit") \ V(kLookupVariableInCountOperation, \ "Lookup variable in count operation") \ V(kMapBecameDeprecated, "Map became deprecated") \ V(kMapBecameUnstable, "Map became unstable") \ V(kMapIsNoLongerInEax, "Map is no longer in eax") \ V(kModuleDeclaration, "Module declaration") \ V(kModuleLiteral, "Module literal") \ V(kModulePath, "Module path") \ V(kModuleStatement, "Module statement") \ V(kModuleVariable, "Module variable") \ V(kModuleUrl, "Module url") \ V(kNativeFunctionLiteral, "Native function literal") \ V(kNeedSmiLiteral, "Need a Smi literal here") \ V(kNoCasesLeft, "No cases left") \ V(kNoEmptyArraysHereInEmitFastAsciiArrayJoin, \ "No empty arrays here in EmitFastAsciiArrayJoin") \ V(kNonInitializerAssignmentToConst, \ "Non-initializer assignment to const") \ V(kNonSmiIndex, "Non-smi index") \ V(kNonSmiKeyInArrayLiteral, "Non-smi key in array literal") \ V(kNonSmiValue, "Non-smi value") \ V(kNonObject, "Non-object value") \ V(kNotEnoughVirtualRegistersForValues, \ "Not enough virtual registers for values") \ V(kNotEnoughSpillSlotsForOsr, \ "Not enough spill slots for OSR") \ V(kNotEnoughVirtualRegistersRegalloc, \ "Not enough virtual registers (regalloc)") \ V(kObjectFoundInSmiOnlyArray, "Object found in smi-only array") \ V(kObjectLiteralWithComplexProperty, \ "Object literal with complex property") \ V(kOddballInStringTableIsNotUndefinedOrTheHole, \ "Oddball in string table is not undefined or the hole") \ V(kOffsetOutOfRange, "Offset out of range") \ V(kOperandIsASmiAndNotAName, "Operand is a smi and not a name") \ V(kOperandIsASmiAndNotAString, "Operand is a smi and not a string") \ V(kOperandIsASmi, "Operand is a smi") \ V(kOperandIsNotAName, "Operand is not a name") \ V(kOperandIsNotANumber, "Operand is not a number") \ V(kOperandIsNotASmi, "Operand is not a smi") \ V(kOperandIsNotAString, "Operand is not a string") \ V(kOperandIsNotSmi, "Operand is not smi") \ V(kOperandNotANumber, "Operand not a number") \ V(kObjectTagged, "The object is tagged") \ V(kObjectNotTagged, "The object is not tagged") \ V(kOptimizationDisabled, "Optimization is disabled") \ V(kOptimizedTooManyTimes, "Optimized too many times") \ V(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister, \ "Out of virtual registers while trying to allocate temp register") \ V(kParseScopeError, "Parse/scope error") \ V(kPossibleDirectCallToEval, "Possible direct call to eval") \ V(kPreconditionsWereNotMet, "Preconditions were not met") \ V(kPropertyAllocationCountFailed, "Property allocation count failed") \ V(kReceivedInvalidReturnAddress, "Received invalid return address") \ V(kReferenceToAVariableWhichRequiresDynamicLookup, \ "Reference to a variable which requires dynamic lookup") \ V(kReferenceToGlobalLexicalVariable, \ "Reference to global lexical variable") \ V(kReferenceToUninitializedVariable, "Reference to uninitialized variable") \ V(kRegisterDidNotMatchExpectedRoot, "Register did not match expected root") \ V(kRegisterWasClobbered, "Register was clobbered") \ V(kRememberedSetPointerInNewSpace, "Remembered set pointer is in new space") \ V(kReturnAddressNotFoundInFrame, "Return address not found in frame") \ V(kRhsHasBeenClobbered, "Rhs has been clobbered") \ V(kScopedBlock, "ScopedBlock") \ V(kSmiAdditionOverflow, "Smi addition overflow") \ V(kSmiSubtractionOverflow, "Smi subtraction overflow") \ V(kStackAccessBelowStackPointer, "Stack access below stack pointer") \ V(kStackFrameTypesMustMatch, "Stack frame types must match") \ V(kSwitchStatementMixedOrNonLiteralSwitchLabels, \ "SwitchStatement: mixed or non-literal switch labels") \ V(kSwitchStatementTooManyClauses, "SwitchStatement: too many clauses") \ V(kTheCurrentStackPointerIsBelowCsp, \ "The current stack pointer is below csp") \ V(kTheInstructionShouldBeALui, "The instruction should be a lui") \ V(kTheInstructionShouldBeAnOri, "The instruction should be an ori") \ V(kTheInstructionToPatchShouldBeALoadFromPc, \ "The instruction to patch should be a load from pc") \ V(kTheInstructionToPatchShouldBeALoadFromPp, \ "The instruction to patch should be a load from pp") \ V(kTheInstructionToPatchShouldBeAnLdrLiteral, \ "The instruction to patch should be a ldr literal") \ V(kTheInstructionToPatchShouldBeALui, \ "The instruction to patch should be a lui") \ V(kTheInstructionToPatchShouldBeAnOri, \ "The instruction to patch should be an ori") \ V(kTheSourceAndDestinationAreTheSame, \ "The source and destination are the same") \ V(kTheStackPointerIsNotAligned, "The stack pointer is not aligned.") \ V(kTheStackWasCorruptedByMacroAssemblerCall, \ "The stack was corrupted by MacroAssembler::Call()") \ V(kTooManyParametersLocals, "Too many parameters/locals") \ V(kTooManyParameters, "Too many parameters") \ V(kTooManySpillSlotsNeededForOSR, "Too many spill slots needed for OSR") \ V(kToOperand32UnsupportedImmediate, "ToOperand32 unsupported immediate.") \ V(kToOperandIsDoubleRegisterUnimplemented, \ "ToOperand IsDoubleRegister unimplemented") \ V(kToOperandUnsupportedDoubleImmediate, \ "ToOperand Unsupported double immediate") \ V(kTryCatchStatement, "TryCatchStatement") \ V(kTryFinallyStatement, "TryFinallyStatement") \ V(kUnableToEncodeValueAsSmi, "Unable to encode value as smi") \ V(kUnalignedAllocationInNewSpace, "Unaligned allocation in new space") \ V(kUnalignedCellInWriteBarrier, "Unaligned cell in write barrier") \ V(kUndefinedValueNotLoaded, "Undefined value not loaded") \ V(kUndoAllocationOfNonAllocatedMemory, \ "Undo allocation of non allocated memory") \ V(kUnexpectedAllocationTop, "Unexpected allocation top") \ V(kUnexpectedColorFound, "Unexpected color bit pattern found") \ V(kUnexpectedElementsKindInArrayConstructor, \ "Unexpected ElementsKind in array constructor") \ V(kUnexpectedFallthroughFromCharCodeAtSlowCase, \ "Unexpected fallthrough from CharCodeAt slow case") \ V(kUnexpectedFallthroughFromCharFromCodeSlowCase, \ "Unexpected fallthrough from CharFromCode slow case") \ V(kUnexpectedFallThroughFromStringComparison, \ "Unexpected fall-through from string comparison") \ V(kUnexpectedFallThroughInBinaryStubGenerateFloatingPointCode, \ "Unexpected fall-through in BinaryStub_GenerateFloatingPointCode") \ V(kUnexpectedFallthroughToCharCodeAtSlowCase, \ "Unexpected fallthrough to CharCodeAt slow case") \ V(kUnexpectedFallthroughToCharFromCodeSlowCase, \ "Unexpected fallthrough to CharFromCode slow case") \ V(kUnexpectedFPUStackDepthAfterInstruction, \ "Unexpected FPU stack depth after instruction") \ V(kUnexpectedInitialMapForArrayFunction1, \ "Unexpected initial map for Array function (1)") \ V(kUnexpectedInitialMapForArrayFunction2, \ "Unexpected initial map for Array function (2)") \ V(kUnexpectedInitialMapForArrayFunction, \ "Unexpected initial map for Array function") \ V(kUnexpectedInitialMapForInternalArrayFunction, \ "Unexpected initial map for InternalArray function") \ V(kUnexpectedLevelAfterReturnFromApiCall, \ "Unexpected level after return from api call") \ V(kUnexpectedNegativeValue, "Unexpected negative value") \ V(kUnexpectedNumberOfPreAllocatedPropertyFields, \ "Unexpected number of pre-allocated property fields") \ V(kUnexpectedFPCRMode, "Unexpected FPCR mode.") \ V(kUnexpectedSmi, "Unexpected smi value") \ V(kUnexpectedStringFunction, "Unexpected String function") \ V(kUnexpectedStringType, "Unexpected string type") \ V(kUnexpectedStringWrapperInstanceSize, \ "Unexpected string wrapper instance size") \ V(kUnexpectedTypeForRegExpDataFixedArrayExpected, \ "Unexpected type for RegExp data, FixedArray expected") \ V(kUnexpectedValue, "Unexpected value") \ V(kUnexpectedUnusedPropertiesOfStringWrapper, \ "Unexpected unused properties of string wrapper") \ V(kUnimplemented, "unimplemented") \ V(kUninitializedKSmiConstantRegister, "Uninitialized kSmiConstantRegister") \ V(kUnknown, "Unknown") \ V(kUnsupportedConstCompoundAssignment, \ "Unsupported const compound assignment") \ V(kUnsupportedCountOperationWithConst, \ "Unsupported count operation with const") \ V(kUnsupportedDoubleImmediate, "Unsupported double immediate") \ V(kUnsupportedLetCompoundAssignment, "Unsupported let compound assignment") \ V(kUnsupportedLookupSlotInDeclaration, \ "Unsupported lookup slot in declaration") \ V(kUnsupportedNonPrimitiveCompare, "Unsupported non-primitive compare") \ V(kUnsupportedPhiUseOfArguments, "Unsupported phi use of arguments") \ V(kUnsupportedPhiUseOfConstVariable, \ "Unsupported phi use of const variable") \ V(kUnsupportedTaggedImmediate, "Unsupported tagged immediate") \ V(kVariableResolvedToWithContext, "Variable resolved to with context") \ V(kWeShouldNotHaveAnEmptyLexicalContext, \ "We should not have an empty lexical context") \ V(kWithStatement, "WithStatement") \ V(kWrongAddressOrValuePassedToRecordWrite, \ "Wrong address or value passed to RecordWrite") \ V(kYield, "Yield") #define ERROR_MESSAGES_CONSTANTS(C, T) C, enum BailoutReason { ERROR_MESSAGES_LIST(ERROR_MESSAGES_CONSTANTS) kLastErrorMessage }; #undef ERROR_MESSAGES_CONSTANTS const char* GetBailoutReason(BailoutReason reason); // Object is the abstract superclass for all classes in the // object hierarchy. // Object does not use any virtual functions to avoid the // allocation of the C++ vtable. // Since both Smi and HeapObject are subclasses of Object no // data members can be present in Object. class Object { public: // Type testing. bool IsObject() { return true; } #define IS_TYPE_FUNCTION_DECL(type_) inline bool Is##type_(); OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL) HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL) #undef IS_TYPE_FUNCTION_DECL inline bool IsFixedArrayBase(); inline bool IsExternal(); inline bool IsAccessorInfo(); inline bool IsStruct(); #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name(); STRUCT_LIST(DECLARE_STRUCT_PREDICATE) #undef DECLARE_STRUCT_PREDICATE INLINE(bool IsSpecObject()); INLINE(bool IsSpecFunction()); INLINE(bool IsTemplateInfo()); bool IsCallable(); // Oddball testing. INLINE(bool IsUndefined()); INLINE(bool IsNull()); INLINE(bool IsTheHole()); INLINE(bool IsException()); INLINE(bool IsUninitialized()); INLINE(bool IsTrue()); INLINE(bool IsFalse()); inline bool IsArgumentsMarker(); // Filler objects (fillers and free space objects). inline bool IsFiller(); // Extract the number. inline double Number(); inline bool IsNaN(); bool ToInt32(int32_t* value); bool ToUint32(uint32_t* value); // Indicates whether OptimalRepresentation can do its work, or whether it // always has to return Representation::Tagged(). enum ValueType { OPTIMAL_REPRESENTATION, FORCE_TAGGED }; inline Representation OptimalRepresentation( ValueType type = OPTIMAL_REPRESENTATION) { if (!FLAG_track_fields) return Representation::Tagged(); if (type == FORCE_TAGGED) return Representation::Tagged(); if (IsSmi()) { return Representation::Smi(); } else if (FLAG_track_double_fields && IsHeapNumber()) { return Representation::Double(); } else if (FLAG_track_computed_fields && IsUninitialized()) { return Representation::None(); } else if (FLAG_track_heap_object_fields) { ASSERT(IsHeapObject()); return Representation::HeapObject(); } else { return Representation::Tagged(); } } inline bool FitsRepresentation(Representation representation) { if (FLAG_track_fields && representation.IsNone()) { return false; } else if (FLAG_track_fields && representation.IsSmi()) { return IsSmi(); } else if (FLAG_track_double_fields && representation.IsDouble()) { return IsNumber(); } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { return IsHeapObject(); } return true; } Handle<HeapType> OptimalType(Isolate* isolate, Representation representation); inline static Handle<Object> NewStorageFor(Isolate* isolate, Handle<Object> object, Representation representation); // Returns true if the object is of the correct type to be used as a // implementation of a JSObject's elements. inline bool HasValidElements(); inline bool HasSpecificClassOf(String* name); bool BooleanValue(); // ECMA-262 9.2. // Convert to a JSObject if needed. // native_context is used when creating wrapper object. static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate, Handle<Object> object); static MaybeHandle<JSReceiver> ToObject(Isolate* isolate, Handle<Object> object, Handle<Context> context); // Converts this to a Smi if possible. static MUST_USE_RESULT inline MaybeHandle<Smi> ToSmi(Isolate* isolate, Handle<Object> object); void Lookup(Handle<Name> name, LookupResult* result); MUST_USE_RESULT static MaybeHandle<Object> GetProperty(LookupIterator* it); MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement( Handle<Object> object, Handle<Name> key); MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty( Isolate* isolate, Handle<Object> object, const char* key); MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty( Handle<Object> object, Handle<Name> key); MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor( Handle<Object> receiver, Handle<Name> name, Handle<JSObject> holder, Handle<Object> structure); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithCallback( Handle<Object> receiver, Handle<Name> name, Handle<Object> value, Handle<JSObject> holder, Handle<Object> structure, StrictMode strict_mode); MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter( Handle<Object> receiver, Handle<JSReceiver> getter); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter( Handle<Object> receiver, Handle<JSReceiver> setter, Handle<Object> value); MUST_USE_RESULT static inline MaybeHandle<Object> GetElement( Isolate* isolate, Handle<Object> object, uint32_t index); MUST_USE_RESULT static MaybeHandle<Object> GetElementWithReceiver( Isolate* isolate, Handle<Object> object, Handle<Object> receiver, uint32_t index); // Return the object's prototype (might be Heap::null_value()). Object* GetPrototype(Isolate* isolate); static Handle<Object> GetPrototype(Isolate* isolate, Handle<Object> object); // Returns the permanent hash code associated with this object. May return // undefined if not yet created. Object* GetHash(); // Returns the permanent hash code associated with this object depending on // the actual object type. May create and store a hash code if needed and none // exists. static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object); // Checks whether this object has the same value as the given one. This // function is implemented according to ES5, section 9.12 and can be used // to implement the Harmony "egal" function. bool SameValue(Object* other); // Checks whether this object has the same value as the given one. // +0 and -0 are treated equal. Everything else is the same as SameValue. // This function is implemented according to ES6, section 7.2.4 and is used // by ES6 Map and Set. bool SameValueZero(Object* other); // Tries to convert an object to an array index. Returns true and sets // the output parameter if it succeeds. inline bool ToArrayIndex(uint32_t* index); // Returns true if this is a JSValue containing a string and the index is // < the length of the string. Used to implement [] on strings. inline bool IsStringObjectWithCharacterAt(uint32_t index); DECLARE_VERIFIER(Object) #ifdef VERIFY_HEAP // Verify a pointer is a valid object pointer. static void VerifyPointer(Object* p); #endif inline void VerifyApiCallResultType(); // Prints this object without details. void ShortPrint(FILE* out = stdout); // Prints this object without details to a message accumulator. void ShortPrint(StringStream* accumulator); // Casting: This cast is only needed to satisfy macros in objects-inl.h. static Object* cast(Object* value) { return value; } // Layout description. static const int kHeaderSize = 0; // Object does not take up any space. #ifdef OBJECT_PRINT // Prints this object with details. void Print(); void Print(FILE* out); void PrintLn(); void PrintLn(FILE* out); #endif private: DISALLOW_IMPLICIT_CONSTRUCTORS(Object); }; // Smi represents integer Numbers that can be stored in 31 bits. // Smis are immediate which means they are NOT allocated in the heap. // The this pointer has the following format: [31 bit signed int] 0 // For long smis it has the following format: // [32 bit signed int] [31 bits zero padding] 0 // Smi stands for small integer. class Smi: public Object { public: // Returns the integer value. inline int value(); // Convert a value to a Smi object. static inline Smi* FromInt(int value); static inline Smi* FromIntptr(intptr_t value); // Returns whether value can be represented in a Smi. static inline bool IsValid(intptr_t value); // Casting. static inline Smi* cast(Object* object); // Dispatched behavior. void SmiPrint(FILE* out = stdout); void SmiPrint(StringStream* accumulator); DECLARE_VERIFIER(Smi) static const int kMinValue = (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1); static const int kMaxValue = -(kMinValue + 1); private: DISALLOW_IMPLICIT_CONSTRUCTORS(Smi); }; // Heap objects typically have a map pointer in their first word. However, // during GC other data (e.g. mark bits, forwarding addresses) is sometimes // encoded in the first word. The class MapWord is an abstraction of the // value in a heap object's first word. class MapWord BASE_EMBEDDED { public: // Normal state: the map word contains a map pointer. // Create a map word from a map pointer. static inline MapWord FromMap(Map* map); // View this map word as a map pointer. inline Map* ToMap(); // Scavenge collection: the map word of live objects in the from space // contains a forwarding address (a heap object pointer in the to space). // True if this map word is a forwarding address for a scavenge // collection. Only valid during a scavenge collection (specifically, // when all map words are heap object pointers, i.e. not during a full GC). inline bool IsForwardingAddress(); // Create a map word from a forwarding address. static inline MapWord FromForwardingAddress(HeapObject* object); // View this map word as a forwarding address. inline HeapObject* ToForwardingAddress(); static inline MapWord FromRawValue(uintptr_t value) { return MapWord(value); } inline uintptr_t ToRawValue() { return value_; } private: // HeapObject calls the private constructor and directly reads the value. friend class HeapObject; explicit MapWord(uintptr_t value) : value_(value) {} uintptr_t value_; }; // HeapObject is the superclass for all classes describing heap allocated // objects. class HeapObject: public Object { public: // [map]: Contains a map which contains the object's reflective // information. inline Map* map(); inline void set_map(Map* value); // The no-write-barrier version. This is OK if the object is white and in // new space, or if the value is an immortal immutable object, like the maps // of primitive (non-JS) objects like strings, heap numbers etc. inline void set_map_no_write_barrier(Map* value); // Get the map using acquire load. inline Map* synchronized_map(); inline MapWord synchronized_map_word(); // Set the map using release store inline void synchronized_set_map(Map* value); inline void synchronized_set_map_no_write_barrier(Map* value); inline void synchronized_set_map_word(MapWord map_word); // During garbage collection, the map word of a heap object does not // necessarily contain a map pointer. inline MapWord map_word(); inline void set_map_word(MapWord map_word); // The Heap the object was allocated in. Used also to access Isolate. inline Heap* GetHeap(); // Convenience method to get current isolate. inline Isolate* GetIsolate(); // Converts an address to a HeapObject pointer. static inline HeapObject* FromAddress(Address address); // Returns the address of this HeapObject. inline Address address(); // Iterates over pointers contained in the object (including the Map) void Iterate(ObjectVisitor* v); // Iterates over all pointers contained in the object except the // first map pointer. The object type is given in the first // parameter. This function does not access the map pointer in the // object, and so is safe to call while the map pointer is modified. void IterateBody(InstanceType type, int object_size, ObjectVisitor* v); // Returns the heap object's size in bytes inline int Size(); // Given a heap object's map pointer, returns the heap size in bytes // Useful when the map pointer field is used for other purposes. // GC internal. inline int SizeFromMap(Map* map); // Returns the field at offset in obj, as a read/write Object* reference. // Does no checking, and is safe to use during GC, while maps are invalid. // Does not invoke write barrier, so should only be assigned to // during marking GC. static inline Object** RawField(HeapObject* obj, int offset); // Adds the |code| object related to |name| to the code cache of this map. If // this map is a dictionary map that is shared, the map copied and installed // onto the object. static void UpdateMapCodeCache(Handle<HeapObject> object, Handle<Name> name, Handle<Code> code); // Casting. static inline HeapObject* cast(Object* obj); // Return the write barrier mode for this. Callers of this function // must be able to present a reference to an DisallowHeapAllocation // object as a sign that they are not going to use this function // from code that allocates and thus invalidates the returned write // barrier mode. inline WriteBarrierMode GetWriteBarrierMode( const DisallowHeapAllocation& promise); // Dispatched behavior. void HeapObjectShortPrint(StringStream* accumulator); #ifdef OBJECT_PRINT void PrintHeader(FILE* out, const char* id); #endif DECLARE_PRINTER(HeapObject) DECLARE_VERIFIER(HeapObject) #ifdef VERIFY_HEAP inline void VerifyObjectField(int offset); inline void VerifySmiField(int offset); // Verify a pointer is a valid HeapObject pointer that points to object // areas in the heap. static void VerifyHeapPointer(Object* p); #endif // Layout description. // First field in a heap object is map. static const int kMapOffset = Object::kHeaderSize; static const int kHeaderSize = kMapOffset + kPointerSize; STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset); protected: // helpers for calling an ObjectVisitor to iterate over pointers in the // half-open range [start, end) specified as integer offsets inline void IteratePointers(ObjectVisitor* v, int start, int end); // as above, for the single element at "offset" inline void IteratePointer(ObjectVisitor* v, int offset); // as above, for the next code link of a code object. inline void IterateNextCodeLink(ObjectVisitor* v, int offset); private: DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject); }; // This class describes a body of an object of a fixed size // in which all pointer fields are located in the [start_offset, end_offset) // interval. template<int start_offset, int end_offset, int size> class FixedBodyDescriptor { public: static const int kStartOffset = start_offset; static const int kEndOffset = end_offset; static const int kSize = size; static inline void IterateBody(HeapObject* obj, ObjectVisitor* v); template<typename StaticVisitor> static inline void IterateBody(HeapObject* obj) { StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset), HeapObject::RawField(obj, end_offset)); } }; // This class describes a body of an object of a variable size // in which all pointer fields are located in the [start_offset, object_size) // interval. template<int start_offset> class FlexibleBodyDescriptor { public: static const int kStartOffset = start_offset; static inline void IterateBody(HeapObject* obj, int object_size, ObjectVisitor* v); template<typename StaticVisitor> static inline void IterateBody(HeapObject* obj, int object_size) { StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset), HeapObject::RawField(obj, object_size)); } }; // The HeapNumber class describes heap allocated numbers that cannot be // represented in a Smi (small integer) class HeapNumber: public HeapObject { public: // [value]: number value. inline double value(); inline void set_value(double value); // Casting. static inline HeapNumber* cast(Object* obj); // Dispatched behavior. bool HeapNumberBooleanValue(); void HeapNumberPrint(FILE* out = stdout); void HeapNumberPrint(StringStream* accumulator); DECLARE_VERIFIER(HeapNumber) inline int get_exponent(); inline int get_sign(); // Layout description. static const int kValueOffset = HeapObject::kHeaderSize; // IEEE doubles are two 32 bit words. The first is just mantissa, the second // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit // words within double numbers are endian dependent and they are set // accordingly. #if defined(V8_TARGET_LITTLE_ENDIAN) static const int kMantissaOffset = kValueOffset; static const int kExponentOffset = kValueOffset + 4; #elif defined(V8_TARGET_BIG_ENDIAN) static const int kMantissaOffset = kValueOffset + 4; static const int kExponentOffset = kValueOffset; #else #error Unknown byte ordering #endif static const int kSize = kValueOffset + kDoubleSize; static const uint32_t kSignMask = 0x80000000u; static const uint32_t kExponentMask = 0x7ff00000u; static const uint32_t kMantissaMask = 0xfffffu; static const int kMantissaBits = 52; static const int kExponentBits = 11; static const int kExponentBias = 1023; static const int kExponentShift = 20; static const int kInfinityOrNanExponent = (kExponentMask >> kExponentShift) - kExponentBias; static const int kMantissaBitsInTopWord = 20; static const int kNonMantissaBitsInTopWord = 12; private: DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber); }; enum EnsureElementsMode { DONT_ALLOW_DOUBLE_ELEMENTS, ALLOW_COPIED_DOUBLE_ELEMENTS, ALLOW_CONVERTED_DOUBLE_ELEMENTS }; // Indicates whether a property should be set or (re)defined. Setting of a // property causes attributes to remain unchanged, writability to be checked // and callbacks to be called. Defining of a property causes attributes to // be updated and callbacks to be overridden. enum SetPropertyMode { SET_PROPERTY, DEFINE_PROPERTY }; // Indicator for one component of an AccessorPair. enum AccessorComponent { ACCESSOR_GETTER, ACCESSOR_SETTER }; // JSReceiver includes types on which properties can be defined, i.e., // JSObject and JSProxy. class JSReceiver: public HeapObject { public: enum DeleteMode { NORMAL_DELETION, STRICT_DELETION, FORCE_DELETION }; // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas // a keyed store is of the form a[expression] = foo. enum StoreFromKeyed { MAY_BE_STORE_FROM_KEYED, CERTAINLY_NOT_STORE_FROM_KEYED }; // Internal properties (e.g. the hidden properties dictionary) might // be added even though the receiver is non-extensible. enum ExtensibilityCheck { PERFORM_EXTENSIBILITY_CHECK, OMIT_EXTENSIBILITY_CHECK }; // Casting. static inline JSReceiver* cast(Object* obj); // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5. MUST_USE_RESULT static MaybeHandle<Object> SetProperty( Handle<JSReceiver> object, Handle<Name> key, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED); MUST_USE_RESULT static MaybeHandle<Object> SetElement( Handle<JSReceiver> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode); // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6. static inline bool HasProperty(Handle<JSReceiver> object, Handle<Name> name); static inline bool HasOwnProperty(Handle<JSReceiver>, Handle<Name> name); static inline bool HasElement(Handle<JSReceiver> object, uint32_t index); static inline bool HasOwnElement(Handle<JSReceiver> object, uint32_t index); // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7. MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty( Handle<JSReceiver> object, Handle<Name> name, DeleteMode mode = NORMAL_DELETION); MUST_USE_RESULT static MaybeHandle<Object> DeleteElement( Handle<JSReceiver> object, uint32_t index, DeleteMode mode = NORMAL_DELETION); // Tests for the fast common case for property enumeration. bool IsSimpleEnum(); // Returns the class name ([[Class]] property in the specification). String* class_name(); // Returns the constructor name (the name (possibly, inferred name) of the // function that was used to instantiate the object). String* constructor_name(); static inline PropertyAttributes GetPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name); static PropertyAttributes GetPropertyAttributes(LookupIterator* it); static PropertyAttributes GetOwnPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name); static inline PropertyAttributes GetElementAttribute( Handle<JSReceiver> object, uint32_t index); static inline PropertyAttributes GetOwnElementAttribute( Handle<JSReceiver> object, uint32_t index); // Return the object's prototype (might be Heap::null_value()). inline Object* GetPrototype(); // Return the constructor function (may be Heap::null_value()). inline Object* GetConstructor(); // Retrieves a permanent object identity hash code. The undefined value might // be returned in case no hash was created yet. inline Object* GetIdentityHash(); // Retrieves a permanent object identity hash code. May create and store a // hash code if needed and none exists. inline static Handle<Smi> GetOrCreateIdentityHash( Handle<JSReceiver> object); // Lookup a property. If found, the result is valid and has // detailed information. void LookupOwn(Handle<Name> name, LookupResult* result, bool search_hidden_prototypes = false); void Lookup(Handle<Name> name, LookupResult* result); enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS }; // Computes the enumerable keys for a JSObject. Used for implementing // "for (n in object) { }". MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys( Handle<JSReceiver> object, KeyCollectionType type); private: MUST_USE_RESULT static MaybeHandle<Object> SetProperty( Handle<JSReceiver> receiver, LookupResult* result, Handle<Name> key, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, StoreFromKeyed store_from_keyed); DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver); }; // Forward declaration for JSObject::GetOrCreateHiddenPropertiesHashTable. class ObjectHashTable; // Forward declaration for JSObject::Copy. class AllocationSite; // The JSObject describes real heap allocated JavaScript objects with // properties. // Note that the map of JSObject changes during execution to enable inline // caching. class JSObject: public JSReceiver { public: // [properties]: Backing storage for properties. // properties is a FixedArray in the fast case and a Dictionary in the // slow case. DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties. inline void initialize_properties(); inline bool HasFastProperties(); inline NameDictionary* property_dictionary(); // Gets slow properties. // [elements]: The elements (properties with names that are integers). // // Elements can be in two general modes: fast and slow. Each mode // corrensponds to a set of object representations of elements that // have something in common. // // In the fast mode elements is a FixedArray and so each element can // be quickly accessed. This fact is used in the generated code. The // elements array can have one of three maps in this mode: // fixed_array_map, sloppy_arguments_elements_map or // fixed_cow_array_map (for copy-on-write arrays). In the latter case // the elements array may be shared by a few objects and so before // writing to any element the array must be copied. Use // EnsureWritableFastElements in this case. // // In the slow mode the elements is either a NumberDictionary, an // ExternalArray, or a FixedArray parameter map for a (sloppy) // arguments object. DECL_ACCESSORS(elements, FixedArrayBase) inline void initialize_elements(); static void ResetElements(Handle<JSObject> object); static inline void SetMapAndElements(Handle<JSObject> object, Handle<Map> map, Handle<FixedArrayBase> elements); inline ElementsKind GetElementsKind(); inline ElementsAccessor* GetElementsAccessor(); // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind. inline bool HasFastSmiElements(); // Returns true if an object has elements of FAST_ELEMENTS ElementsKind. inline bool HasFastObjectElements(); // Returns true if an object has elements of FAST_ELEMENTS or // FAST_SMI_ONLY_ELEMENTS. inline bool HasFastSmiOrObjectElements(); // Returns true if an object has any of the fast elements kinds. inline bool HasFastElements(); // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS // ElementsKind. inline bool HasFastDoubleElements(); // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS // ElementsKind. inline bool HasFastHoleyElements(); inline bool HasSloppyArgumentsElements(); inline bool HasDictionaryElements(); inline bool HasExternalUint8ClampedElements(); inline bool HasExternalArrayElements(); inline bool HasExternalInt8Elements(); inline bool HasExternalUint8Elements(); inline bool HasExternalInt16Elements(); inline bool HasExternalUint16Elements(); inline bool HasExternalInt32Elements(); inline bool HasExternalUint32Elements(); inline bool HasExternalFloat32Elements(); inline bool HasExternalFloat64Elements(); inline bool HasFixedTypedArrayElements(); inline bool HasFixedUint8ClampedElements(); inline bool HasFixedArrayElements(); inline bool HasFixedInt8Elements(); inline bool HasFixedUint8Elements(); inline bool HasFixedInt16Elements(); inline bool HasFixedUint16Elements(); inline bool HasFixedInt32Elements(); inline bool HasFixedUint32Elements(); inline bool HasFixedFloat32Elements(); inline bool HasFixedFloat64Elements(); bool HasFastArgumentsElements(); bool HasDictionaryArgumentsElements(); inline SeededNumberDictionary* element_dictionary(); // Gets slow elements. // Requires: HasFastElements(). static Handle<FixedArray> EnsureWritableFastElements( Handle<JSObject> object); // Collects elements starting at index 0. // Undefined values are placed after non-undefined values. // Returns the number of non-undefined values. static Handle<Object> PrepareElementsForSort(Handle<JSObject> object, uint32_t limit); // As PrepareElementsForSort, but only on objects where elements is // a dictionary, and it will stay a dictionary. Collates undefined and // unexisting elements below limit from position zero of the elements. static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object, uint32_t limit); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyForResult( Handle<JSObject> object, LookupResult* result, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED); // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to // grant an exemption to ExecutableAccessor callbacks in some cases. enum ExecutableAccessorInfoHandling { DEFAULT_HANDLING, DONT_FORCE_FIELD }; MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes( Handle<JSObject> object, Handle<Name> key, Handle<Object> value, PropertyAttributes attributes, ValueType value_type = OPTIMAL_REPRESENTATION, StoreMode mode = ALLOW_AS_CONSTANT, ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK, StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED, ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING); static inline Handle<String> ExpectedTransitionKey(Handle<Map> map); static inline Handle<Map> ExpectedTransitionTarget(Handle<Map> map); // Try to follow an existing transition to a field with attributes NONE. The // return value indicates whether the transition was successful. static inline Handle<Map> FindTransitionToField(Handle<Map> map, Handle<Name> key); // Extend the receiver with a single fast property appeared first in the // passed map. This also extends the property backing store if necessary. static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map); // Migrates the given object to a map whose field representations are the // lowest upper bound of all known representations for that field. static void MigrateInstance(Handle<JSObject> instance); // Migrates the given object only if the target map is already available, // or returns false if such a map is not yet available. static bool TryMigrateInstance(Handle<JSObject> instance); // Retrieve a value in a normalized object given a lookup result. // Handles the special representation of JS global objects. Object* GetNormalizedProperty(const LookupResult* result); static Handle<Object> GetNormalizedProperty(Handle<JSObject> object, const LookupResult* result); // Sets the property value in a normalized object given a lookup result. // Handles the special representation of JS global objects. static void SetNormalizedProperty(Handle<JSObject> object, const LookupResult* result, Handle<Object> value); // Sets the property value in a normalized object given (key, value, details). // Handles the special representation of JS global objects. static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> key, Handle<Object> value, PropertyDetails details); static void OptimizeAsPrototype(Handle<JSObject> object); // Retrieve interceptors. InterceptorInfo* GetNamedInterceptor(); InterceptorInfo* GetIndexedInterceptor(); // Used from JSReceiver. static Maybe<PropertyAttributes> GetPropertyAttributesWithInterceptor( Handle<JSObject> holder, Handle<Object> receiver, Handle<Name> name); static PropertyAttributes GetPropertyAttributesWithFailedAccessCheck( LookupIterator* it); static PropertyAttributes GetElementAttributeWithReceiver( Handle<JSObject> object, Handle<JSReceiver> receiver, uint32_t index, bool check_prototype); // Retrieves an AccessorPair property from the given object. Might return // undefined if the property doesn't exist or is of a different kind. MUST_USE_RESULT static MaybeHandle<Object> GetAccessor( Handle<JSObject> object, Handle<Name> name, AccessorComponent component); // Defines an AccessorPair property on the given object. // TODO(mstarzinger): Rename to SetAccessor() and return empty handle on // exception instead of letting callers check for scheduled exception. static void DefineAccessor(Handle<JSObject> object, Handle<Name> name, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes, v8::AccessControl access_control = v8::DEFAULT); // Defines an AccessorInfo property on the given object. MUST_USE_RESULT static MaybeHandle<Object> SetAccessor( Handle<JSObject> object, Handle<AccessorInfo> info); MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor( Handle<JSObject> object, Handle<Object> receiver, Handle<Name> name); // Returns true if this is an instance of an api function and has // been modified since it was created. May give false positives. bool IsDirty(); // Accessors for hidden properties object. // // Hidden properties are not own properties of the object itself. // Instead they are stored in an auxiliary structure kept as an own // property with a special name Heap::hidden_string(). But if the // receiver is a JSGlobalProxy then the auxiliary object is a property // of its prototype, and if it's a detached proxy, then you can't have // hidden properties. // Sets a hidden property on this object. Returns this object if successful, // undefined if called on a detached proxy. static Handle<Object> SetHiddenProperty(Handle<JSObject> object, Handle<Name> key, Handle<Object> value); // Gets the value of a hidden property with the given key. Returns the hole // if the property doesn't exist (or if called on a detached proxy), // otherwise returns the value set for the key. Object* GetHiddenProperty(Handle<Name> key); // Deletes a hidden property. Deleting a non-existing property is // considered successful. static void DeleteHiddenProperty(Handle<JSObject> object, Handle<Name> key); // Returns true if the object has a property with the hidden string as name. static bool HasHiddenProperties(Handle<JSObject> object); static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash); static inline void ValidateElements(Handle<JSObject> object); // Makes sure that this object can contain HeapObject as elements. static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj); // Makes sure that this object can contain the specified elements. static inline void EnsureCanContainElements( Handle<JSObject> object, Object** elements, uint32_t count, EnsureElementsMode mode); static inline void EnsureCanContainElements( Handle<JSObject> object, Handle<FixedArrayBase> elements, uint32_t length, EnsureElementsMode mode); static void EnsureCanContainElements( Handle<JSObject> object, Arguments* arguments, uint32_t first_arg, uint32_t arg_count, EnsureElementsMode mode); // Would we convert a fast elements array to dictionary mode given // an access at key? bool WouldConvertToSlowElements(Handle<Object> key); // Do we want to keep the elements in fast case when increasing the // capacity? bool ShouldConvertToSlowElements(int new_capacity); // Returns true if the backing storage for the slow-case elements of // this object takes up nearly as much space as a fast-case backing // storage would. In that case the JSObject should have fast // elements. bool ShouldConvertToFastElements(); // Returns true if the elements of JSObject contains only values that can be // represented in a FixedDoubleArray and has at least one value that can only // be represented as a double and not a Smi. bool ShouldConvertToFastDoubleElements(bool* has_smi_only_elements); // Computes the new capacity when expanding the elements of a JSObject. static int NewElementsCapacity(int old_capacity) { // (old_capacity + 50%) + 16 return old_capacity + (old_capacity >> 1) + 16; } // These methods do not perform access checks! MUST_USE_RESULT static MaybeHandle<AccessorPair> GetOwnPropertyAccessorPair( Handle<JSObject> object, Handle<Name> name); MUST_USE_RESULT static MaybeHandle<AccessorPair> GetOwnElementAccessorPair( Handle<JSObject> object, uint32_t index); MUST_USE_RESULT static MaybeHandle<Object> SetFastElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictMode strict_mode, bool check_prototype); MUST_USE_RESULT static MaybeHandle<Object> SetOwnElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictMode strict_mode); // Empty handle is returned if the element cannot be set to the given value. MUST_USE_RESULT static MaybeHandle<Object> SetElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype = true, SetPropertyMode set_mode = SET_PROPERTY); // Returns the index'th element. // The undefined object if index is out of bounds. MUST_USE_RESULT static MaybeHandle<Object> GetElementWithInterceptor( Handle<JSObject> object, Handle<Object> receiver, uint32_t index); enum SetFastElementsCapacitySmiMode { kAllowSmiElements, kForceSmiElements, kDontAllowSmiElements }; // Replace the elements' backing store with fast elements of the given // capacity. Update the length for JSArrays. Returns the new backing // store. static Handle<FixedArray> SetFastElementsCapacityAndLength( Handle<JSObject> object, int capacity, int length, SetFastElementsCapacitySmiMode smi_mode); static void SetFastDoubleElementsCapacityAndLength( Handle<JSObject> object, int capacity, int length); // Lookup interceptors are used for handling properties controlled by host // objects. inline bool HasNamedInterceptor(); inline bool HasIndexedInterceptor(); // Computes the enumerable keys from interceptors. Used for debug mirrors and // by JSReceiver::GetKeys. MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver); MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver); // Support functions for v8 api (needed for correct interceptor behavior). static bool HasRealNamedProperty(Handle<JSObject> object, Handle<Name> key); static bool HasRealElementProperty(Handle<JSObject> object, uint32_t index); static bool HasRealNamedCallbackProperty(Handle<JSObject> object, Handle<Name> key); // Get the header size for a JSObject. Used to compute the index of // internal fields as well as the number of internal fields. inline int GetHeaderSize(); inline int GetInternalFieldCount(); inline int GetInternalFieldOffset(int index); inline Object* GetInternalField(int index); inline void SetInternalField(int index, Object* value); inline void SetInternalField(int index, Smi* value); // The following lookup functions skip interceptors. void LookupOwnRealNamedProperty(Handle<Name> name, LookupResult* result); void LookupRealNamedProperty(Handle<Name> name, LookupResult* result); void LookupRealNamedPropertyInPrototypes(Handle<Name> name, LookupResult* result); // Returns the number of properties on this object filtering out properties // with the specified attributes (ignoring interceptors). int NumberOfOwnProperties(PropertyAttributes filter = NONE); // Fill in details for properties into storage starting at the specified // index. void GetOwnPropertyNames( FixedArray* storage, int index, PropertyAttributes filter = NONE); // Returns the number of properties on this object filtering out properties // with the specified attributes (ignoring interceptors). int NumberOfOwnElements(PropertyAttributes filter); // Returns the number of enumerable elements (ignoring interceptors). int NumberOfEnumElements(); // Returns the number of elements on this object filtering out elements // with the specified attributes (ignoring interceptors). int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter); // Count and fill in the enumerable elements into storage. // (storage->length() == NumberOfEnumElements()). // If storage is NULL, will count the elements without adding // them to any storage. // Returns the number of enumerable elements. int GetEnumElementKeys(FixedArray* storage); // Returns a new map with all transitions dropped from the object's current // map and the ElementsKind set. static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object, ElementsKind to_kind); static void TransitionElementsKind(Handle<JSObject> object, ElementsKind to_kind); // TODO(mstarzinger): Both public because of ConvertAndSetOwnProperty(). static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map); static void GeneralizeFieldRepresentation(Handle<JSObject> object, int modify_index, Representation new_representation, Handle<HeapType> new_field_type, StoreMode store_mode); // Convert the object to use the canonical dictionary // representation. If the object is expected to have additional properties // added this number can be indicated to have the backing store allocated to // an initial capacity for holding these properties. static void NormalizeProperties(Handle<JSObject> object, PropertyNormalizationMode mode, int expected_additional_properties); // Convert and update the elements backing store to be a // SeededNumberDictionary dictionary. Returns the backing after conversion. static Handle<SeededNumberDictionary> NormalizeElements( Handle<JSObject> object); // Transform slow named properties to fast variants. static void TransformToFastProperties(Handle<JSObject> object, int unused_property_fields); // Access fast-case object properties at index. static Handle<Object> FastPropertyAt(Handle<JSObject> object, Representation representation, FieldIndex index); inline Object* RawFastPropertyAt(FieldIndex index); inline void FastPropertyAtPut(FieldIndex index, Object* value); void WriteToField(int descriptor, Object* value); // Access to in object properties. inline int GetInObjectPropertyOffset(int index); inline Object* InObjectPropertyAt(int index); inline Object* InObjectPropertyAtPut(int index, Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); // Set the object's prototype (only JSReceiver and null are allowed values). MUST_USE_RESULT static MaybeHandle<Object> SetPrototype( Handle<JSObject> object, Handle<Object> value, bool skip_hidden_prototypes = false); // Initializes the body after properties slot, properties slot is // initialized by set_properties. Fill the pre-allocated fields with // pre_allocated_value and the rest with filler_value. // Note: this call does not update write barrier, the caller is responsible // to ensure that |filler_value| can be collected without WB here. inline void InitializeBody(Map* map, Object* pre_allocated_value, Object* filler_value); // Check whether this object references another object bool ReferencesObject(Object* obj); // Disalow further properties to be added to the object. MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions( Handle<JSObject> object); // ES5 Object.freeze MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object); // Called the first time an object is observed with ES7 Object.observe. static void SetObserved(Handle<JSObject> object); // Copy object. enum DeepCopyHints { kNoHints = 0, kObjectIsShallowArray = 1 }; static Handle<JSObject> Copy(Handle<JSObject> object); MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy( Handle<JSObject> object, AllocationSiteUsageContext* site_context, DeepCopyHints hints = kNoHints); MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk( Handle<JSObject> object, AllocationSiteCreationContext* site_context); static Handle<Object> GetDataProperty(Handle<JSObject> object, Handle<Name> key); // Casting. static inline JSObject* cast(Object* obj); // Dispatched behavior. void JSObjectShortPrint(StringStream* accumulator); DECLARE_PRINTER(JSObject) DECLARE_VERIFIER(JSObject) #ifdef OBJECT_PRINT void PrintProperties(FILE* out = stdout); void PrintElements(FILE* out = stdout); void PrintTransitions(FILE* out = stdout); #endif static void PrintElementsTransition( FILE* file, Handle<JSObject> object, ElementsKind from_kind, Handle<FixedArrayBase> from_elements, ElementsKind to_kind, Handle<FixedArrayBase> to_elements); void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map); #ifdef DEBUG // Structure for collecting spill information about JSObjects. class SpillInformation { public: void Clear(); void Print(); int number_of_objects_; int number_of_objects_with_fast_properties_; int number_of_objects_with_fast_elements_; int number_of_fast_used_fields_; int number_of_fast_unused_fields_; int number_of_slow_used_properties_; int number_of_slow_unused_properties_; int number_of_fast_used_elements_; int number_of_fast_unused_elements_; int number_of_slow_used_elements_; int number_of_slow_unused_elements_; }; void IncrementSpillStatistics(SpillInformation* info); #endif #ifdef VERIFY_HEAP // If a GC was caused while constructing this object, the elements pointer // may point to a one pointer filler map. The object won't be rooted, but // our heap verification code could stumble across it. bool ElementsAreSafeToExamine(); #endif Object* SlowReverseLookup(Object* value); // Maximal number of fast properties for the JSObject. Used to // restrict the number of map transitions to avoid an explosion in // the number of maps for objects used as dictionaries. inline bool TooManyFastProperties( StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED); // Maximal number of elements (numbered 0 .. kMaxElementCount - 1). // Also maximal value of JSArray's length property. static const uint32_t kMaxElementCount = 0xffffffffu; // Constants for heuristics controlling conversion of fast elements // to slow elements. // Maximal gap that can be introduced by adding an element beyond // the current elements length. static const uint32_t kMaxGap = 1024; // Maximal length of fast elements array that won't be checked for // being dense enough on expansion. static const int kMaxUncheckedFastElementsLength = 5000; // Same as above but for old arrays. This limit is more strict. We // don't want to be wasteful with long lived objects. static const int kMaxUncheckedOldFastElementsLength = 500; // Note that Page::kMaxRegularHeapObjectSize puts a limit on // permissible values (see the ASSERT in heap.cc). static const int kInitialMaxFastElementArray = 100000; // This constant applies only to the initial map of "$Object" aka // "global.Object" and not to arbitrary other JSObject maps. static const int kInitialGlobalObjectUnusedPropertiesCount = 4; static const int kFastPropertiesSoftLimit = 12; static const int kMaxFastProperties = 128; static const int kMaxInstanceSize = 255 * kPointerSize; // When extending the backing storage for property values, we increase // its size by more than the 1 entry necessary, so sequentially adding fields // to the same object requires fewer allocations and copies. static const int kFieldsAdded = 3; // Layout description. static const int kPropertiesOffset = HeapObject::kHeaderSize; static const int kElementsOffset = kPropertiesOffset + kPointerSize; static const int kHeaderSize = kElementsOffset + kPointerSize; STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize); class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> { public: static inline int SizeOf(Map* map, HeapObject* object); }; Context* GetCreationContext(); // Enqueue change record for Object.observe. May cause GC. static void EnqueueChangeRecord(Handle<JSObject> object, const char* type, Handle<Name> name, Handle<Object> old_value); private: friend class DictionaryElementsAccessor; friend class JSReceiver; friend class Object; static void UpdateAllocationSite(Handle<JSObject> object, ElementsKind to_kind); // Used from Object::GetProperty(). MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck( LookupIterator* it); MUST_USE_RESULT static MaybeHandle<Object> GetElementWithCallback( Handle<JSObject> object, Handle<Object> receiver, Handle<Object> structure, uint32_t index, Handle<Object> holder); static PropertyAttributes GetElementAttributeWithInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver, uint32_t index, bool continue_search); static PropertyAttributes GetElementAttributeWithoutInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver, uint32_t index, bool continue_search); MUST_USE_RESULT static MaybeHandle<Object> SetElementWithCallback( Handle<JSObject> object, Handle<Object> structure, uint32_t index, Handle<Object> value, Handle<JSObject> holder, StrictMode strict_mode); MUST_USE_RESULT static MaybeHandle<Object> SetElementWithInterceptor( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode); MUST_USE_RESULT static MaybeHandle<Object> SetElementWithoutInterceptor( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode); MUST_USE_RESULT static MaybeHandle<Object> SetElementWithCallbackSetterInPrototypes( Handle<JSObject> object, uint32_t index, Handle<Object> value, bool* found, StrictMode strict_mode); MUST_USE_RESULT static MaybeHandle<Object> SetDictionaryElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode = SET_PROPERTY); MUST_USE_RESULT static MaybeHandle<Object> SetFastDoubleElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictMode strict_mode, bool check_prototype = true); // Searches the prototype chain for property 'name'. If it is found and // has a setter, invoke it and set '*done' to true. If it is found and is // read-only, reject and set '*done' to true. Otherwise, set '*done' to // false. Can throw and return an empty handle with '*done==true'. MUST_USE_RESULT static MaybeHandle<Object> SetPropertyViaPrototypes( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool* done); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyPostInterceptor( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyUsingTransition( Handle<JSObject> object, LookupResult* lookup, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes); MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck( Handle<JSObject> object, LookupResult* result, Handle<Name> name, Handle<Object> value, bool check_prototype, StrictMode strict_mode); // Add a property to an object. MUST_USE_RESULT static MaybeHandle<Object> AddProperty( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED, ExtensibilityCheck extensibility_check = PERFORM_EXTENSIBILITY_CHECK, ValueType value_type = OPTIMAL_REPRESENTATION, StoreMode mode = ALLOW_AS_CONSTANT, TransitionFlag flag = INSERT_TRANSITION); // Add a property to a fast-case object. static void AddFastProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StoreFromKeyed store_mode, ValueType value_type, TransitionFlag flag); static void MigrateToNewProperty(Handle<JSObject> object, Handle<Map> transition, Handle<Object> value); // Add a property to a slow-case object. static void AddSlowProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes); MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty( Handle<JSObject> object, Handle<Name> name, DeleteMode mode); static Handle<Object> DeletePropertyPostInterceptor(Handle<JSObject> object, Handle<Name> name, DeleteMode mode); MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor( Handle<JSObject> object, Handle<Name> name); // Deletes the named property in a normalized object. static Handle<Object> DeleteNormalizedProperty(Handle<JSObject> object, Handle<Name> name, DeleteMode mode); MUST_USE_RESULT static MaybeHandle<Object> DeleteElement( Handle<JSObject> object, uint32_t index, DeleteMode mode); MUST_USE_RESULT static MaybeHandle<Object> DeleteElementWithInterceptor( Handle<JSObject> object, uint32_t index); bool ReferencesObjectFromElements(FixedArray* elements, ElementsKind kind, Object* object); // Returns true if most of the elements backing storage is used. bool HasDenseElements(); // Gets the current elements capacity and the number of used elements. void GetElementsCapacityAndUsage(int* capacity, int* used); static bool CanSetCallback(Handle<JSObject> object, Handle<Name> name); static void SetElementCallback(Handle<JSObject> object, uint32_t index, Handle<Object> structure, PropertyAttributes attributes); static void SetPropertyCallback(Handle<JSObject> object, Handle<Name> name, Handle<Object> structure, PropertyAttributes attributes); static void DefineElementAccessor(Handle<JSObject> object, uint32_t index, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes, v8::AccessControl access_control); static Handle<AccessorPair> CreateAccessorPairFor(Handle<JSObject> object, Handle<Name> name); static void DefinePropertyAccessor(Handle<JSObject> object, Handle<Name> name, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes, v8::AccessControl access_control); // Try to define a single accessor paying attention to map transitions. // Returns false if this was not possible and we have to use the slow case. static bool DefineFastAccessor(Handle<JSObject> object, Handle<Name> name, AccessorComponent component, Handle<Object> accessor, PropertyAttributes attributes); // Return the hash table backing store or the inline stored identity hash, // whatever is found. MUST_USE_RESULT Object* GetHiddenPropertiesHashTable(); // Return the hash table backing store for hidden properties. If there is no // backing store, allocate one. static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable( Handle<JSObject> object); // Set the hidden property backing store to either a hash table or // the inline-stored identity hash. static Handle<Object> SetHiddenPropertiesHashTable( Handle<JSObject> object, Handle<Object> value); MUST_USE_RESULT Object* GetIdentityHash(); static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object); DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject); }; // Common superclass for FixedArrays that allow implementations to share // common accessors and some code paths. class FixedArrayBase: public HeapObject { public: // [length]: length of the array. inline int length(); inline void set_length(int value); // Get and set the length using acquire loads and release stores. inline int synchronized_length(); inline void synchronized_set_length(int value); inline static FixedArrayBase* cast(Object* object); // Layout description. // Length is smi tagged when it is stored. static const int kLengthOffset = HeapObject::kHeaderSize; static const int kHeaderSize = kLengthOffset + kPointerSize; }; class FixedDoubleArray; class IncrementalMarking; // FixedArray describes fixed-sized arrays with element type Object*. class FixedArray: public FixedArrayBase { public: // Setter and getter for elements. inline Object* get(int index); static inline Handle<Object> get(Handle<FixedArray> array, int index); // Setter that uses write barrier. inline void set(int index, Object* value); inline bool is_the_hole(int index); // Setter that doesn't need write barrier. inline void set(int index, Smi* value); // Setter with explicit barrier mode. inline void set(int index, Object* value, WriteBarrierMode mode); // Setters for frequently used oddballs located in old space. inline void set_undefined(int index); inline void set_null(int index); inline void set_the_hole(int index); inline Object** GetFirstElementAddress(); inline bool ContainsOnlySmisOrHoles(); // Gives access to raw memory which stores the array's data. inline Object** data_start(); inline void FillWithHoles(int from, int to); // Shrink length and insert filler objects. void Shrink(int length); // Copy operation. static Handle<FixedArray> CopySize(Handle<FixedArray> array, int new_length, PretenureFlag pretenure = NOT_TENURED); // Add the elements of a JSArray to this FixedArray. MUST_USE_RESULT static MaybeHandle<FixedArray> AddKeysFromArrayLike( Handle<FixedArray> content, Handle<JSObject> array); // Computes the union of keys and return the result. // Used for implementing "for (n in object) { }" MUST_USE_RESULT static MaybeHandle<FixedArray> UnionOfKeys( Handle<FixedArray> first, Handle<FixedArray> second); // Copy a sub array from the receiver to dest. void CopyTo(int pos, FixedArray* dest, int dest_pos, int len); // Garbage collection support. static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; } // Code Generation support. static int OffsetOfElementAt(int index) { return SizeFor(index); } // Garbage collection support. Object** RawFieldOfElementAt(int index) { return HeapObject::RawField(this, OffsetOfElementAt(index)); } // Casting. static inline FixedArray* cast(Object* obj); // Maximal allowed size, in bytes, of a single FixedArray. // Prevents overflowing size computations, as well as extreme memory // consumption. static const int kMaxSize = 128 * MB * kPointerSize; // Maximally allowed length of a FixedArray. static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize; // Dispatched behavior. DECLARE_PRINTER(FixedArray) DECLARE_VERIFIER(FixedArray) #ifdef DEBUG // Checks if two FixedArrays have identical contents. bool IsEqualTo(FixedArray* other); #endif // Swap two elements in a pair of arrays. If this array and the // numbers array are the same object, the elements are only swapped // once. void SwapPairs(FixedArray* numbers, int i, int j); // Sort prefix of this array and the numbers array as pairs wrt. the // numbers. If the numbers array and the this array are the same // object, the prefix of this array is sorted. void SortPairs(FixedArray* numbers, uint32_t len); class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> { public: static inline int SizeOf(Map* map, HeapObject* object) { return SizeFor(reinterpret_cast<FixedArray*>(object)->length()); } }; protected: // Set operation on FixedArray without using write barriers. Can // only be used for storing old space objects or smis. static inline void NoWriteBarrierSet(FixedArray* array, int index, Object* value); // Set operation on FixedArray without incremental write barrier. Can // only be used if the object is guaranteed to be white (whiteness witness // is present). static inline void NoIncrementalWriteBarrierSet(FixedArray* array, int index, Object* value); private: STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize); DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray); }; // FixedDoubleArray describes fixed-sized arrays with element type double. class FixedDoubleArray: public FixedArrayBase { public: // Setter and getter for elements. inline double get_scalar(int index); inline int64_t get_representation(int index); static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index); inline void set(int index, double value); inline void set_the_hole(int index); // Checking for the hole. inline bool is_the_hole(int index); // Garbage collection support. inline static int SizeFor(int length) { return kHeaderSize + length * kDoubleSize; } // Gives access to raw memory which stores the array's data. inline double* data_start(); inline void FillWithHoles(int from, int to); // Code Generation support. static int OffsetOfElementAt(int index) { return SizeFor(index); } inline static bool is_the_hole_nan(double value); inline static double hole_nan_as_double(); inline static double canonical_not_the_hole_nan_as_double(); // Casting. static inline FixedDoubleArray* cast(Object* obj); // Maximal allowed size, in bytes, of a single FixedDoubleArray. // Prevents overflowing size computations, as well as extreme memory // consumption. static const int kMaxSize = 512 * MB; // Maximally allowed length of a FixedArray. static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize; // Dispatched behavior. DECLARE_PRINTER(FixedDoubleArray) DECLARE_VERIFIER(FixedDoubleArray) private: DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray); }; // ConstantPoolArray describes a fixed-sized array containing constant pool // entries. // // A ConstantPoolArray can be structured in two different ways depending upon // whether it is extended or small. The is_extended_layout() method can be used // to discover which layout the constant pool has. // // The format of a small constant pool is: // [kSmallLayout1Offset] : Small section layout bitmap 1 // [kSmallLayout2Offset] : Small section layout bitmap 2 // [first_index(INT64, SMALL_SECTION)] : 64 bit entries // ... : ... // [first_index(CODE_PTR, SMALL_SECTION)] : code pointer entries // ... : ... // [first_index(HEAP_PTR, SMALL_SECTION)] : heap pointer entries // ... : ... // [first_index(INT32, SMALL_SECTION)] : 32 bit entries // ... : ... // // If the constant pool has an extended layout, the extended section constant // pool also contains an extended section, which has the following format at // location get_extended_section_header_offset(): // [kExtendedInt64CountOffset] : count of extended 64 bit entries // [kExtendedCodePtrCountOffset] : count of extended code pointers // [kExtendedHeapPtrCountOffset] : count of extended heap pointers // [kExtendedInt32CountOffset] : count of extended 32 bit entries // [first_index(INT64, EXTENDED_SECTION)] : 64 bit entries // ... : ... // [first_index(CODE_PTR, EXTENDED_SECTION)]: code pointer entries // ... : ... // [first_index(HEAP_PTR, EXTENDED_SECTION)]: heap pointer entries // ... : ... // [first_index(INT32, EXTENDED_SECTION)] : 32 bit entries // ... : ... // class ConstantPoolArray: public HeapObject { public: enum WeakObjectState { NO_WEAK_OBJECTS, WEAK_OBJECTS_IN_OPTIMIZED_CODE, WEAK_OBJECTS_IN_IC }; enum Type { INT64 = 0, CODE_PTR, HEAP_PTR, INT32, // Number of types stored by the ConstantPoolArrays. NUMBER_OF_TYPES, FIRST_TYPE = INT64, LAST_TYPE = INT32 }; enum LayoutSection { SMALL_SECTION = 0, EXTENDED_SECTION }; class NumberOfEntries BASE_EMBEDDED { public: inline NumberOfEntries(int int64_count, int code_ptr_count, int heap_ptr_count, int int32_count) { element_counts_[INT64] = int64_count; element_counts_[CODE_PTR] = code_ptr_count; element_counts_[HEAP_PTR] = heap_ptr_count; element_counts_[INT32] = int32_count; } inline NumberOfEntries(ConstantPoolArray* array, LayoutSection section) { element_counts_[INT64] = array->number_of_entries(INT64, section); element_counts_[CODE_PTR] = array->number_of_entries(CODE_PTR, section); element_counts_[HEAP_PTR] = array->number_of_entries(HEAP_PTR, section); element_counts_[INT32] = array->number_of_entries(INT32, section); } inline int count_of(Type type) const { ASSERT(type < NUMBER_OF_TYPES); return element_counts_[type]; } inline int total_count() const { int count = 0; for (int i = 0; i < NUMBER_OF_TYPES; i++) { count += element_counts_[i]; } return count; } inline int are_in_range(int min, int max) const { for (int i = FIRST_TYPE; i < NUMBER_OF_TYPES; i++) { if (element_counts_[i] < min || element_counts_[i] > max) { return false; } } return true; } private: int element_counts_[NUMBER_OF_TYPES]; }; class Iterator BASE_EMBEDDED { public: inline Iterator(ConstantPoolArray* array, Type type) : array_(array), type_(type), final_section_(array->final_section()) { current_section_ = SMALL_SECTION; next_index_ = array->first_index(type, SMALL_SECTION); update_section(); } inline int next_index(); inline bool is_finished(); private: inline void update_section(); ConstantPoolArray* array_; const Type type_; const LayoutSection final_section_; LayoutSection current_section_; int next_index_; }; // Getters for the first index, the last index and the count of entries of // a given type for a given layout section. inline int first_index(Type type, LayoutSection layout_section); inline int last_index(Type type, LayoutSection layout_section); inline int number_of_entries(Type type, LayoutSection layout_section); // Returns the type of the entry at the given index. inline Type get_type(int index); // Setter and getter for pool elements. inline Address get_code_ptr_entry(int index); inline Object* get_heap_ptr_entry(int index); inline int64_t get_int64_entry(int index); inline int32_t get_int32_entry(int index); inline double get_int64_entry_as_double(int index); inline void set(int index, Address value); inline void set(int index, Object* value); inline void set(int index, int64_t value); inline void set(int index, double value); inline void set(int index, int32_t value); // Setter and getter for weak objects state inline void set_weak_object_state(WeakObjectState state); inline WeakObjectState get_weak_object_state(); // Returns true if the constant pool has an extended layout, false if it has // only the small layout. inline bool is_extended_layout(); // Returns the last LayoutSection in this constant pool array. inline LayoutSection final_section(); // Set up initial state for a small layout constant pool array. inline void Init(const NumberOfEntries& small); // Set up initial state for an extended layout constant pool array. inline void InitExtended(const NumberOfEntries& small, const NumberOfEntries& extended); // Clears the pointer entries with GC safe values. void ClearPtrEntries(Isolate* isolate); // returns the total number of entries in the constant pool array. inline int length(); // Garbage collection support. inline int size(); inline static int SizeFor(const NumberOfEntries& small) { int size = kFirstEntryOffset + (small.count_of(INT64) * kInt64Size) + (small.count_of(CODE_PTR) * kPointerSize) + (small.count_of(HEAP_PTR) * kPointerSize) + (small.count_of(INT32) * kInt32Size); return RoundUp(size, kPointerSize); } inline static int SizeForExtended(const NumberOfEntries& small, const NumberOfEntries& extended) { int size = SizeFor(small); size = RoundUp(size, kInt64Size); // Align extended header to 64 bits. size += kExtendedFirstOffset + (extended.count_of(INT64) * kInt64Size) + (extended.count_of(CODE_PTR) * kPointerSize) + (extended.count_of(HEAP_PTR) * kPointerSize) + (extended.count_of(INT32) * kInt32Size); return RoundUp(size, kPointerSize); } inline static int entry_size(Type type) { switch (type) { case INT32: return kInt32Size; case INT64: return kInt64Size; case CODE_PTR: case HEAP_PTR: return kPointerSize; default: UNREACHABLE(); return 0; } } // Code Generation support. inline int OffsetOfElementAt(int index) { int offset; LayoutSection section; if (is_extended_layout() && index >= first_extended_section_index()) { section = EXTENDED_SECTION; offset = get_extended_section_header_offset() + kExtendedFirstOffset; } else { section = SMALL_SECTION; offset = kFirstEntryOffset; } // Add offsets for the preceding type sections. ASSERT(index <= last_index(LAST_TYPE, section)); for (Type type = FIRST_TYPE; index > last_index(type, section); type = next_type(type)) { offset += entry_size(type) * number_of_entries(type, section); } // Add offset for the index in it's type. Type type = get_type(index); offset += entry_size(type) * (index - first_index(type, section)); return offset; } // Casting. static inline ConstantPoolArray* cast(Object* obj); // Garbage collection support. Object** RawFieldOfElementAt(int index) { return HeapObject::RawField(this, OffsetOfElementAt(index)); } // Small Layout description. static const int kSmallLayout1Offset = HeapObject::kHeaderSize; static const int kSmallLayout2Offset = kSmallLayout1Offset + kInt32Size; static const int kHeaderSize = kSmallLayout2Offset + kInt32Size; static const int kFirstEntryOffset = ROUND_UP(kHeaderSize, kInt64Size); static const int kSmallLayoutCountBits = 10; static const int kMaxSmallEntriesPerType = (1 << kSmallLayoutCountBits) - 1; // Fields in kSmallLayout1Offset. class Int64CountField: public BitField<int, 1, kSmallLayoutCountBits> {}; class CodePtrCountField: public BitField<int, 11, kSmallLayoutCountBits> {}; class HeapPtrCountField: public BitField<int, 21, kSmallLayoutCountBits> {}; class IsExtendedField: public BitField<bool, 31, 1> {}; // Fields in kSmallLayout2Offset. class Int32CountField: public BitField<int, 1, kSmallLayoutCountBits> {}; class TotalCountField: public BitField<int, 11, 12> {}; class WeakObjectStateField: public BitField<WeakObjectState, 23, 2> {}; // Extended layout description, which starts at // get_extended_section_header_offset(). static const int kExtendedInt64CountOffset = 0; static const int kExtendedCodePtrCountOffset = kExtendedInt64CountOffset + kPointerSize; static const int kExtendedHeapPtrCountOffset = kExtendedCodePtrCountOffset + kPointerSize; static const int kExtendedInt32CountOffset = kExtendedHeapPtrCountOffset + kPointerSize; static const int kExtendedFirstOffset = kExtendedInt32CountOffset + kPointerSize; // Dispatched behavior. void ConstantPoolIterateBody(ObjectVisitor* v); DECLARE_PRINTER(ConstantPoolArray) DECLARE_VERIFIER(ConstantPoolArray) private: inline int first_extended_section_index(); inline int get_extended_section_header_offset(); inline static Type next_type(Type type) { ASSERT(type >= FIRST_TYPE && type < NUMBER_OF_TYPES); int type_int = static_cast<int>(type); return static_cast<Type>(++type_int); } DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolArray); }; // DescriptorArrays are fixed arrays used to hold instance descriptors. // The format of the these objects is: // [0]: Number of descriptors // [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array: // [0]: pointer to fixed array with enum cache // [1]: either Smi(0) or pointer to fixed array with indices // [2]: first key // [2 + number of descriptors * kDescriptorSize]: start of slack class DescriptorArray: public FixedArray { public: // Returns true for both shared empty_descriptor_array and for smis, which the // map uses to encode additional bit fields when the descriptor array is not // yet used. inline bool IsEmpty(); // Returns the number of descriptors in the array. int number_of_descriptors() { ASSERT(length() >= kFirstIndex || IsEmpty()); int len = length(); return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value(); } int number_of_descriptors_storage() { int len = length(); return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize; } int NumberOfSlackDescriptors() { return number_of_descriptors_storage() - number_of_descriptors(); } inline void SetNumberOfDescriptors(int number_of_descriptors); inline int number_of_entries() { return number_of_descriptors(); } bool HasEnumCache() { return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi(); } void CopyEnumCacheFrom(DescriptorArray* array) { set(kEnumCacheIndex, array->get(kEnumCacheIndex)); } FixedArray* GetEnumCache() { ASSERT(HasEnumCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex)); } bool HasEnumIndicesCache() { if (IsEmpty()) return false; Object* object = get(kEnumCacheIndex); if (object->IsSmi()) return false; FixedArray* bridge = FixedArray::cast(object); return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi(); } FixedArray* GetEnumIndicesCache() { ASSERT(HasEnumIndicesCache()); FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex)); return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex)); } Object** GetEnumCacheSlot() { ASSERT(HasEnumCache()); return HeapObject::RawField(reinterpret_cast<HeapObject*>(this), kEnumCacheOffset); } void ClearEnumCache(); // Initialize or change the enum cache, // using the supplied storage for the small "bridge". void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache, Object* new_index_cache); // Accessors for fetching instance descriptor at descriptor number. inline Name* GetKey(int descriptor_number); inline Object** GetKeySlot(int descriptor_number); inline Object* GetValue(int descriptor_number); inline void SetValue(int descriptor_number, Object* value); inline Object** GetValueSlot(int descriptor_number); inline Object** GetDescriptorStartSlot(int descriptor_number); inline Object** GetDescriptorEndSlot(int descriptor_number); inline PropertyDetails GetDetails(int descriptor_number); inline PropertyType GetType(int descriptor_number); inline int GetFieldIndex(int descriptor_number); inline HeapType* GetFieldType(int descriptor_number); inline Object* GetConstant(int descriptor_number); inline Object* GetCallbacksObject(int descriptor_number); inline AccessorDescriptor* GetCallbacks(int descriptor_number); inline Name* GetSortedKey(int descriptor_number); inline int GetSortedKeyIndex(int descriptor_number); inline void SetSortedKey(int pointer, int descriptor_number); inline void SetRepresentation(int descriptor_number, Representation representation); // Accessor for complete descriptor. inline void Get(int descriptor_number, Descriptor* desc); inline void Set(int descriptor_number, Descriptor* desc); void Replace(int descriptor_number, Descriptor* descriptor); // Append automatically sets the enumeration index. This should only be used // to add descriptors in bulk at the end, followed by sorting the descriptor // array. inline void Append(Descriptor* desc); static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc, int enumeration_index, int slack = 0); static Handle<DescriptorArray> CopyUpToAddAttributes( Handle<DescriptorArray> desc, int enumeration_index, PropertyAttributes attributes, int slack = 0); // Sort the instance descriptors by the hash codes of their keys. void Sort(); // Search the instance descriptors for given name. INLINE(int Search(Name* name, int number_of_own_descriptors)); // As the above, but uses DescriptorLookupCache and updates it when // necessary. INLINE(int SearchWithCache(Name* name, Map* map)); // Allocates a DescriptorArray, but returns the singleton // empty descriptor array object if number_of_descriptors is 0. static Handle<DescriptorArray> Allocate(Isolate* isolate, int number_of_descriptors, int slack = 0); // Casting. static inline DescriptorArray* cast(Object* obj); // Constant for denoting key was not found. static const int kNotFound = -1; static const int kDescriptorLengthIndex = 0; static const int kEnumCacheIndex = 1; static const int kFirstIndex = 2; // The length of the "bridge" to the enum cache. static const int kEnumCacheBridgeLength = 2; static const int kEnumCacheBridgeCacheIndex = 0; static const int kEnumCacheBridgeIndicesCacheIndex = 1; // Layout description. static const int kDescriptorLengthOffset = FixedArray::kHeaderSize; static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize; static const int kFirstOffset = kEnumCacheOffset + kPointerSize; // Layout description for the bridge array. static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize; // Layout of descriptor. static const int kDescriptorKey = 0; static const int kDescriptorDetails = 1; static const int kDescriptorValue = 2; static const int kDescriptorSize = 3; #ifdef OBJECT_PRINT // Print all the descriptors. void PrintDescriptors(FILE* out = stdout); #endif #ifdef DEBUG // Is the descriptor array sorted and without duplicates? bool IsSortedNoDuplicates(int valid_descriptors = -1); // Is the descriptor array consistent with the back pointers in targets? bool IsConsistentWithBackPointers(Map* current_map); // Are two DescriptorArrays equal? bool IsEqualTo(DescriptorArray* other); #endif // Returns the fixed array length required to hold number_of_descriptors // descriptors. static int LengthFor(int number_of_descriptors) { return ToKeyIndex(number_of_descriptors); } private: // WhitenessWitness is used to prove that a descriptor array is white // (unmarked), so incremental write barriers can be skipped because the // marking invariant cannot be broken and slots pointing into evacuation // candidates will be discovered when the object is scanned. A witness is // always stack-allocated right after creating an array. By allocating a // witness, incremental marking is globally disabled. The witness is then // passed along wherever needed to statically prove that the array is known to // be white. class WhitenessWitness { public: inline explicit WhitenessWitness(DescriptorArray* array); inline ~WhitenessWitness(); private: IncrementalMarking* marking_; }; // An entry in a DescriptorArray, represented as an (array, index) pair. class Entry { public: inline explicit Entry(DescriptorArray* descs, int index) : descs_(descs), index_(index) { } inline PropertyType type() { return descs_->GetType(index_); } inline Object* GetCallbackObject() { return descs_->GetValue(index_); } private: DescriptorArray* descs_; int index_; }; // Conversion from descriptor number to array indices. static int ToKeyIndex(int descriptor_number) { return kFirstIndex + (descriptor_number * kDescriptorSize) + kDescriptorKey; } static int ToDetailsIndex(int descriptor_number) { return kFirstIndex + (descriptor_number * kDescriptorSize) + kDescriptorDetails; } static int ToValueIndex(int descriptor_number) { return kFirstIndex + (descriptor_number * kDescriptorSize) + kDescriptorValue; } // Transfer a complete descriptor from the src descriptor array to this // descriptor array. void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&); inline void Set(int descriptor_number, Descriptor* desc, const WhitenessWitness&); inline void Append(Descriptor* desc, const WhitenessWitness&); // Swap first and second descriptor. inline void SwapSortedKeys(int first, int second); DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray); }; enum SearchMode { ALL_ENTRIES, VALID_ENTRIES }; template<SearchMode search_mode, typename T> inline int LinearSearch(T* array, Name* name, int len, int valid_entries); template<SearchMode search_mode, typename T> inline int Search(T* array, Name* name, int valid_entries = 0); // HashTable is a subclass of FixedArray that implements a hash table // that uses open addressing and quadratic probing. // // In order for the quadratic probing to work, elements that have not // yet been used and elements that have been deleted are // distinguished. Probing continues when deleted elements are // encountered and stops when unused elements are encountered. // // - Elements with key == undefined have not been used yet. // - Elements with key == the_hole have been deleted. // // The hash table class is parameterized with a Shape and a Key. // Shape must be a class with the following interface: // class ExampleShape { // public: // // Tells whether key matches other. // static bool IsMatch(Key key, Object* other); // // Returns the hash value for key. // static uint32_t Hash(Key key); // // Returns the hash value for object. // static uint32_t HashForObject(Key key, Object* object); // // Convert key to an object. // static inline Handle<Object> AsHandle(Isolate* isolate, Key key); // // The prefix size indicates number of elements in the beginning // // of the backing storage. // static const int kPrefixSize = ..; // // The Element size indicates number of elements per entry. // static const int kEntrySize = ..; // }; // The prefix size indicates an amount of memory in the // beginning of the backing storage that can be used for non-element // information by subclasses. template<typename Key> class BaseShape { public: static const bool UsesSeed = false; static uint32_t Hash(Key key) { return 0; } static uint32_t SeededHash(Key key, uint32_t seed) { ASSERT(UsesSeed); return Hash(key); } static uint32_t HashForObject(Key key, Object* object) { return 0; } static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) { ASSERT(UsesSeed); return HashForObject(key, object); } }; template<typename Derived, typename Shape, typename Key> class HashTable: public FixedArray { public: // Wrapper methods inline uint32_t Hash(Key key) { if (Shape::UsesSeed) { return Shape::SeededHash(key, GetHeap()->HashSeed()); } else { return Shape::Hash(key); } } inline uint32_t HashForObject(Key key, Object* object) { if (Shape::UsesSeed) { return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object); } else { return Shape::HashForObject(key, object); } } // Returns the number of elements in the hash table. int NumberOfElements() { return Smi::cast(get(kNumberOfElementsIndex))->value(); } // Returns the number of deleted elements in the hash table. int NumberOfDeletedElements() { return Smi::cast(get(kNumberOfDeletedElementsIndex))->value(); } // Returns the capacity of the hash table. int Capacity() { return Smi::cast(get(kCapacityIndex))->value(); } // ElementAdded should be called whenever an element is added to a // hash table. void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); } // ElementRemoved should be called whenever an element is removed from // a hash table. void ElementRemoved() { SetNumberOfElements(NumberOfElements() - 1); SetNumberOfDeletedElements(NumberOfDeletedElements() + 1); } void ElementsRemoved(int n) { SetNumberOfElements(NumberOfElements() - n); SetNumberOfDeletedElements(NumberOfDeletedElements() + n); } // Returns a new HashTable object. MUST_USE_RESULT static Handle<Derived> New( Isolate* isolate, int at_least_space_for, MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY, PretenureFlag pretenure = NOT_TENURED); // Computes the required capacity for a table holding the given // number of elements. May be more than HashTable::kMaxCapacity. static int ComputeCapacity(int at_least_space_for); // Returns the key at entry. Object* KeyAt(int entry) { return get(EntryToIndex(entry)); } // Tells whether k is a real key. The hole and undefined are not allowed // as keys and can be used to indicate missing or deleted elements. bool IsKey(Object* k) { return !k->IsTheHole() && !k->IsUndefined(); } // Garbage collection support. void IteratePrefix(ObjectVisitor* visitor); void IterateElements(ObjectVisitor* visitor); // Casting. static inline HashTable* cast(Object* obj); // Compute the probe offset (quadratic probing). INLINE(static uint32_t GetProbeOffset(uint32_t n)) { return (n + n * n) >> 1; } static const int kNumberOfElementsIndex = 0; static const int kNumberOfDeletedElementsIndex = 1; static const int kCapacityIndex = 2; static const int kPrefixStartIndex = 3; static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize; static const int kEntrySize = Shape::kEntrySize; static const int kElementsStartOffset = kHeaderSize + kElementsStartIndex * kPointerSize; static const int kCapacityOffset = kHeaderSize + kCapacityIndex * kPointerSize; // Constant used for denoting a absent entry. static const int kNotFound = -1; // Maximal capacity of HashTable. Based on maximal length of underlying // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex // cannot overflow. static const int kMaxCapacity = (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize; // Find entry for key otherwise return kNotFound. inline int FindEntry(Key key); int FindEntry(Isolate* isolate, Key key); // Rehashes the table in-place. void Rehash(Key key); protected: friend class ObjectHashTable; // Find the entry at which to insert element with the given key that // has the given hash value. uint32_t FindInsertionEntry(uint32_t hash); // Returns the index for an entry (of the key) static inline int EntryToIndex(int entry) { return (entry * kEntrySize) + kElementsStartIndex; } // Update the number of elements in the hash table. void SetNumberOfElements(int nof) { set(kNumberOfElementsIndex, Smi::FromInt(nof)); } // Update the number of deleted elements in the hash table. void SetNumberOfDeletedElements(int nod) { set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod)); } // Sets the capacity of the hash table. void SetCapacity(int capacity) { // To scale a computed hash code to fit within the hash table, we // use bit-wise AND with a mask, so the capacity must be positive // and non-zero. ASSERT(capacity > 0); ASSERT(capacity <= kMaxCapacity); set(kCapacityIndex, Smi::FromInt(capacity)); } // Returns probe entry. static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) { ASSERT(IsPowerOf2(size)); return (hash + GetProbeOffset(number)) & (size - 1); } inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) { return hash & (size - 1); } inline static uint32_t NextProbe( uint32_t last, uint32_t number, uint32_t size) { return (last + number) & (size - 1); } // Attempt to shrink hash table after removal of key. MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key); // Ensure enough space for n additional elements. MUST_USE_RESULT static Handle<Derived> EnsureCapacity( Handle<Derived> table, int n, Key key, PretenureFlag pretenure = NOT_TENURED); private: // Returns _expected_ if one of entries given by the first _probe_ probes is // equal to _expected_. Otherwise, returns the entry given by the probe // number _probe_. uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected); void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode); // Rehashes this hash-table into the new table. void Rehash(Handle<Derived> new_table, Key key); }; // HashTableKey is an abstract superclass for virtual key behavior. class HashTableKey { public: // Returns whether the other object matches this key. virtual bool IsMatch(Object* other) = 0; // Returns the hash value for this key. virtual uint32_t Hash() = 0; // Returns the hash value for object. virtual uint32_t HashForObject(Object* key) = 0; // Returns the key object for storing into the hash table. MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0; // Required. virtual ~HashTableKey() {} }; class StringTableShape : public BaseShape<HashTableKey*> { public: static inline bool IsMatch(HashTableKey* key, Object* value) { return key->IsMatch(value); } static inline uint32_t Hash(HashTableKey* key) { return key->Hash(); } static inline uint32_t HashForObject(HashTableKey* key, Object* object) { return key->HashForObject(object); } static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key); static const int kPrefixSize = 0; static const int kEntrySize = 1; }; class SeqOneByteString; // StringTable. // // No special elements in the prefix and the element size is 1 // because only the string itself (the key) needs to be stored. class StringTable: public HashTable<StringTable, StringTableShape, HashTableKey*> { public: // Find string in the string table. If it is not there yet, it is // added. The return value is the string found. static Handle<String> LookupString(Isolate* isolate, Handle<String> key); static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key); // Tries to internalize given string and returns string handle on success // or an empty handle otherwise. MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists( Isolate* isolate, Handle<String> string); // Looks up a string that is equal to the given string and returns // string handle if it is found, or an empty handle otherwise. MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists( Isolate* isolate, Handle<String> str); MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists( Isolate* isolate, uint16_t c1, uint16_t c2); // Casting. static inline StringTable* cast(Object* obj); private: template <bool seq_ascii> friend class JsonParser; DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable); }; class MapCacheShape : public BaseShape<HashTableKey*> { public: static inline bool IsMatch(HashTableKey* key, Object* value) { return key->IsMatch(value); } static inline uint32_t Hash(HashTableKey* key) { return key->Hash(); } static inline uint32_t HashForObject(HashTableKey* key, Object* object) { return key->HashForObject(object); } static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key); static const int kPrefixSize = 0; static const int kEntrySize = 2; }; // MapCache. // // Maps keys that are a fixed array of unique names to a map. // Used for canonicalize maps for object literals. class MapCache: public HashTable<MapCache, MapCacheShape, HashTableKey*> { public: // Find cached value for a name key, otherwise return null. Object* Lookup(FixedArray* key); static Handle<MapCache> Put( Handle<MapCache> map_cache, Handle<FixedArray> key, Handle<Map> value); static inline MapCache* cast(Object* obj); private: DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache); }; template <typename Derived, typename Shape, typename Key> class Dictionary: public HashTable<Derived, Shape, Key> { protected: typedef HashTable<Derived, Shape, Key> DerivedHashTable; public: static inline Dictionary* cast(Object* obj) { return reinterpret_cast<Dictionary*>(obj); } // Returns the value at entry. Object* ValueAt(int entry) { return this->get(DerivedHashTable::EntryToIndex(entry) + 1); } // Set the value for entry. void ValueAtPut(int entry, Object* value) { this->set(DerivedHashTable::EntryToIndex(entry) + 1, value); } // Returns the property details for the property at entry. PropertyDetails DetailsAt(int entry) { ASSERT(entry >= 0); // Not found is -1, which is not caught by get(). return PropertyDetails( Smi::cast(this->get(DerivedHashTable::EntryToIndex(entry) + 2))); } // Set the details for entry. void DetailsAtPut(int entry, PropertyDetails value) { this->set(DerivedHashTable::EntryToIndex(entry) + 2, value.AsSmi()); } // Sorting support void CopyValuesTo(FixedArray* elements); // Delete a property from the dictionary. static Handle<Object> DeleteProperty( Handle<Derived> dictionary, int entry, JSObject::DeleteMode mode); // Attempt to shrink the dictionary after deletion of key. MUST_USE_RESULT static inline Handle<Derived> Shrink( Handle<Derived> dictionary, Key key) { return DerivedHashTable::Shrink(dictionary, key); } // Returns the number of elements in the dictionary filtering out properties // with the specified attributes. int NumberOfElementsFilterAttributes(PropertyAttributes filter); // Returns the number of enumerable elements in the dictionary. int NumberOfEnumElements(); enum SortMode { UNSORTED, SORTED }; // Copies keys to preallocated fixed array. void CopyKeysTo(FixedArray* storage, PropertyAttributes filter, SortMode sort_mode); // Fill in details for properties into storage. void CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter, SortMode sort_mode); // Accessors for next enumeration index. void SetNextEnumerationIndex(int index) { ASSERT(index != 0); this->set(kNextEnumerationIndexIndex, Smi::FromInt(index)); } int NextEnumerationIndex() { return Smi::cast(this->get(kNextEnumerationIndexIndex))->value(); } // Creates a new dictionary. MUST_USE_RESULT static Handle<Derived> New( Isolate* isolate, int at_least_space_for, PretenureFlag pretenure = NOT_TENURED); // Ensure enough space for n additional elements. static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key); #ifdef OBJECT_PRINT void Print(FILE* out = stdout); #endif // Returns the key (slow). Object* SlowReverseLookup(Object* value); // Sets the entry to (key, value) pair. inline void SetEntry(int entry, Handle<Object> key, Handle<Object> value); inline void SetEntry(int entry, Handle<Object> key, Handle<Object> value, PropertyDetails details); MUST_USE_RESULT static Handle<Derived> Add( Handle<Derived> dictionary, Key key, Handle<Object> value, PropertyDetails details); protected: // Generic at put operation. MUST_USE_RESULT static Handle<Derived> AtPut( Handle<Derived> dictionary, Key key, Handle<Object> value); // Add entry to dictionary. static void AddEntry( Handle<Derived> dictionary, Key key, Handle<Object> value, PropertyDetails details, uint32_t hash); // Generate new enumeration indices to avoid enumeration index overflow. static void GenerateNewEnumerationIndices(Handle<Derived> dictionary); static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex; static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1; }; class NameDictionaryShape : public BaseShape<Handle<Name> > { public: static inline bool IsMatch(Handle<Name> key, Object* other); static inline uint32_t Hash(Handle<Name> key); static inline uint32_t HashForObject(Handle<Name> key, Object* object); static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key); static const int kPrefixSize = 2; static const int kEntrySize = 3; static const bool kIsEnumerable = true; }; class NameDictionary: public Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> > { typedef Dictionary< NameDictionary, NameDictionaryShape, Handle<Name> > DerivedDictionary; public: static inline NameDictionary* cast(Object* obj) { ASSERT(obj->IsDictionary()); return reinterpret_cast<NameDictionary*>(obj); } // Copies enumerable keys to preallocated fixed array. void CopyEnumKeysTo(FixedArray* storage); inline static void DoGenerateNewEnumerationIndices( Handle<NameDictionary> dictionary); // Find entry for key, otherwise return kNotFound. Optimized version of // HashTable::FindEntry. int FindEntry(Handle<Name> key); }; class NumberDictionaryShape : public BaseShape<uint32_t> { public: static inline bool IsMatch(uint32_t key, Object* other); static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key); static const int kEntrySize = 3; static const bool kIsEnumerable = false; }; class SeededNumberDictionaryShape : public NumberDictionaryShape { public: static const bool UsesSeed = true; static const int kPrefixSize = 2; static inline uint32_t SeededHash(uint32_t key, uint32_t seed); static inline uint32_t SeededHashForObject(uint32_t key, uint32_t seed, Object* object); }; class UnseededNumberDictionaryShape : public NumberDictionaryShape { public: static const int kPrefixSize = 0; static inline uint32_t Hash(uint32_t key); static inline uint32_t HashForObject(uint32_t key, Object* object); }; class SeededNumberDictionary : public Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t> { public: static SeededNumberDictionary* cast(Object* obj) { ASSERT(obj->IsDictionary()); return reinterpret_cast<SeededNumberDictionary*>(obj); } // Type specific at put (default NONE attributes is used when adding). MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value); MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, PropertyDetails details); // Set an existing entry or add a new one if needed. // Return the updated dictionary. MUST_USE_RESULT static Handle<SeededNumberDictionary> Set( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, PropertyDetails details); void UpdateMaxNumberKey(uint32_t key); // If slow elements are required we will never go back to fast-case // for the elements kept in this dictionary. We require slow // elements if an element has been added at an index larger than // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called // when defining a getter or setter with a number key. inline bool requires_slow_elements(); inline void set_requires_slow_elements(); // Get the value of the max number key that has been added to this // dictionary. max_number_key can only be called if // requires_slow_elements returns false. inline uint32_t max_number_key(); // Bit masks. static const int kRequiresSlowElementsMask = 1; static const int kRequiresSlowElementsTagSize = 1; static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1; }; class UnseededNumberDictionary : public Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t> { public: static UnseededNumberDictionary* cast(Object* obj) { ASSERT(obj->IsDictionary()); return reinterpret_cast<UnseededNumberDictionary*>(obj); } // Type specific at put (default NONE attributes is used when adding). MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value); MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value); // Set an existing entry or add a new one if needed. // Return the updated dictionary. MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value); }; class ObjectHashTableShape : public BaseShape<Handle<Object> > { public: static inline bool IsMatch(Handle<Object> key, Object* other); static inline uint32_t Hash(Handle<Object> key); static inline uint32_t HashForObject(Handle<Object> key, Object* object); static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key); static const int kPrefixSize = 0; static const int kEntrySize = 2; }; // ObjectHashTable maps keys that are arbitrary objects to object values by // using the identity hash of the key for hashing purposes. class ObjectHashTable: public HashTable<ObjectHashTable, ObjectHashTableShape, Handle<Object> > { typedef HashTable< ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable; public: static inline ObjectHashTable* cast(Object* obj) { ASSERT(obj->IsHashTable()); return reinterpret_cast<ObjectHashTable*>(obj); } // Attempt to shrink hash table after removal of key. MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink( Handle<ObjectHashTable> table, Handle<Object> key); // Looks up the value associated with the given key. The hole value is // returned in case the key is not present. Object* Lookup(Handle<Object> key); // Adds (or overwrites) the value associated with the given key. static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table, Handle<Object> key, Handle<Object> value); // Returns an ObjectHashTable (possibly |table|) where |key| has been removed. static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table, Handle<Object> key, bool* was_present); private: friend class MarkCompactCollector; void AddEntry(int entry, Object* key, Object* value); void RemoveEntry(int entry); // Returns the index to the value of an entry. static inline int EntryToValueIndex(int entry) { return EntryToIndex(entry) + 1; } }; // OrderedHashTable is a HashTable with Object keys that preserves // insertion order. There are Map and Set interfaces (OrderedHashMap // and OrderedHashTable, below). It is meant to be used by JSMap/JSSet. // // Only Object* keys are supported, with Object::SameValueZero() used as the // equality operator and Object::GetHash() for the hash function. // // Based on the "Deterministic Hash Table" as described by Jason Orendorff at // https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables // Originally attributed to Tyler Close. // // Memory layout: // [0]: bucket count // [1]: element count // [2]: deleted element count // [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an // offset into the data table (see below) where the // first item in this bucket is stored. // [3 + NumberOfBuckets()..length]: "data table", an array of length // Capacity() * kEntrySize, where the first entrysize // items are handled by the derived class and the // item at kChainOffset is another entry into the // data table indicating the next entry in this hash // bucket. // // When we transition the table to a new version we obsolete it and reuse parts // of the memory to store information how to transition an iterator to the new // table: // // Memory layout for obsolete table: // [0]: bucket count // [1]: Next newer table // [2]: Number of removed holes or -1 when the table was cleared. // [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes. // [3 + NumberOfRemovedHoles()..length]: Not used // template<class Derived, class Iterator, int entrysize> class OrderedHashTable: public FixedArray { public: // Returns an OrderedHashTable with a capacity of at least |capacity|. static Handle<Derived> Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED); // Returns an OrderedHashTable (possibly |table|) with enough space // to add at least one new element. static Handle<Derived> EnsureGrowable(Handle<Derived> table); // Returns an OrderedHashTable (possibly |table|) that's shrunken // if possible. static Handle<Derived> Shrink(Handle<Derived> table); // Returns a new empty OrderedHashTable and records the clearing so that // exisiting iterators can be updated. static Handle<Derived> Clear(Handle<Derived> table); // Returns an OrderedHashTable (possibly |table|) where |key| has been // removed. static Handle<Derived> Remove(Handle<Derived> table, Handle<Object> key, bool* was_present); // Returns kNotFound if the key isn't present. int FindEntry(Handle<Object> key); int NumberOfElements() { return Smi::cast(get(kNumberOfElementsIndex))->value(); } int NumberOfDeletedElements() { return Smi::cast(get(kNumberOfDeletedElementsIndex))->value(); } int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); } int NumberOfBuckets() { return Smi::cast(get(kNumberOfBucketsIndex))->value(); } // Returns the index into the data table where the new entry // should be placed. The table is assumed to have enough space // for a new entry. int AddEntry(int hash); // Removes the entry, and puts the_hole in entrysize pointers // (leaving the hash table chain intact). void RemoveEntry(int entry); // Returns an index into |this| for the given entry. int EntryToIndex(int entry) { return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize); } Object* KeyAt(int entry) { return get(EntryToIndex(entry)); } bool IsObsolete() { return !get(kNextTableIndex)->IsSmi(); } // The next newer table. This is only valid if the table is obsolete. Derived* NextTable() { return Derived::cast(get(kNextTableIndex)); } // When the table is obsolete we store the indexes of the removed holes. int RemovedIndexAt(int index) { return Smi::cast(get(kRemovedHolesIndex + index))->value(); } static const int kNotFound = -1; static const int kMinCapacity = 4; private: static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity); void SetNumberOfBuckets(int num) { set(kNumberOfBucketsIndex, Smi::FromInt(num)); } void SetNumberOfElements(int num) { set(kNumberOfElementsIndex, Smi::FromInt(num)); } void SetNumberOfDeletedElements(int num) { set(kNumberOfDeletedElementsIndex, Smi::FromInt(num)); } int Capacity() { return NumberOfBuckets() * kLoadFactor; } // Returns the next entry for the given entry. int ChainAt(int entry) { return Smi::cast(get(EntryToIndex(entry) + kChainOffset))->value(); } int HashToBucket(int hash) { return hash & (NumberOfBuckets() - 1); } int HashToEntry(int hash) { int bucket = HashToBucket(hash); return Smi::cast(get(kHashTableStartIndex + bucket))->value(); } void SetNextTable(Derived* next_table) { set(kNextTableIndex, next_table); } void SetRemovedIndexAt(int index, int removed_index) { return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index)); } static const int kNumberOfBucketsIndex = 0; static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1; static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1; static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1; static const int kNextTableIndex = kNumberOfElementsIndex; static const int kRemovedHolesIndex = kHashTableStartIndex; static const int kEntrySize = entrysize + 1; static const int kChainOffset = entrysize; static const int kLoadFactor = 2; static const int kMaxCapacity = (FixedArray::kMaxLength - kHashTableStartIndex) / (1 + (kEntrySize * kLoadFactor)); }; class JSSetIterator; class OrderedHashSet: public OrderedHashTable< OrderedHashSet, JSSetIterator, 1> { public: static OrderedHashSet* cast(Object* obj) { ASSERT(obj->IsOrderedHashTable()); return reinterpret_cast<OrderedHashSet*>(obj); } bool Contains(Handle<Object> key); static Handle<OrderedHashSet> Add( Handle<OrderedHashSet> table, Handle<Object> key); }; class JSMapIterator; class OrderedHashMap:public OrderedHashTable< OrderedHashMap, JSMapIterator, 2> { public: static OrderedHashMap* cast(Object* obj) { ASSERT(obj->IsOrderedHashTable()); return reinterpret_cast<OrderedHashMap*>(obj); } Object* Lookup(Handle<Object> key); static Handle<OrderedHashMap> Put( Handle<OrderedHashMap> table, Handle<Object> key, Handle<Object> value); private: Object* ValueAt(int entry) { return get(EntryToIndex(entry) + kValueOffset); } static const int kValueOffset = 1; }; template <int entrysize> class WeakHashTableShape : public BaseShape<Handle<Object> > { public: static inline bool IsMatch(Handle<Object> key, Object* other); static inline uint32_t Hash(Handle<Object> key); static inline uint32_t HashForObject(Handle<Object> key, Object* object); static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key); static const int kPrefixSize = 0; static const int kEntrySize = entrysize; }; // WeakHashTable maps keys that are arbitrary objects to object values. // It is used for the global weak hash table that maps objects // embedded in optimized code to dependent code lists. class WeakHashTable: public HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> > { typedef HashTable< WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable; public: static inline WeakHashTable* cast(Object* obj) { ASSERT(obj->IsHashTable()); return reinterpret_cast<WeakHashTable*>(obj); } // Looks up the value associated with the given key. The hole value is // returned in case the key is not present. Object* Lookup(Handle<Object> key); // Adds (or overwrites) the value associated with the given key. Mapping a // key to the hole value causes removal of the whole entry. MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table, Handle<Object> key, Handle<Object> value); // This function is called when heap verification is turned on. void Zap(Object* value) { int capacity = Capacity(); for (int i = 0; i < capacity; i++) { set(EntryToIndex(i), value); set(EntryToValueIndex(i), value); } } private: friend class MarkCompactCollector; void AddEntry(int entry, Handle<Object> key, Handle<Object> value); // Returns the index to the value of an entry. static inline int EntryToValueIndex(int entry) { return EntryToIndex(entry) + 1; } }; // JSFunctionResultCache caches results of some JSFunction invocation. // It is a fixed array with fixed structure: // [0]: factory function // [1]: finger index // [2]: current cache size // [3]: dummy field. // The rest of array are key/value pairs. class JSFunctionResultCache: public FixedArray { public: static const int kFactoryIndex = 0; static const int kFingerIndex = kFactoryIndex + 1; static const int kCacheSizeIndex = kFingerIndex + 1; static const int kDummyIndex = kCacheSizeIndex + 1; static const int kEntriesIndex = kDummyIndex + 1; static const int kEntrySize = 2; // key + value static const int kFactoryOffset = kHeaderSize; static const int kFingerOffset = kFactoryOffset + kPointerSize; static const int kCacheSizeOffset = kFingerOffset + kPointerSize; inline void MakeZeroSize(); inline void Clear(); inline int size(); inline void set_size(int size); inline int finger_index(); inline void set_finger_index(int finger_index); // Casting static inline JSFunctionResultCache* cast(Object* obj); DECLARE_VERIFIER(JSFunctionResultCache) }; // ScopeInfo represents information about different scopes of a source // program and the allocation of the scope's variables. Scope information // is stored in a compressed form in ScopeInfo objects and is used // at runtime (stack dumps, deoptimization, etc.). // This object provides quick access to scope info details for runtime // routines. class ScopeInfo : public FixedArray { public: static inline ScopeInfo* cast(Object* object); // Return the type of this scope. ScopeType scope_type(); // Does this scope call eval? bool CallsEval(); // Return the strict mode of this scope. StrictMode strict_mode(); // Does this scope make a sloppy eval call? bool CallsSloppyEval() { return CallsEval() && strict_mode() == SLOPPY; } // Return the total number of locals allocated on the stack and in the // context. This includes the parameters that are allocated in the context. int LocalCount(); // Return the number of stack slots for code. This number consists of two // parts: // 1. One stack slot per stack allocated local. // 2. One stack slot for the function name if it is stack allocated. int StackSlotCount(); // Return the number of context slots for code if a context is allocated. This // number consists of three parts: // 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS // 2. One context slot per context allocated local. // 3. One context slot for the function name if it is context allocated. // Parameters allocated in the context count as context allocated locals. If // no contexts are allocated for this scope ContextLength returns 0. int ContextLength(); // Is this scope the scope of a named function expression? bool HasFunctionName(); // Return if this has context allocated locals. bool HasHeapAllocatedLocals(); // Return if contexts are allocated for this scope. bool HasContext(); // Return the function_name if present. String* FunctionName(); // Return the name of the given parameter. String* ParameterName(int var); // Return the name of the given local. String* LocalName(int var); // Return the name of the given stack local. String* StackLocalName(int var); // Return the name of the given context local. String* ContextLocalName(int var); // Return the mode of the given context local. VariableMode ContextLocalMode(int var); // Return the initialization flag of the given context local. InitializationFlag ContextLocalInitFlag(int var); // Return true if this local was introduced by the compiler, and should not be // exposed to the user in a debugger. bool LocalIsSynthetic(int var); // Lookup support for serialized scope info. Returns the // the stack slot index for a given slot name if the slot is // present; otherwise returns a value < 0. The name must be an internalized // string. int StackSlotIndex(String* name); // Lookup support for serialized scope info. Returns the // context slot index for a given slot name if the slot is present; otherwise // returns a value < 0. The name must be an internalized string. // If the slot is present and mode != NULL, sets *mode to the corresponding // mode for that variable. static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name, VariableMode* mode, InitializationFlag* init_flag); // Lookup support for serialized scope info. Returns the // parameter index for a given parameter name if the parameter is present; // otherwise returns a value < 0. The name must be an internalized string. int ParameterIndex(String* name); // Lookup support for serialized scope info. Returns the function context // slot index if the function name is present and context-allocated (named // function expressions, only), otherwise returns a value < 0. The name // must be an internalized string. int FunctionContextSlotIndex(String* name, VariableMode* mode); // Copies all the context locals into an object used to materialize a scope. static bool CopyContextLocalsToScopeObject(Handle<ScopeInfo> scope_info, Handle<Context> context, Handle<JSObject> scope_object); static Handle<ScopeInfo> Create(Scope* scope, Zone* zone); // Serializes empty scope info. static ScopeInfo* Empty(Isolate* isolate); #ifdef DEBUG void Print(); #endif // The layout of the static part of a ScopeInfo is as follows. Each entry is // numeric and occupies one array slot. // 1. A set of properties of the scope // 2. The number of parameters. This only applies to function scopes. For // non-function scopes this is 0. // 3. The number of non-parameter variables allocated on the stack. // 4. The number of non-parameter and parameter variables allocated in the // context. #define FOR_EACH_NUMERIC_FIELD(V) \ V(Flags) \ V(ParameterCount) \ V(StackLocalCount) \ V(ContextLocalCount) #define FIELD_ACCESSORS(name) \ void Set##name(int value) { \ set(k##name, Smi::FromInt(value)); \ } \ int name() { \ if (length() > 0) { \ return Smi::cast(get(k##name))->value(); \ } else { \ return 0; \ } \ } FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS) #undef FIELD_ACCESSORS private: enum { #define DECL_INDEX(name) k##name, FOR_EACH_NUMERIC_FIELD(DECL_INDEX) #undef DECL_INDEX #undef FOR_EACH_NUMERIC_FIELD kVariablePartIndex }; // The layout of the variable part of a ScopeInfo is as follows: // 1. ParameterEntries: // This part stores the names of the parameters for function scopes. One // slot is used per parameter, so in total this part occupies // ParameterCount() slots in the array. For other scopes than function // scopes ParameterCount() is 0. // 2. StackLocalEntries: // Contains the names of local variables that are allocated on the stack, // in increasing order of the stack slot index. One slot is used per stack // local, so in total this part occupies StackLocalCount() slots in the // array. // 3. ContextLocalNameEntries: // Contains the names of local variables and parameters that are allocated // in the context. They are stored in increasing order of the context slot // index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per // context local, so in total this part occupies ContextLocalCount() slots // in the array. // 4. ContextLocalInfoEntries: // Contains the variable modes and initialization flags corresponding to // the context locals in ContextLocalNameEntries. One slot is used per // context local, so in total this part occupies ContextLocalCount() // slots in the array. // 5. FunctionNameEntryIndex: // If the scope belongs to a named function expression this part contains // information about the function variable. It always occupies two array // slots: a. The name of the function variable. // b. The context or stack slot index for the variable. int ParameterEntriesIndex(); int StackLocalEntriesIndex(); int ContextLocalNameEntriesIndex(); int ContextLocalInfoEntriesIndex(); int FunctionNameEntryIndex(); // Location of the function variable for named function expressions. enum FunctionVariableInfo { NONE, // No function name present. STACK, // Function CONTEXT, UNUSED }; // Properties of scopes. class ScopeTypeField: public BitField<ScopeType, 0, 3> {}; class CallsEvalField: public BitField<bool, 3, 1> {}; class StrictModeField: public BitField<StrictMode, 4, 1> {}; class FunctionVariableField: public BitField<FunctionVariableInfo, 5, 2> {}; class FunctionVariableMode: public BitField<VariableMode, 7, 3> {}; // BitFields representing the encoded information for context locals in the // ContextLocalInfoEntries part. class ContextLocalMode: public BitField<VariableMode, 0, 3> {}; class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {}; }; // The cache for maps used by normalized (dictionary mode) objects. // Such maps do not have property descriptors, so a typical program // needs very limited number of distinct normalized maps. class NormalizedMapCache: public FixedArray { public: static Handle<NormalizedMapCache> New(Isolate* isolate); MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map, PropertyNormalizationMode mode); void Set(Handle<Map> fast_map, Handle<Map> normalized_map); void Clear(); // Casting static inline NormalizedMapCache* cast(Object* obj); static inline bool IsNormalizedMapCache(Object* obj); DECLARE_VERIFIER(NormalizedMapCache) private: static const int kEntries = 64; static inline int GetIndex(Handle<Map> map); // The following declarations hide base class methods. Object* get(int index); void set(int index, Object* value); }; // ByteArray represents fixed sized byte arrays. Used for the relocation info // that is attached to code objects. class ByteArray: public FixedArrayBase { public: inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); } // Setter and getter. inline byte get(int index); inline void set(int index, byte value); // Treat contents as an int array. inline int get_int(int index); static int SizeFor(int length) { return OBJECT_POINTER_ALIGN(kHeaderSize + length); } // We use byte arrays for free blocks in the heap. Given a desired size in // bytes that is a multiple of the word size and big enough to hold a byte // array, this function returns the number of elements a byte array should // have. static int LengthFor(int size_in_bytes) { ASSERT(IsAligned(size_in_bytes, kPointerSize)); ASSERT(size_in_bytes >= kHeaderSize); return size_in_bytes - kHeaderSize; } // Returns data start address. inline Address GetDataStartAddress(); // Returns a pointer to the ByteArray object for a given data start address. static inline ByteArray* FromDataStartAddress(Address address); // Casting. static inline ByteArray* cast(Object* obj); // Dispatched behavior. inline int ByteArraySize() { return SizeFor(this->length()); } DECLARE_PRINTER(ByteArray) DECLARE_VERIFIER(ByteArray) // Layout description. static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize); // Maximal memory consumption for a single ByteArray. static const int kMaxSize = 512 * MB; // Maximal length of a single ByteArray. static const int kMaxLength = kMaxSize - kHeaderSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray); }; // FreeSpace represents fixed sized areas of the heap that are not currently in // use. Used by the heap and GC. class FreeSpace: public HeapObject { public: // [size]: size of the free space including the header. inline int size(); inline void set_size(int value); inline int nobarrier_size(); inline void nobarrier_set_size(int value); inline int Size() { return size(); } // Casting. static inline FreeSpace* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(FreeSpace) DECLARE_VERIFIER(FreeSpace) // Layout description. // Size is smi tagged when it is stored. static const int kSizeOffset = HeapObject::kHeaderSize; static const int kHeaderSize = kSizeOffset + kPointerSize; static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize); private: DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace); }; // V has parameters (Type, type, TYPE, C type, element_size) #define TYPED_ARRAYS(V) \ V(Uint8, uint8, UINT8, uint8_t, 1) \ V(Int8, int8, INT8, int8_t, 1) \ V(Uint16, uint16, UINT16, uint16_t, 2) \ V(Int16, int16, INT16, int16_t, 2) \ V(Uint32, uint32, UINT32, uint32_t, 4) \ V(Int32, int32, INT32, int32_t, 4) \ V(Float32, float32, FLOAT32, float, 4) \ V(Float64, float64, FLOAT64, double, 8) \ V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1) // An ExternalArray represents a fixed-size array of primitive values // which live outside the JavaScript heap. Its subclasses are used to // implement the CanvasArray types being defined in the WebGL // specification. As of this writing the first public draft is not yet // available, but Khronos members can access the draft at: // https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html // // The semantics of these arrays differ from CanvasPixelArray. // Out-of-range values passed to the setter are converted via a C // cast, not clamping. Out-of-range indices cause exceptions to be // raised rather than being silently ignored. class ExternalArray: public FixedArrayBase { public: inline bool is_the_hole(int index) { return false; } // [external_pointer]: The pointer to the external memory area backing this // external array. DECL_ACCESSORS(external_pointer, void) // Pointer to the data store. // Casting. static inline ExternalArray* cast(Object* obj); // Maximal acceptable length for an external array. static const int kMaxLength = 0x3fffffff; // ExternalArray headers are not quadword aligned. static const int kExternalPointerOffset = POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize); static const int kHeaderSize = kExternalPointerOffset + kPointerSize; static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize); private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray); }; // A ExternalUint8ClampedArray represents a fixed-size byte array with special // semantics used for implementing the CanvasPixelArray object. Please see the // specification at: // http://www.whatwg.org/specs/web-apps/current-work/ // multipage/the-canvas-element.html#canvaspixelarray // In particular, write access clamps the value written to 0 or 255 if the // value written is outside this range. class ExternalUint8ClampedArray: public ExternalArray { public: inline uint8_t* external_uint8_clamped_pointer(); // Setter and getter. inline uint8_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalUint8ClampedArray> array, int index); inline void set(int index, uint8_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined and clamps the converted value between 0 and 255. static Handle<Object> SetValue(Handle<ExternalUint8ClampedArray> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalUint8ClampedArray* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalUint8ClampedArray) DECLARE_VERIFIER(ExternalUint8ClampedArray) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8ClampedArray); }; class ExternalInt8Array: public ExternalArray { public: // Setter and getter. inline int8_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalInt8Array> array, int index); inline void set(int index, int8_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalInt8Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalInt8Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalInt8Array) DECLARE_VERIFIER(ExternalInt8Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt8Array); }; class ExternalUint8Array: public ExternalArray { public: // Setter and getter. inline uint8_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalUint8Array> array, int index); inline void set(int index, uint8_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalUint8Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalUint8Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalUint8Array) DECLARE_VERIFIER(ExternalUint8Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8Array); }; class ExternalInt16Array: public ExternalArray { public: // Setter and getter. inline int16_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalInt16Array> array, int index); inline void set(int index, int16_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalInt16Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalInt16Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalInt16Array) DECLARE_VERIFIER(ExternalInt16Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt16Array); }; class ExternalUint16Array: public ExternalArray { public: // Setter and getter. inline uint16_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalUint16Array> array, int index); inline void set(int index, uint16_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalUint16Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalUint16Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalUint16Array) DECLARE_VERIFIER(ExternalUint16Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint16Array); }; class ExternalInt32Array: public ExternalArray { public: // Setter and getter. inline int32_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalInt32Array> array, int index); inline void set(int index, int32_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalInt32Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalInt32Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalInt32Array) DECLARE_VERIFIER(ExternalInt32Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt32Array); }; class ExternalUint32Array: public ExternalArray { public: // Setter and getter. inline uint32_t get_scalar(int index); static inline Handle<Object> get(Handle<ExternalUint32Array> array, int index); inline void set(int index, uint32_t value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalUint32Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalUint32Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalUint32Array) DECLARE_VERIFIER(ExternalUint32Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint32Array); }; class ExternalFloat32Array: public ExternalArray { public: // Setter and getter. inline float get_scalar(int index); static inline Handle<Object> get(Handle<ExternalFloat32Array> array, int index); inline void set(int index, float value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalFloat32Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalFloat32Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalFloat32Array) DECLARE_VERIFIER(ExternalFloat32Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat32Array); }; class ExternalFloat64Array: public ExternalArray { public: // Setter and getter. inline double get_scalar(int index); static inline Handle<Object> get(Handle<ExternalFloat64Array> array, int index); inline void set(int index, double value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<ExternalFloat64Array> array, uint32_t index, Handle<Object> value); // Casting. static inline ExternalFloat64Array* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExternalFloat64Array) DECLARE_VERIFIER(ExternalFloat64Array) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat64Array); }; class FixedTypedArrayBase: public FixedArrayBase { public: // Casting: static inline FixedTypedArrayBase* cast(Object* obj); static const int kDataOffset = kHeaderSize; inline int size(); inline int TypedArraySize(InstanceType type); // Use with care: returns raw pointer into heap. inline void* DataPtr(); inline int DataSize(); private: inline int DataSize(InstanceType type); DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase); }; template <class Traits> class FixedTypedArray: public FixedTypedArrayBase { public: typedef typename Traits::ElementType ElementType; static const InstanceType kInstanceType = Traits::kInstanceType; // Casting: static inline FixedTypedArray<Traits>* cast(Object* obj); static inline int ElementOffset(int index) { return kDataOffset + index * sizeof(ElementType); } static inline int SizeFor(int length) { return ElementOffset(length); } inline ElementType get_scalar(int index); static inline Handle<Object> get(Handle<FixedTypedArray> array, int index); inline void set(int index, ElementType value); static inline ElementType from_int(int value); static inline ElementType from_double(double value); // This accessor applies the correct conversion from Smi, HeapNumber // and undefined. static Handle<Object> SetValue(Handle<FixedTypedArray<Traits> > array, uint32_t index, Handle<Object> value); DECLARE_PRINTER(FixedTypedArray) DECLARE_VERIFIER(FixedTypedArray) private: DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray); }; #define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \ class Type##ArrayTraits { \ public: /* NOLINT */ \ typedef elementType ElementType; \ static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \ static const char* Designator() { return #type " array"; } \ static inline Handle<Object> ToHandle(Isolate* isolate, \ elementType scalar); \ static inline elementType defaultValue(); \ }; \ \ typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array; TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS) #undef FIXED_TYPED_ARRAY_TRAITS // DeoptimizationInputData is a fixed array used to hold the deoptimization // data for code generated by the Hydrogen/Lithium compiler. It also // contains information about functions that were inlined. If N different // functions were inlined then first N elements of the literal array will // contain these functions. // // It can be empty. class DeoptimizationInputData: public FixedArray { public: // Layout description. Indices in the array. static const int kTranslationByteArrayIndex = 0; static const int kInlinedFunctionCountIndex = 1; static const int kLiteralArrayIndex = 2; static const int kOsrAstIdIndex = 3; static const int kOsrPcOffsetIndex = 4; static const int kOptimizationIdIndex = 5; static const int kSharedFunctionInfoIndex = 6; static const int kFirstDeoptEntryIndex = 7; // Offsets of deopt entry elements relative to the start of the entry. static const int kAstIdRawOffset = 0; static const int kTranslationIndexOffset = 1; static const int kArgumentsStackHeightOffset = 2; static const int kPcOffset = 3; static const int kDeoptEntrySize = 4; // Simple element accessors. #define DEFINE_ELEMENT_ACCESSORS(name, type) \ type* name() { \ return type::cast(get(k##name##Index)); \ } \ void Set##name(type* value) { \ set(k##name##Index, value); \ } DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray) DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi) DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray) DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi) DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi) DEFINE_ELEMENT_ACCESSORS(OptimizationId, Smi) DEFINE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object) #undef DEFINE_ELEMENT_ACCESSORS // Accessors for elements of the ith deoptimization entry. #define DEFINE_ENTRY_ACCESSORS(name, type) \ type* name(int i) { \ return type::cast(get(IndexForEntry(i) + k##name##Offset)); \ } \ void Set##name(int i, type* value) { \ set(IndexForEntry(i) + k##name##Offset, value); \ } DEFINE_ENTRY_ACCESSORS(AstIdRaw, Smi) DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi) DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi) DEFINE_ENTRY_ACCESSORS(Pc, Smi) #undef DEFINE_ENTRY_ACCESSORS BailoutId AstId(int i) { return BailoutId(AstIdRaw(i)->value()); } void SetAstId(int i, BailoutId value) { SetAstIdRaw(i, Smi::FromInt(value.ToInt())); } int DeoptCount() { return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize; } // Allocates a DeoptimizationInputData. static Handle<DeoptimizationInputData> New(Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure); // Casting. static inline DeoptimizationInputData* cast(Object* obj); #ifdef ENABLE_DISASSEMBLER void DeoptimizationInputDataPrint(FILE* out); #endif private: static int IndexForEntry(int i) { return kFirstDeoptEntryIndex + (i * kDeoptEntrySize); } static int LengthFor(int entry_count) { return IndexForEntry(entry_count); } }; // DeoptimizationOutputData is a fixed array used to hold the deoptimization // data for code generated by the full compiler. // The format of the these objects is // [i * 2]: Ast ID for ith deoptimization. // [i * 2 + 1]: PC and state of ith deoptimization class DeoptimizationOutputData: public FixedArray { public: int DeoptPoints() { return length() / 2; } BailoutId AstId(int index) { return BailoutId(Smi::cast(get(index * 2))->value()); } void SetAstId(int index, BailoutId id) { set(index * 2, Smi::FromInt(id.ToInt())); } Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); } void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); } static int LengthOfFixedArray(int deopt_points) { return deopt_points * 2; } // Allocates a DeoptimizationOutputData. static Handle<DeoptimizationOutputData> New(Isolate* isolate, int number_of_deopt_points, PretenureFlag pretenure); // Casting. static inline DeoptimizationOutputData* cast(Object* obj); #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER) void DeoptimizationOutputDataPrint(FILE* out); #endif }; // Forward declaration. class Cell; class PropertyCell; class SafepointEntry; class TypeFeedbackInfo; // Code describes objects with on-the-fly generated machine code. class Code: public HeapObject { public: // Opaque data type for encapsulating code flags like kind, inline // cache state, and arguments count. typedef uint32_t Flags; #define NON_IC_KIND_LIST(V) \ V(FUNCTION) \ V(OPTIMIZED_FUNCTION) \ V(STUB) \ V(HANDLER) \ V(BUILTIN) \ V(REGEXP) #define IC_KIND_LIST(V) \ V(LOAD_IC) \ V(KEYED_LOAD_IC) \ V(CALL_IC) \ V(STORE_IC) \ V(KEYED_STORE_IC) \ V(BINARY_OP_IC) \ V(COMPARE_IC) \ V(COMPARE_NIL_IC) \ V(TO_BOOLEAN_IC) #define CODE_KIND_LIST(V) \ NON_IC_KIND_LIST(V) \ IC_KIND_LIST(V) enum Kind { #define DEFINE_CODE_KIND_ENUM(name) name, CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM) #undef DEFINE_CODE_KIND_ENUM NUMBER_OF_KINDS }; // No more than 16 kinds. The value is currently encoded in four bits in // Flags. STATIC_ASSERT(NUMBER_OF_KINDS <= 16); static const char* Kind2String(Kind kind); // Types of stubs. enum StubType { NORMAL, FAST }; static const int kPrologueOffsetNotSet = -1; #ifdef ENABLE_DISASSEMBLER // Printing static const char* ICState2String(InlineCacheState state); static const char* StubType2String(StubType type); static void PrintExtraICState(FILE* out, Kind kind, ExtraICState extra); void Disassemble(const char* name, FILE* out = stdout); #endif // ENABLE_DISASSEMBLER // [instruction_size]: Size of the native instructions inline int instruction_size(); inline void set_instruction_size(int value); // [relocation_info]: Code relocation information DECL_ACCESSORS(relocation_info, ByteArray) void InvalidateRelocation(); void InvalidateEmbeddedObjects(); // [handler_table]: Fixed array containing offsets of exception handlers. DECL_ACCESSORS(handler_table, FixedArray) // [deoptimization_data]: Array containing data for deopt. DECL_ACCESSORS(deoptimization_data, FixedArray) // [raw_type_feedback_info]: This field stores various things, depending on // the kind of the code object. // FUNCTION => type feedback information. // STUB => various things, e.g. a SMI DECL_ACCESSORS(raw_type_feedback_info, Object) inline Object* type_feedback_info(); inline void set_type_feedback_info( Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); inline int stub_info(); inline void set_stub_info(int info); // [next_code_link]: Link for lists of optimized or deoptimized code. // Note that storage for this field is overlapped with typefeedback_info. DECL_ACCESSORS(next_code_link, Object) // [gc_metadata]: Field used to hold GC related metadata. The contents of this // field does not have to be traced during garbage collection since // it is only used by the garbage collector itself. DECL_ACCESSORS(gc_metadata, Object) // [ic_age]: Inline caching age: the value of the Heap::global_ic_age // at the moment when this object was created. inline void set_ic_age(int count); inline int ic_age(); // [prologue_offset]: Offset of the function prologue, used for aging // FUNCTIONs and OPTIMIZED_FUNCTIONs. inline int prologue_offset(); inline void set_prologue_offset(int offset); // Unchecked accessors to be used during GC. inline ByteArray* unchecked_relocation_info(); inline int relocation_size(); // [flags]: Various code flags. inline Flags flags(); inline void set_flags(Flags flags); // [flags]: Access to specific code flags. inline Kind kind(); inline InlineCacheState ic_state(); // Only valid for IC stubs. inline ExtraICState extra_ic_state(); // Only valid for IC stubs. inline StubType type(); // Only valid for monomorphic IC stubs. // Testers for IC stub kinds. inline bool is_inline_cache_stub(); inline bool is_debug_stub(); inline bool is_handler() { return kind() == HANDLER; } inline bool is_load_stub() { return kind() == LOAD_IC; } inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; } inline bool is_store_stub() { return kind() == STORE_IC; } inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; } inline bool is_call_stub() { return kind() == CALL_IC; } inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; } inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; } inline bool is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; } inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; } inline bool is_keyed_stub(); inline bool is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; } inline bool is_weak_stub(); inline void mark_as_weak_stub(); inline bool is_invalidated_weak_stub(); inline void mark_as_invalidated_weak_stub(); inline bool CanBeWeakStub() { Kind k = kind(); return (k == LOAD_IC || k == STORE_IC || k == KEYED_LOAD_IC || k == KEYED_STORE_IC || k == COMPARE_NIL_IC) && ic_state() == MONOMORPHIC; } inline void set_raw_kind_specific_flags1(int value); inline void set_raw_kind_specific_flags2(int value); // [major_key]: For kind STUB or BINARY_OP_IC, the major key. inline int major_key(); inline void set_major_key(int value); inline bool has_major_key(); // For kind STUB or ICs, tells whether or not a code object was generated by // the optimizing compiler (but it may not be an optimized function). bool is_crankshafted(); inline void set_is_crankshafted(bool value); // [optimizable]: For FUNCTION kind, tells if it is optimizable. inline bool optimizable(); inline void set_optimizable(bool value); // [has_deoptimization_support]: For FUNCTION kind, tells if it has // deoptimization support. inline bool has_deoptimization_support(); inline void set_has_deoptimization_support(bool value); // [has_debug_break_slots]: For FUNCTION kind, tells if it has // been compiled with debug break slots. inline bool has_debug_break_slots(); inline void set_has_debug_break_slots(bool value); // [compiled_with_optimizing]: For FUNCTION kind, tells if it has // been compiled with IsOptimizing set to true. inline bool is_compiled_optimizable(); inline void set_compiled_optimizable(bool value); // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for // how long the function has been marked for OSR and therefore which // level of loop nesting we are willing to do on-stack replacement // for. inline void set_allow_osr_at_loop_nesting_level(int level); inline int allow_osr_at_loop_nesting_level(); // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks // the code object was seen on the stack with no IC patching going on. inline int profiler_ticks(); inline void set_profiler_ticks(int ticks); // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots // reserved in the code prologue. inline unsigned stack_slots(); inline void set_stack_slots(unsigned slots); // [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in // the instruction stream where the safepoint table starts. inline unsigned safepoint_table_offset(); inline void set_safepoint_table_offset(unsigned offset); // [back_edge_table_start]: For kind FUNCTION, the offset in the // instruction stream where the back edge table starts. inline unsigned back_edge_table_offset(); inline void set_back_edge_table_offset(unsigned offset); inline bool back_edges_patched_for_osr(); inline void set_back_edges_patched_for_osr(bool value); // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in. inline byte to_boolean_state(); // [has_function_cache]: For kind STUB tells whether there is a function // cache is passed to the stub. inline bool has_function_cache(); inline void set_has_function_cache(bool flag); // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether // the code is going to be deoptimized because of dead embedded maps. inline bool marked_for_deoptimization(); inline void set_marked_for_deoptimization(bool flag); // [constant_pool]: The constant pool for this function. inline ConstantPoolArray* constant_pool(); inline void set_constant_pool(Object* constant_pool); // Get the safepoint entry for the given pc. SafepointEntry GetSafepointEntry(Address pc); // Find an object in a stub with a specified map Object* FindNthObject(int n, Map* match_map); // Find the first allocation site in an IC stub. AllocationSite* FindFirstAllocationSite(); // Find the first map in an IC stub. Map* FindFirstMap(); void FindAllMaps(MapHandleList* maps); // Find the first handler in an IC stub. Code* FindFirstHandler(); // Find |length| handlers and put them into |code_list|. Returns false if not // enough handlers can be found. bool FindHandlers(CodeHandleList* code_list, int length = -1); // Find the first name in an IC stub. Name* FindFirstName(); class FindAndReplacePattern; // For each (map-to-find, object-to-replace) pair in the pattern, this // function replaces the corresponding placeholder in the code with the // object-to-replace. The function assumes that pairs in the pattern come in // the same order as the placeholders in the code. void FindAndReplace(const FindAndReplacePattern& pattern); // The entire code object including its header is copied verbatim to the // snapshot so that it can be written in one, fast, memcpy during // deserialization. The deserializer will overwrite some pointers, rather // like a runtime linker, but the random allocation addresses used in the // mksnapshot process would still be present in the unlinked snapshot data, // which would make snapshot production non-reproducible. This method wipes // out the to-be-overwritten header data for reproducible snapshots. inline void WipeOutHeader(); // Flags operations. static inline Flags ComputeFlags( Kind kind, InlineCacheState ic_state = UNINITIALIZED, ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL, InlineCacheHolderFlag holder = OWN_MAP); static inline Flags ComputeMonomorphicFlags( Kind kind, ExtraICState extra_ic_state = kNoExtraICState, InlineCacheHolderFlag holder = OWN_MAP, StubType type = NORMAL); static inline Flags ComputeHandlerFlags( Kind handler_kind, StubType type = NORMAL, InlineCacheHolderFlag holder = OWN_MAP); static inline InlineCacheState ExtractICStateFromFlags(Flags flags); static inline StubType ExtractTypeFromFlags(Flags flags); static inline Kind ExtractKindFromFlags(Flags flags); static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags); static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags); static inline Flags RemoveTypeFromFlags(Flags flags); // Convert a target address into a code object. static inline Code* GetCodeFromTargetAddress(Address address); // Convert an entry address into an object. static inline Object* GetObjectFromEntryAddress(Address location_of_address); // Returns the address of the first instruction. inline byte* instruction_start(); // Returns the address right after the last instruction. inline byte* instruction_end(); // Returns the size of the instructions, padding, and relocation information. inline int body_size(); // Returns the address of the first relocation info (read backwards!). inline byte* relocation_start(); // Code entry point. inline byte* entry(); // Returns true if pc is inside this object's instructions. inline bool contains(byte* pc); // Relocate the code by delta bytes. Called to signal that this code // object has been moved by delta bytes. void Relocate(intptr_t delta); // Migrate code described by desc. void CopyFrom(const CodeDesc& desc); // Returns the object size for a given body (used for allocation). static int SizeFor(int body_size) { ASSERT_SIZE_TAG_ALIGNED(body_size); return RoundUp(kHeaderSize + body_size, kCodeAlignment); } // Calculate the size of the code object to report for log events. This takes // the layout of the code object into account. int ExecutableSize() { // Check that the assumptions about the layout of the code object holds. ASSERT_EQ(static_cast<int>(instruction_start() - address()), Code::kHeaderSize); return instruction_size() + Code::kHeaderSize; } // Locating source position. int SourcePosition(Address pc); int SourceStatementPosition(Address pc); // Casting. static inline Code* cast(Object* obj); // Dispatched behavior. int CodeSize() { return SizeFor(body_size()); } inline void CodeIterateBody(ObjectVisitor* v); template<typename StaticVisitor> inline void CodeIterateBody(Heap* heap); DECLARE_PRINTER(Code) DECLARE_VERIFIER(Code) void ClearInlineCaches(); void ClearInlineCaches(Kind kind); BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset); uint32_t TranslateAstIdToPcOffset(BailoutId ast_id); #define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge, enum Age { kNotExecutedCodeAge = -2, kExecutedOnceCodeAge = -1, kNoAgeCodeAge = 0, CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM) kAfterLastCodeAge, kFirstCodeAge = kNotExecutedCodeAge, kLastCodeAge = kAfterLastCodeAge - 1, kCodeAgeCount = kAfterLastCodeAge - kNotExecutedCodeAge - 1, kIsOldCodeAge = kSexagenarianCodeAge, kPreAgedCodeAge = kIsOldCodeAge - 1 }; #undef DECLARE_CODE_AGE_ENUM // Code aging. Indicates how many full GCs this code has survived without // being entered through the prologue. Used to determine when it is // relatively safe to flush this code object and replace it with the lazy // compilation stub. static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate); static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate); void MakeOlder(MarkingParity); static bool IsYoungSequence(Isolate* isolate, byte* sequence); bool IsOld(); Age GetAge(); // Gets the raw code age, including psuedo code-age values such as // kNotExecutedCodeAge and kExecutedOnceCodeAge. Age GetRawAge(); static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) { return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY); } void PrintDeoptLocation(FILE* out, int bailout_id); bool CanDeoptAt(Address pc); #ifdef VERIFY_HEAP void VerifyEmbeddedObjectsDependency(); #endif inline bool CanContainWeakObjects() { return is_optimized_code() || is_weak_stub(); } inline bool IsWeakObject(Object* object) { return (is_optimized_code() && IsWeakObjectInOptimizedCode(object)) || (is_weak_stub() && IsWeakObjectInIC(object)); } static inline bool IsWeakObjectInOptimizedCode(Object* object); static inline bool IsWeakObjectInIC(Object* object); // Max loop nesting marker used to postpose OSR. We don't take loop // nesting that is deeper than 5 levels into account. static const int kMaxLoopNestingMarker = 6; // Layout description. static const int kInstructionSizeOffset = HeapObject::kHeaderSize; static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize; static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize; static const int kDeoptimizationDataOffset = kHandlerTableOffset + kPointerSize; static const int kTypeFeedbackInfoOffset = kDeoptimizationDataOffset + kPointerSize; static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize; static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize; static const int kICAgeOffset = kGCMetadataOffset + kPointerSize; static const int kFlagsOffset = kICAgeOffset + kIntSize; static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize; static const int kKindSpecificFlags2Offset = kKindSpecificFlags1Offset + kIntSize; // Note: We might be able to squeeze this into the flags above. static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize; static const int kConstantPoolOffset = kPrologueOffset + kPointerSize; static const int kHeaderPaddingStart = kConstantPoolOffset + kIntSize; // Add padding to align the instruction start following right after // the Code object header. static const int kHeaderSize = (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask; // Byte offsets within kKindSpecificFlags1Offset. static const int kOptimizableOffset = kKindSpecificFlags1Offset; static const int kFullCodeFlags = kOptimizableOffset + 1; class FullCodeFlagsHasDeoptimizationSupportField: public BitField<bool, 0, 1> {}; // NOLINT class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {}; class FullCodeFlagsIsCompiledOptimizable: public BitField<bool, 2, 1> {}; static const int kAllowOSRAtLoopNestingLevelOffset = kFullCodeFlags + 1; static const int kProfilerTicksOffset = kAllowOSRAtLoopNestingLevelOffset + 1; // Flags layout. BitField<type, shift, size>. class ICStateField: public BitField<InlineCacheState, 0, 3> {}; class TypeField: public BitField<StubType, 3, 1> {}; class CacheHolderField: public BitField<InlineCacheHolderFlag, 5, 1> {}; class KindField: public BitField<Kind, 6, 4> {}; // TODO(bmeurer): Bit 10 is available for free use. :-) class ExtraICStateField: public BitField<ExtraICState, 11, PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION) static const int kStackSlotsFirstBit = 0; static const int kStackSlotsBitCount = 24; static const int kHasFunctionCacheFirstBit = kStackSlotsFirstBit + kStackSlotsBitCount; static const int kHasFunctionCacheBitCount = 1; static const int kMarkedForDeoptimizationFirstBit = kStackSlotsFirstBit + kStackSlotsBitCount + 1; static const int kMarkedForDeoptimizationBitCount = 1; static const int kWeakStubFirstBit = kMarkedForDeoptimizationFirstBit + kMarkedForDeoptimizationBitCount; static const int kWeakStubBitCount = 1; static const int kInvalidatedWeakStubFirstBit = kWeakStubFirstBit + kWeakStubBitCount; static const int kInvalidatedWeakStubBitCount = 1; STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32); STATIC_ASSERT(kHasFunctionCacheFirstBit + kHasFunctionCacheBitCount <= 32); STATIC_ASSERT(kInvalidatedWeakStubFirstBit + kInvalidatedWeakStubBitCount <= 32); class StackSlotsField: public BitField<int, kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT class HasFunctionCacheField: public BitField<bool, kHasFunctionCacheFirstBit, kHasFunctionCacheBitCount> {}; // NOLINT class MarkedForDeoptimizationField: public BitField<bool, kMarkedForDeoptimizationFirstBit, kMarkedForDeoptimizationBitCount> {}; // NOLINT class WeakStubField: public BitField<bool, kWeakStubFirstBit, kWeakStubBitCount> {}; // NOLINT class InvalidatedWeakStubField: public BitField<bool, kInvalidatedWeakStubFirstBit, kInvalidatedWeakStubBitCount> {}; // NOLINT // KindSpecificFlags2 layout (ALL) static const int kIsCrankshaftedBit = 0; class IsCrankshaftedField: public BitField<bool, kIsCrankshaftedBit, 1> {}; // NOLINT // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION) static const int kStubMajorKeyFirstBit = kIsCrankshaftedBit + 1; static const int kSafepointTableOffsetFirstBit = kStubMajorKeyFirstBit + kStubMajorKeyBits; static const int kSafepointTableOffsetBitCount = 24; STATIC_ASSERT(kStubMajorKeyFirstBit + kStubMajorKeyBits <= 32); STATIC_ASSERT(kSafepointTableOffsetFirstBit + kSafepointTableOffsetBitCount <= 32); STATIC_ASSERT(1 + kStubMajorKeyBits + kSafepointTableOffsetBitCount <= 32); class SafepointTableOffsetField: public BitField<int, kSafepointTableOffsetFirstBit, kSafepointTableOffsetBitCount> {}; // NOLINT class StubMajorKeyField: public BitField<int, kStubMajorKeyFirstBit, kStubMajorKeyBits> {}; // NOLINT // KindSpecificFlags2 layout (FUNCTION) class BackEdgeTableOffsetField: public BitField<int, kIsCrankshaftedBit + 1, 29> {}; // NOLINT class BackEdgesPatchedForOSRField: public BitField<bool, kIsCrankshaftedBit + 1 + 29, 1> {}; // NOLINT static const int kArgumentsBits = 16; static const int kMaxArguments = (1 << kArgumentsBits) - 1; // This constant should be encodable in an ARM instruction. static const int kFlagsNotUsedInLookup = TypeField::kMask | CacheHolderField::kMask; private: friend class RelocIterator; friend class Deoptimizer; // For FindCodeAgeSequence. void ClearInlineCaches(Kind* kind); // Code aging byte* FindCodeAgeSequence(); static void GetCodeAgeAndParity(Code* code, Age* age, MarkingParity* parity); static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, MarkingParity* parity); static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity); // Code aging -- platform-specific static void PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Age age, MarkingParity parity); DISALLOW_IMPLICIT_CONSTRUCTORS(Code); }; class CompilationInfo; // This class describes the layout of dependent codes array of a map. The // array is partitioned into several groups of dependent codes. Each group // contains codes with the same dependency on the map. The array has the // following layout for n dependency groups: // // +----+----+-----+----+---------+----------+-----+---------+-----------+ // | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined | // +----+----+-----+----+---------+----------+-----+---------+-----------+ // // The first n elements are Smis, each of them specifies the number of codes // in the corresponding group. The subsequent elements contain grouped code // objects. The suffix of the array can be filled with the undefined value if // the number of codes is less than the length of the array. The order of the // code objects within a group is not preserved. // // All code indexes used in the class are counted starting from the first // code object of the first group. In other words, code index 0 corresponds // to array index n = kCodesStartIndex. class DependentCode: public FixedArray { public: enum DependencyGroup { // Group of IC stubs that weakly embed this map and depend on being // invalidated when the map is garbage collected. Dependent IC stubs form // a linked list. This group stores only the head of the list. This means // that the number_of_entries(kWeakICGroup) is 0 or 1. kWeakICGroup, // Group of code that weakly embed this map and depend on being // deoptimized when the map is garbage collected. kWeakCodeGroup, // Group of code that embed a transition to this map, and depend on being // deoptimized when the transition is replaced by a new version. kTransitionGroup, // Group of code that omit run-time prototype checks for prototypes // described by this map. The group is deoptimized whenever an object // described by this map changes shape (and transitions to a new map), // possibly invalidating the assumptions embedded in the code. kPrototypeCheckGroup, // Group of code that depends on elements not being added to objects with // this map. kElementsCantBeAddedGroup, // Group of code that depends on global property values in property cells // not being changed. kPropertyCellChangedGroup, // Group of code that omit run-time type checks for the field(s) introduced // by this map. kFieldTypeGroup, // Group of code that omit run-time type checks for initial maps of // constructors. kInitialMapChangedGroup, // Group of code that depends on tenuring information in AllocationSites // not being changed. kAllocationSiteTenuringChangedGroup, // Group of code that depends on element transition information in // AllocationSites not being changed. kAllocationSiteTransitionChangedGroup, kGroupCount = kAllocationSiteTransitionChangedGroup + 1 }; // Array for holding the index of the first code object of each group. // The last element stores the total number of code objects. class GroupStartIndexes { public: explicit GroupStartIndexes(DependentCode* entries); void Recompute(DependentCode* entries); int at(int i) { return start_indexes_[i]; } int number_of_entries() { return start_indexes_[kGroupCount]; } private: int start_indexes_[kGroupCount + 1]; }; bool Contains(DependencyGroup group, Code* code); static Handle<DependentCode> Insert(Handle<DependentCode> entries, DependencyGroup group, Handle<Object> object); void UpdateToFinishedCode(DependencyGroup group, CompilationInfo* info, Code* code); void RemoveCompilationInfo(DependentCode::DependencyGroup group, CompilationInfo* info); void DeoptimizeDependentCodeGroup(Isolate* isolate, DependentCode::DependencyGroup group); bool MarkCodeForDeoptimization(Isolate* isolate, DependentCode::DependencyGroup group); void AddToDependentICList(Handle<Code> stub); // The following low-level accessors should only be used by this class // and the mark compact collector. inline int number_of_entries(DependencyGroup group); inline void set_number_of_entries(DependencyGroup group, int value); inline bool is_code_at(int i); inline Code* code_at(int i); inline CompilationInfo* compilation_info_at(int i); inline void set_object_at(int i, Object* object); inline Object** slot_at(int i); inline Object* object_at(int i); inline void clear_at(int i); inline void copy(int from, int to); static inline DependentCode* cast(Object* object); static DependentCode* ForObject(Handle<HeapObject> object, DependencyGroup group); private: // Make a room at the end of the given group by moving out the first // code objects of the subsequent groups. inline void ExtendGroup(DependencyGroup group); static const int kCodesStartIndex = kGroupCount; }; // All heap objects have a Map that describes their structure. // A Map contains information about: // - Size information about the object // - How to iterate over an object (for garbage collection) class Map: public HeapObject { public: // Instance size. // Size in bytes or kVariableSizeSentinel if instances do not have // a fixed size. inline int instance_size(); inline void set_instance_size(int value); // Count of properties allocated in the object. inline int inobject_properties(); inline void set_inobject_properties(int value); // Count of property fields pre-allocated in the object when first allocated. inline int pre_allocated_property_fields(); inline void set_pre_allocated_property_fields(int value); // Instance type. inline InstanceType instance_type(); inline void set_instance_type(InstanceType value); // Tells how many unused property fields are available in the // instance (only used for JSObject in fast mode). inline int unused_property_fields(); inline void set_unused_property_fields(int value); // Bit field. inline byte bit_field(); inline void set_bit_field(byte value); // Bit field 2. inline byte bit_field2(); inline void set_bit_field2(byte value); // Bit field 3. inline uint32_t bit_field3(); inline void set_bit_field3(uint32_t bits); class EnumLengthBits: public BitField<int, 0, kDescriptorIndexBitCount> {}; // NOLINT class NumberOfOwnDescriptorsBits: public BitField<int, kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20); class IsShared: public BitField<bool, 20, 1> {}; class DictionaryMap: public BitField<bool, 21, 1> {}; class OwnsDescriptors: public BitField<bool, 22, 1> {}; class HasInstanceCallHandler: public BitField<bool, 23, 1> {}; class Deprecated: public BitField<bool, 24, 1> {}; class IsFrozen: public BitField<bool, 25, 1> {}; class IsUnstable: public BitField<bool, 26, 1> {}; class IsMigrationTarget: public BitField<bool, 27, 1> {}; class DoneInobjectSlackTracking: public BitField<bool, 28, 1> {}; // Keep this bit field at the very end for better code in // Builtins::kJSConstructStubGeneric stub. class ConstructionCount: public BitField<int, 29, 3> {}; // Tells whether the object in the prototype property will be used // for instances created from this function. If the prototype // property is set to a value that is not a JSObject, the prototype // property will not be used to create instances of the function. // See ECMA-262, 13.2.2. inline void set_non_instance_prototype(bool value); inline bool has_non_instance_prototype(); // Tells whether function has special prototype property. If not, prototype // property will not be created when accessed (will return undefined), // and construction from this function will not be allowed. inline void set_function_with_prototype(bool value); inline bool function_with_prototype(); // Tells whether the instance with this map should be ignored by the // Object.getPrototypeOf() function and the __proto__ accessor. inline void set_is_hidden_prototype() { set_bit_field(bit_field() | (1 << kIsHiddenPrototype)); } inline bool is_hidden_prototype() { return ((1 << kIsHiddenPrototype) & bit_field()) != 0; } // Records and queries whether the instance has a named interceptor. inline void set_has_named_interceptor() { set_bit_field(bit_field() | (1 << kHasNamedInterceptor)); } inline bool has_named_interceptor() { return ((1 << kHasNamedInterceptor) & bit_field()) != 0; } // Records and queries whether the instance has an indexed interceptor. inline void set_has_indexed_interceptor() { set_bit_field(bit_field() | (1 << kHasIndexedInterceptor)); } inline bool has_indexed_interceptor() { return ((1 << kHasIndexedInterceptor) & bit_field()) != 0; } // Tells whether the instance is undetectable. // An undetectable object is a special class of JSObject: 'typeof' operator // returns undefined, ToBoolean returns false. Otherwise it behaves like // a normal JS object. It is useful for implementing undetectable // document.all in Firefox & Safari. // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549. inline void set_is_undetectable() { set_bit_field(bit_field() | (1 << kIsUndetectable)); } inline bool is_undetectable() { return ((1 << kIsUndetectable) & bit_field()) != 0; } // Tells whether the instance has a call-as-function handler. inline void set_is_observed() { set_bit_field(bit_field() | (1 << kIsObserved)); } inline bool is_observed() { return ((1 << kIsObserved) & bit_field()) != 0; } inline void set_is_extensible(bool value); inline bool is_extensible(); inline void set_elements_kind(ElementsKind elements_kind) { ASSERT(elements_kind < kElementsKindCount); ASSERT(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize)); set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind)); ASSERT(this->elements_kind() == elements_kind); } inline ElementsKind elements_kind() { return Map::ElementsKindBits::decode(bit_field2()); } // Tells whether the instance has fast elements that are only Smis. inline bool has_fast_smi_elements() { return IsFastSmiElementsKind(elements_kind()); } // Tells whether the instance has fast elements. inline bool has_fast_object_elements() { return IsFastObjectElementsKind(elements_kind()); } inline bool has_fast_smi_or_object_elements() { return IsFastSmiOrObjectElementsKind(elements_kind()); } inline bool has_fast_double_elements() { return IsFastDoubleElementsKind(elements_kind()); } inline bool has_fast_elements() { return IsFastElementsKind(elements_kind()); } inline bool has_sloppy_arguments_elements() { return elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS; } inline bool has_external_array_elements() { return IsExternalArrayElementsKind(elements_kind()); } inline bool has_fixed_typed_array_elements() { return IsFixedTypedArrayElementsKind(elements_kind()); } inline bool has_dictionary_elements() { return IsDictionaryElementsKind(elements_kind()); } inline bool has_slow_elements_kind() { return elements_kind() == DICTIONARY_ELEMENTS || elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS; } static bool IsValidElementsTransition(ElementsKind from_kind, ElementsKind to_kind); // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a // map with DICTIONARY_ELEMENTS was found in the prototype chain. bool DictionaryElementsInPrototypeChainOnly(); inline bool HasTransitionArray(); inline bool HasElementsTransition(); inline Map* elements_transition_map(); static Handle<TransitionArray> SetElementsTransitionMap( Handle<Map> map, Handle<Map> transitioned_map); inline Map* GetTransition(int transition_index); inline int SearchTransition(Name* name); inline FixedArrayBase* GetInitialElements(); DECL_ACCESSORS(transitions, TransitionArray) Map* FindRootMap(); Map* FindFieldOwner(int descriptor); inline int GetInObjectPropertyOffset(int index); int NumberOfFields(); bool InstancesNeedRewriting(Map* target, int target_number_of_fields, int target_inobject, int target_unused); static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map); static Handle<HeapType> GeneralizeFieldType(Handle<HeapType> type1, Handle<HeapType> type2, Isolate* isolate) V8_WARN_UNUSED_RESULT; static void GeneralizeFieldType(Handle<Map> map, int modify_index, Handle<HeapType> new_field_type); static Handle<Map> GeneralizeRepresentation( Handle<Map> map, int modify_index, Representation new_representation, Handle<HeapType> new_field_type, StoreMode store_mode); static Handle<Map> CopyGeneralizeAllRepresentations( Handle<Map> map, int modify_index, StoreMode store_mode, PropertyAttributes attributes, const char* reason); static Handle<Map> CopyGeneralizeAllRepresentations( Handle<Map> map, int modify_index, StoreMode store_mode, const char* reason); static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode); // Returns the constructor name (the name (possibly, inferred name) of the // function that was used to instantiate the object). String* constructor_name(); // Tells whether the map is shared between objects that may have different // behavior. If true, the map should never be modified, instead a clone // should be created and modified. inline void set_is_shared(bool value); inline bool is_shared(); // Tells whether the map is used for JSObjects in dictionary mode (ie // normalized objects, ie objects for which HasFastProperties returns false). // A map can never be used for both dictionary mode and fast mode JSObjects. // False by default and for HeapObjects that are not JSObjects. inline void set_dictionary_map(bool value); inline bool is_dictionary_map(); // Tells whether the instance needs security checks when accessing its // properties. inline void set_is_access_check_needed(bool access_check_needed); inline bool is_access_check_needed(); // Returns true if map has a non-empty stub code cache. inline bool has_code_cache(); // [prototype]: implicit prototype object. DECL_ACCESSORS(prototype, Object) // [constructor]: points back to the function responsible for this map. DECL_ACCESSORS(constructor, Object) // [instance descriptors]: describes the object. DECL_ACCESSORS(instance_descriptors, DescriptorArray) inline void InitializeDescriptors(DescriptorArray* descriptors); // [stub cache]: contains stubs compiled for this map. DECL_ACCESSORS(code_cache, Object) // [dependent code]: list of optimized codes that weakly embed this map. DECL_ACCESSORS(dependent_code, DependentCode) // [back pointer]: points back to the parent map from which a transition // leads to this map. The field overlaps with prototype transitions and the // back pointer will be moved into the prototype transitions array if // required. inline Object* GetBackPointer(); inline void SetBackPointer(Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); inline void init_back_pointer(Object* undefined); // [prototype transitions]: cache of prototype transitions. // Prototype transition is a transition that happens // when we change object's prototype to a new one. // Cache format: // 0: finger - index of the first free cell in the cache // 1: back pointer that overlaps with prototype transitions field. // 2 + 2 * i: prototype // 3 + 2 * i: target map inline FixedArray* GetPrototypeTransitions(); inline bool HasPrototypeTransitions(); static const int kProtoTransitionHeaderSize = 1; static const int kProtoTransitionNumberOfEntriesOffset = 0; static const int kProtoTransitionElementsPerEntry = 2; static const int kProtoTransitionPrototypeOffset = 0; static const int kProtoTransitionMapOffset = 1; inline int NumberOfProtoTransitions() { FixedArray* cache = GetPrototypeTransitions(); if (cache->length() == 0) return 0; return Smi::cast(cache->get(kProtoTransitionNumberOfEntriesOffset))->value(); } inline void SetNumberOfProtoTransitions(int value) { FixedArray* cache = GetPrototypeTransitions(); ASSERT(cache->length() != 0); cache->set(kProtoTransitionNumberOfEntriesOffset, Smi::FromInt(value)); } // Lookup in the map's instance descriptors and fill out the result // with the given holder if the name is found. The holder may be // NULL when this function is used from the compiler. inline void LookupDescriptor(JSObject* holder, Name* name, LookupResult* result); inline void LookupTransition(JSObject* holder, Name* name, LookupResult* result); inline PropertyDetails GetLastDescriptorDetails(); // The size of transition arrays are limited so they do not end up in large // object space. Otherwise ClearNonLiveTransitions would leak memory while // applying in-place right trimming. inline bool CanHaveMoreTransitions(); int LastAdded() { int number_of_own_descriptors = NumberOfOwnDescriptors(); ASSERT(number_of_own_descriptors > 0); return number_of_own_descriptors - 1; } int NumberOfOwnDescriptors() { return NumberOfOwnDescriptorsBits::decode(bit_field3()); } void SetNumberOfOwnDescriptors(int number) { ASSERT(number <= instance_descriptors()->number_of_descriptors()); set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number)); } inline Cell* RetrieveDescriptorsPointer(); int EnumLength() { return EnumLengthBits::decode(bit_field3()); } void SetEnumLength(int length) { if (length != kInvalidEnumCacheSentinel) { ASSERT(length >= 0); ASSERT(length == 0 || instance_descriptors()->HasEnumCache()); ASSERT(length <= NumberOfOwnDescriptors()); } set_bit_field3(EnumLengthBits::update(bit_field3(), length)); } inline bool owns_descriptors(); inline void set_owns_descriptors(bool is_shared); inline bool has_instance_call_handler(); inline void set_has_instance_call_handler(); inline void freeze(); inline bool is_frozen(); inline void mark_unstable(); inline bool is_stable(); inline void set_migration_target(bool value); inline bool is_migration_target(); inline void set_done_inobject_slack_tracking(bool value); inline bool done_inobject_slack_tracking(); inline void set_construction_count(int value); inline int construction_count(); inline void deprecate(); inline bool is_deprecated(); inline bool CanBeDeprecated(); // Returns a non-deprecated version of the input. If the input was not // deprecated, it is directly returned. Otherwise, the non-deprecated version // is found by re-transitioning from the root of the transition tree using the // descriptor array of the map. Returns NULL if no updated map is found. // This method also applies any pending migrations along the prototype chain. static MaybeHandle<Map> CurrentMapForDeprecated(Handle<Map> map) V8_WARN_UNUSED_RESULT; // Same as above, but does not touch the prototype chain. static MaybeHandle<Map> CurrentMapForDeprecatedInternal(Handle<Map> map) V8_WARN_UNUSED_RESULT; static Handle<Map> CopyDropDescriptors(Handle<Map> map); static Handle<Map> CopyInsertDescriptor(Handle<Map> map, Descriptor* descriptor, TransitionFlag flag); MUST_USE_RESULT static MaybeHandle<Map> CopyWithField( Handle<Map> map, Handle<Name> name, Handle<HeapType> type, PropertyAttributes attributes, Representation representation, TransitionFlag flag); MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant( Handle<Map> map, Handle<Name> name, Handle<Object> constant, PropertyAttributes attributes, TransitionFlag flag); // Returns a new map with all transitions dropped from the given map and // the ElementsKind set. static Handle<Map> TransitionElementsTo(Handle<Map> map, ElementsKind to_kind); static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind); static Handle<Map> CopyAsElementsKind(Handle<Map> map, ElementsKind kind, TransitionFlag flag); static Handle<Map> CopyForObserved(Handle<Map> map); static Handle<Map> CopyForFreeze(Handle<Map> map); inline void AppendDescriptor(Descriptor* desc); // Returns a copy of the map, with all transitions dropped from the // instance descriptors. static Handle<Map> Copy(Handle<Map> map); static Handle<Map> Create(Handle<JSFunction> constructor, int extra_inobject_properties); // Returns the next free property index (only valid for FAST MODE). int NextFreePropertyIndex(); // Returns the number of properties described in instance_descriptors // filtering out properties with the specified attributes. int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS, PropertyAttributes filter = NONE); // Returns the number of slots allocated for the initial properties // backing storage for instances of this map. int InitialPropertiesLength() { return pre_allocated_property_fields() + unused_property_fields() - inobject_properties(); } // Casting. static inline Map* cast(Object* obj); // Code cache operations. // Clears the code cache. inline void ClearCodeCache(Heap* heap); // Update code cache. static void UpdateCodeCache(Handle<Map> map, Handle<Name> name, Handle<Code> code); // Extend the descriptor array of the map with the list of descriptors. // In case of duplicates, the latest descriptor is used. static void AppendCallbackDescriptors(Handle<Map> map, Handle<Object> descriptors); static void EnsureDescriptorSlack(Handle<Map> map, int slack); // Returns the found code or undefined if absent. Object* FindInCodeCache(Name* name, Code::Flags flags); // Returns the non-negative index of the code object if it is in the // cache and -1 otherwise. int IndexInCodeCache(Object* name, Code* code); // Removes a code object from the code cache at the given index. void RemoveFromCodeCache(Name* name, Code* code, int index); // Set all map transitions from this map to dead maps to null. Also clear // back pointers in transition targets so that we do not process this map // again while following back pointers. void ClearNonLiveTransitions(Heap* heap); // Computes a hash value for this map, to be used in HashTables and such. int Hash(); // Returns the map that this map transitions to if its elements_kind // is changed to |elements_kind|, or NULL if no such map is cached yet. // |safe_to_add_transitions| is set to false if adding transitions is not // allowed. Map* LookupElementsTransitionMap(ElementsKind elements_kind); // Returns the transitioned map for this map with the most generic // elements_kind that's found in |candidates|, or null handle if no match is // found at all. Handle<Map> FindTransitionedMap(MapHandleList* candidates); Map* FindTransitionedMap(MapList* candidates); bool CanTransition() { // Only JSObject and subtypes have map transitions and back pointers. STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE); return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool IsJSObjectMap() { return instance_type() >= FIRST_JS_OBJECT_TYPE; } bool IsJSProxyMap() { InstanceType type = instance_type(); return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE; } bool IsJSGlobalProxyMap() { return instance_type() == JS_GLOBAL_PROXY_TYPE; } bool IsJSGlobalObjectMap() { return instance_type() == JS_GLOBAL_OBJECT_TYPE; } bool IsGlobalObjectMap() { const InstanceType type = instance_type(); return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE; } inline bool CanOmitMapChecks(); static void AddDependentCompilationInfo(Handle<Map> map, DependentCode::DependencyGroup group, CompilationInfo* info); static void AddDependentCode(Handle<Map> map, DependentCode::DependencyGroup group, Handle<Code> code); static void AddDependentIC(Handle<Map> map, Handle<Code> stub); bool IsMapInArrayPrototypeChain(); // Dispatched behavior. DECLARE_PRINTER(Map) DECLARE_VERIFIER(Map) #ifdef VERIFY_HEAP void SharedMapVerify(); void VerifyOmittedMapChecks(); #endif inline int visitor_id(); inline void set_visitor_id(int visitor_id); typedef void (*TraverseCallback)(Map* map, void* data); void TraverseTransitionTree(TraverseCallback callback, void* data); // When you set the prototype of an object using the __proto__ accessor you // need a new map for the object (the prototype is stored in the map). In // order not to multiply maps unnecessarily we store these as transitions in // the original map. That way we can transition to the same map if the same // prototype is set, rather than creating a new map every time. The // transitions are in the form of a map where the keys are prototype objects // and the values are the maps the are transitioned to. static const int kMaxCachedPrototypeTransitions = 256; static Handle<Map> TransitionToPrototype(Handle<Map> map, Handle<Object> prototype); static const int kMaxPreAllocatedPropertyFields = 255; // Layout description. static const int kInstanceSizesOffset = HeapObject::kHeaderSize; static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize; static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize; static const int kPrototypeOffset = kBitField3Offset + kPointerSize; static const int kConstructorOffset = kPrototypeOffset + kPointerSize; // Storage for the transition array is overloaded to directly contain a back // pointer if unused. When the map has transitions, the back pointer is // transferred to the transition array and accessed through an extra // indirection. static const int kTransitionsOrBackPointerOffset = kConstructorOffset + kPointerSize; static const int kDescriptorsOffset = kTransitionsOrBackPointerOffset + kPointerSize; static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize; static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize; static const int kSize = kDependentCodeOffset + kPointerSize; // Layout of pointer fields. Heap iteration code relies on them // being continuously allocated. static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset; static const int kPointerFieldsEndOffset = kSize; // Byte offsets within kInstanceSizesOffset. static const int kInstanceSizeOffset = kInstanceSizesOffset + 0; static const int kInObjectPropertiesByte = 1; static const int kInObjectPropertiesOffset = kInstanceSizesOffset + kInObjectPropertiesByte; static const int kPreAllocatedPropertyFieldsByte = 2; static const int kPreAllocatedPropertyFieldsOffset = kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte; static const int kVisitorIdByte = 3; static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte; // Byte offsets within kInstanceAttributesOffset attributes. #if V8_TARGET_LITTLE_ENDIAN // Order instance type and bit field together such that they can be loaded // together as a 16-bit word with instance type in the lower 8 bits regardless // of endianess. static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0; static const int kBitFieldOffset = kInstanceAttributesOffset + 1; #else static const int kBitFieldOffset = kInstanceAttributesOffset + 0; static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1; #endif static const int kBitField2Offset = kInstanceAttributesOffset + 2; static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3; STATIC_ASSERT(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset); // Bit positions for bit field. static const int kHasNonInstancePrototype = 0; static const int kIsHiddenPrototype = 1; static const int kHasNamedInterceptor = 2; static const int kHasIndexedInterceptor = 3; static const int kIsUndetectable = 4; static const int kIsObserved = 5; static const int kIsAccessCheckNeeded = 6; class FunctionWithPrototype: public BitField<bool, 7, 1> {}; // Bit positions for bit field 2 static const int kIsExtensible = 0; static const int kStringWrapperSafeForDefaultValueOf = 1; // Currently bit 2 is not used. class ElementsKindBits: public BitField<ElementsKind, 3, 5> {}; // Derived values from bit field 2 static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>( (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1; static const int8_t kMaximumBitField2FastSmiElementValue = static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1; static const int8_t kMaximumBitField2FastHoleyElementValue = static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1; static const int8_t kMaximumBitField2FastHoleySmiElementValue = static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1; typedef FixedBodyDescriptor<kPointerFieldsBeginOffset, kPointerFieldsEndOffset, kSize> BodyDescriptor; // Compares this map to another to see if they describe equivalent objects. // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if // it had exactly zero inobject properties. // The "shared" flags of both this map and |other| are ignored. bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode); private: bool EquivalentToForTransition(Map* other); static Handle<Map> RawCopy(Handle<Map> map, int instance_size); static Handle<Map> ShareDescriptor(Handle<Map> map, Handle<DescriptorArray> descriptors, Descriptor* descriptor); static Handle<Map> CopyInstallDescriptors( Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors); static Handle<Map> CopyAddDescriptor(Handle<Map> map, Descriptor* descriptor, TransitionFlag flag); static Handle<Map> CopyReplaceDescriptors( Handle<Map> map, Handle<DescriptorArray> descriptors, TransitionFlag flag, MaybeHandle<Name> maybe_name, SimpleTransitionFlag simple_flag = FULL_TRANSITION); static Handle<Map> CopyReplaceDescriptor(Handle<Map> map, Handle<DescriptorArray> descriptors, Descriptor* descriptor, int index, TransitionFlag flag); static Handle<Map> CopyNormalized(Handle<Map> map, PropertyNormalizationMode mode, NormalizedMapSharingMode sharing); // Fires when the layout of an object with a leaf map changes. // This includes adding transitions to the leaf map or changing // the descriptor array. inline void NotifyLeafMapLayoutChange(); static Handle<Map> TransitionElementsToSlow(Handle<Map> object, ElementsKind to_kind); // Zaps the contents of backing data structures. Note that the // heap verifier (i.e. VerifyMarkingVisitor) relies on zapping of objects // holding weak references when incremental marking is used, because it also // iterates over objects that are otherwise unreachable. // In general we only want to call these functions in release mode when // heap verification is turned on. void ZapPrototypeTransitions(); void ZapTransitions(); void DeprecateTransitionTree(); void DeprecateTarget(Name* key, DescriptorArray* new_descriptors); Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors); void UpdateDescriptor(int descriptor_number, Descriptor* desc); void PrintGeneralization(FILE* file, const char* reason, int modify_index, int split, int descriptors, bool constant_to_field, Representation old_representation, Representation new_representation, HeapType* old_field_type, HeapType* new_field_type); static inline void SetPrototypeTransitions( Handle<Map> map, Handle<FixedArray> prototype_transitions); static Handle<Map> GetPrototypeTransition(Handle<Map> map, Handle<Object> prototype); static Handle<Map> PutPrototypeTransition(Handle<Map> map, Handle<Object> prototype, Handle<Map> target_map); DISALLOW_IMPLICIT_CONSTRUCTORS(Map); }; // An abstract superclass, a marker class really, for simple structure classes. // It doesn't carry much functionality but allows struct classes to be // identified in the type system. class Struct: public HeapObject { public: inline void InitializeBody(int object_size); static inline Struct* cast(Object* that); }; // A simple one-element struct, useful where smis need to be boxed. class Box : public Struct { public: // [value]: the boxed contents. DECL_ACCESSORS(value, Object) static inline Box* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(Box) DECLARE_VERIFIER(Box) static const int kValueOffset = HeapObject::kHeaderSize; static const int kSize = kValueOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(Box); }; // Script describes a script which has been added to the VM. class Script: public Struct { public: // Script types. enum Type { TYPE_NATIVE = 0, TYPE_EXTENSION = 1, TYPE_NORMAL = 2 }; // Script compilation types. enum CompilationType { COMPILATION_TYPE_HOST = 0, COMPILATION_TYPE_EVAL = 1 }; // Script compilation state. enum CompilationState { COMPILATION_STATE_INITIAL = 0, COMPILATION_STATE_COMPILED = 1 }; // [source]: the script source. DECL_ACCESSORS(source, Object) // [name]: the script name. DECL_ACCESSORS(name, Object) // [id]: the script id. DECL_ACCESSORS(id, Smi) // [line_offset]: script line offset in resource from where it was extracted. DECL_ACCESSORS(line_offset, Smi) // [column_offset]: script column offset in resource from where it was // extracted. DECL_ACCESSORS(column_offset, Smi) // [context_data]: context data for the context this script was compiled in. DECL_ACCESSORS(context_data, Object) // [wrapper]: the wrapper cache. DECL_ACCESSORS(wrapper, Foreign) // [type]: the script type. DECL_ACCESSORS(type, Smi) // [line_ends]: FixedArray of line ends positions. DECL_ACCESSORS(line_ends, Object) // [eval_from_shared]: for eval scripts the shared funcion info for the // function from which eval was called. DECL_ACCESSORS(eval_from_shared, Object) // [eval_from_instructions_offset]: the instruction offset in the code for the // function from which eval was called where eval was called. DECL_ACCESSORS(eval_from_instructions_offset, Smi) // [flags]: Holds an exciting bitfield. DECL_ACCESSORS(flags, Smi) // [compilation_type]: how the the script was compiled. Encoded in the // 'flags' field. inline CompilationType compilation_type(); inline void set_compilation_type(CompilationType type); // [compilation_state]: determines whether the script has already been // compiled. Encoded in the 'flags' field. inline CompilationState compilation_state(); inline void set_compilation_state(CompilationState state); // [is_shared_cross_origin]: An opaque boolean set by the embedder via // ScriptOrigin, and used by the embedder to make decisions about the // script's level of privilege. V8 just passes this through. Encoded in // the 'flags' field. DECL_BOOLEAN_ACCESSORS(is_shared_cross_origin) static inline Script* cast(Object* obj); // If script source is an external string, check that the underlying // resource is accessible. Otherwise, always return true. inline bool HasValidSource(); // Convert code position into column number. static int GetColumnNumber(Handle<Script> script, int code_pos); // Convert code position into (zero-based) line number. // The non-handlified version does not allocate, but may be much slower. static int GetLineNumber(Handle<Script> script, int code_pos); int GetLineNumber(int code_pos); static Handle<Object> GetNameOrSourceURL(Handle<Script> script); // Init line_ends array with code positions of line ends inside script source. static void InitLineEnds(Handle<Script> script); // Get the JS object wrapping the given script; create it if none exists. static Handle<JSObject> GetWrapper(Handle<Script> script); // Dispatched behavior. DECLARE_PRINTER(Script) DECLARE_VERIFIER(Script) static const int kSourceOffset = HeapObject::kHeaderSize; static const int kNameOffset = kSourceOffset + kPointerSize; static const int kLineOffsetOffset = kNameOffset + kPointerSize; static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize; static const int kContextOffset = kColumnOffsetOffset + kPointerSize; static const int kWrapperOffset = kContextOffset + kPointerSize; static const int kTypeOffset = kWrapperOffset + kPointerSize; static const int kLineEndsOffset = kTypeOffset + kPointerSize; static const int kIdOffset = kLineEndsOffset + kPointerSize; static const int kEvalFromSharedOffset = kIdOffset + kPointerSize; static const int kEvalFrominstructionsOffsetOffset = kEvalFromSharedOffset + kPointerSize; static const int kFlagsOffset = kEvalFrominstructionsOffsetOffset + kPointerSize; static const int kSize = kFlagsOffset + kPointerSize; private: int GetLineNumberWithArray(int code_pos); // Bit positions in the flags field. static const int kCompilationTypeBit = 0; static const int kCompilationStateBit = 1; static const int kIsSharedCrossOriginBit = 2; DISALLOW_IMPLICIT_CONSTRUCTORS(Script); }; // List of builtin functions we want to identify to improve code // generation. // // Each entry has a name of a global object property holding an object // optionally followed by ".prototype", a name of a builtin function // on the object (the one the id is set for), and a label. // // Installation of ids for the selected builtin functions is handled // by the bootstrapper. #define FUNCTIONS_WITH_ID_LIST(V) \ V(Array.prototype, indexOf, ArrayIndexOf) \ V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \ V(Array.prototype, push, ArrayPush) \ V(Array.prototype, pop, ArrayPop) \ V(Array.prototype, shift, ArrayShift) \ V(Function.prototype, apply, FunctionApply) \ V(String.prototype, charCodeAt, StringCharCodeAt) \ V(String.prototype, charAt, StringCharAt) \ V(String, fromCharCode, StringFromCharCode) \ V(Math, floor, MathFloor) \ V(Math, round, MathRound) \ V(Math, ceil, MathCeil) \ V(Math, abs, MathAbs) \ V(Math, log, MathLog) \ V(Math, exp, MathExp) \ V(Math, sqrt, MathSqrt) \ V(Math, pow, MathPow) \ V(Math, max, MathMax) \ V(Math, min, MathMin) \ V(Math, imul, MathImul) enum BuiltinFunctionId { kArrayCode, #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \ k##name, FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID) #undef DECLARE_FUNCTION_ID // Fake id for a special case of Math.pow. Note, it continues the // list of math functions. kMathPowHalf, // Installed only on --harmony-maths. kMathClz32 }; // SharedFunctionInfo describes the JSFunction information that can be // shared by multiple instances of the function. class SharedFunctionInfo: public HeapObject { public: // [name]: Function name. DECL_ACCESSORS(name, Object) // [code]: Function code. DECL_ACCESSORS(code, Code) inline void ReplaceCode(Code* code); // [optimized_code_map]: Map from native context to optimized code // and a shared literals array or Smi(0) if none. DECL_ACCESSORS(optimized_code_map, Object) // Returns index i of the entry with the specified context and OSR entry. // At position i - 1 is the context, position i the code, and i + 1 the // literals array. Returns -1 when no matching entry is found. int SearchOptimizedCodeMap(Context* native_context, BailoutId osr_ast_id); // Installs optimized code from the code map on the given closure. The // index has to be consistent with a search result as defined above. FixedArray* GetLiteralsFromOptimizedCodeMap(int index); Code* GetCodeFromOptimizedCodeMap(int index); // Clear optimized code map. void ClearOptimizedCodeMap(); // Removed a specific optimized code object from the optimized code map. void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason); void ClearTypeFeedbackInfo(); // Trims the optimized code map after entries have been removed. void TrimOptimizedCodeMap(int shrink_by); // Add a new entry to the optimized code map. static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared, Handle<Context> native_context, Handle<Code> code, Handle<FixedArray> literals, BailoutId osr_ast_id); // Layout description of the optimized code map. static const int kNextMapIndex = 0; static const int kEntriesStart = 1; static const int kContextOffset = 0; static const int kCachedCodeOffset = 1; static const int kLiteralsOffset = 2; static const int kOsrAstIdOffset = 3; static const int kEntryLength = 4; static const int kInitialLength = kEntriesStart + kEntryLength; // [scope_info]: Scope info. DECL_ACCESSORS(scope_info, ScopeInfo) // [construct stub]: Code stub for constructing instances of this function. DECL_ACCESSORS(construct_stub, Code) // Returns if this function has been compiled to native code yet. inline bool is_compiled(); // [length]: The function length - usually the number of declared parameters. // Use up to 2^30 parameters. inline int length(); inline void set_length(int value); // [formal parameter count]: The declared number of parameters. inline int formal_parameter_count(); inline void set_formal_parameter_count(int value); // Set the formal parameter count so the function code will be // called without using argument adaptor frames. inline void DontAdaptArguments(); // [expected_nof_properties]: Expected number of properties for the function. inline int expected_nof_properties(); inline void set_expected_nof_properties(int value); // [feedback_vector] - accumulates ast node feedback from full-codegen and // (increasingly) from crankshafted code where sufficient feedback isn't // available. Currently the field is duplicated in // TypeFeedbackInfo::feedback_vector, but the allocation is done here. DECL_ACCESSORS(feedback_vector, FixedArray) // [instance class name]: class name for instances. DECL_ACCESSORS(instance_class_name, Object) // [function data]: This field holds some additional data for function. // Currently it either has FunctionTemplateInfo to make benefit the API // or Smi identifying a builtin function. // In the long run we don't want all functions to have this field but // we can fix that when we have a better model for storing hidden data // on objects. DECL_ACCESSORS(function_data, Object) inline bool IsApiFunction(); inline FunctionTemplateInfo* get_api_func_data(); inline bool HasBuiltinFunctionId(); inline BuiltinFunctionId builtin_function_id(); // [script info]: Script from which the function originates. DECL_ACCESSORS(script, Object) // [num_literals]: Number of literals used by this function. inline int num_literals(); inline void set_num_literals(int value); // [start_position_and_type]: Field used to store both the source code // position, whether or not the function is a function expression, // and whether or not the function is a toplevel function. The two // least significants bit indicates whether the function is an // expression and the rest contains the source code position. inline int start_position_and_type(); inline void set_start_position_and_type(int value); // [debug info]: Debug information. DECL_ACCESSORS(debug_info, Object) // [inferred name]: Name inferred from variable or property // assignment of this function. Used to facilitate debugging and // profiling of JavaScript code written in OO style, where almost // all functions are anonymous but are assigned to object // properties. DECL_ACCESSORS(inferred_name, String) // The function's name if it is non-empty, otherwise the inferred name. String* DebugName(); // Position of the 'function' token in the script source. inline int function_token_position(); inline void set_function_token_position(int function_token_position); // Position of this function in the script source. inline int start_position(); inline void set_start_position(int start_position); // End position of this function in the script source. inline int end_position(); inline void set_end_position(int end_position); // Is this function a function expression in the source code. DECL_BOOLEAN_ACCESSORS(is_expression) // Is this function a top-level function (scripts, evals). DECL_BOOLEAN_ACCESSORS(is_toplevel) // Bit field containing various information collected by the compiler to // drive optimization. inline int compiler_hints(); inline void set_compiler_hints(int value); inline int ast_node_count(); inline void set_ast_node_count(int count); inline int profiler_ticks(); inline void set_profiler_ticks(int ticks); // Inline cache age is used to infer whether the function survived a context // disposal or not. In the former case we reset the opt_count. inline int ic_age(); inline void set_ic_age(int age); // Indicates if this function can be lazy compiled. // This is used to determine if we can safely flush code from a function // when doing GC if we expect that the function will no longer be used. DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation) // Indicates if this function can be lazy compiled without a context. // This is used to determine if we can force compilation without reaching // the function through program execution but through other means (e.g. heap // iteration by the debugger). DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context) // Indicates whether optimizations have been disabled for this // shared function info. If a function is repeatedly optimized or if // we cannot optimize the function we disable optimization to avoid // spending time attempting to optimize it again. DECL_BOOLEAN_ACCESSORS(optimization_disabled) // Indicates the language mode. inline StrictMode strict_mode(); inline void set_strict_mode(StrictMode strict_mode); // False if the function definitely does not allocate an arguments object. DECL_BOOLEAN_ACCESSORS(uses_arguments) // True if the function has any duplicated parameter names. DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters) // Indicates whether the function is a native function. // These needs special treatment in .call and .apply since // null passed as the receiver should not be translated to the // global object. DECL_BOOLEAN_ACCESSORS(native) // Indicate that this builtin needs to be inlined in crankshaft. DECL_BOOLEAN_ACCESSORS(inline_builtin) // Indicates that the function was created by the Function function. // Though it's anonymous, toString should treat it as if it had the name // "anonymous". We don't set the name itself so that the system does not // see a binding for it. DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous) // Indicates whether the function is a bound function created using // the bind function. DECL_BOOLEAN_ACCESSORS(bound) // Indicates that the function is anonymous (the name field can be set // through the API, which does not change this flag). DECL_BOOLEAN_ACCESSORS(is_anonymous) // Is this a function or top-level/eval code. DECL_BOOLEAN_ACCESSORS(is_function) // Indicates that the function cannot be optimized. DECL_BOOLEAN_ACCESSORS(dont_optimize) // Indicates that the function cannot be inlined. DECL_BOOLEAN_ACCESSORS(dont_inline) // Indicates that code for this function cannot be cached. DECL_BOOLEAN_ACCESSORS(dont_cache) // Indicates that code for this function cannot be flushed. DECL_BOOLEAN_ACCESSORS(dont_flush) // Indicates that this function is a generator. DECL_BOOLEAN_ACCESSORS(is_generator) // Indicates whether or not the code in the shared function support // deoptimization. inline bool has_deoptimization_support(); // Enable deoptimization support through recompiled code. void EnableDeoptimizationSupport(Code* recompiled); // Disable (further) attempted optimization of all functions sharing this // shared function info. void DisableOptimization(BailoutReason reason); inline BailoutReason DisableOptimizationReason(); // Lookup the bailout ID and ASSERT that it exists in the non-optimized // code, returns whether it asserted (i.e., always true if assertions are // disabled). bool VerifyBailoutId(BailoutId id); // [source code]: Source code for the function. bool HasSourceCode(); Handle<Object> GetSourceCode(); // Number of times the function was optimized. inline int opt_count(); inline void set_opt_count(int opt_count); // Number of times the function was deoptimized. inline void set_deopt_count(int value); inline int deopt_count(); inline void increment_deopt_count(); // Number of time we tried to re-enable optimization after it // was disabled due to high number of deoptimizations. inline void set_opt_reenable_tries(int value); inline int opt_reenable_tries(); inline void TryReenableOptimization(); // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields. inline void set_counters(int value); inline int counters(); // Stores opt_count and bailout_reason as bit-fields. inline void set_opt_count_and_bailout_reason(int value); inline int opt_count_and_bailout_reason(); void set_bailout_reason(BailoutReason reason) { set_opt_count_and_bailout_reason( DisabledOptimizationReasonBits::update(opt_count_and_bailout_reason(), reason)); } void set_dont_optimize_reason(BailoutReason reason) { set_bailout_reason(reason); set_dont_optimize(reason != kNoReason); } // Check whether or not this function is inlineable. bool IsInlineable(); // Source size of this function. int SourceSize(); // Calculate the instance size. int CalculateInstanceSize(); // Calculate the number of in-object properties. int CalculateInObjectProperties(); // Dispatched behavior. // Set max_length to -1 for unlimited length. void SourceCodePrint(StringStream* accumulator, int max_length); DECLARE_PRINTER(SharedFunctionInfo) DECLARE_VERIFIER(SharedFunctionInfo) void ResetForNewContext(int new_ic_age); // Casting. static inline SharedFunctionInfo* cast(Object* obj); // Constants. static const int kDontAdaptArgumentsSentinel = -1; // Layout description. // Pointer fields. static const int kNameOffset = HeapObject::kHeaderSize; static const int kCodeOffset = kNameOffset + kPointerSize; static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize; static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize; static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize; static const int kInstanceClassNameOffset = kConstructStubOffset + kPointerSize; static const int kFunctionDataOffset = kInstanceClassNameOffset + kPointerSize; static const int kScriptOffset = kFunctionDataOffset + kPointerSize; static const int kDebugInfoOffset = kScriptOffset + kPointerSize; static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize; static const int kFeedbackVectorOffset = kInferredNameOffset + kPointerSize; #if V8_HOST_ARCH_32_BIT // Smi fields. static const int kLengthOffset = kFeedbackVectorOffset + kPointerSize; static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize; static const int kExpectedNofPropertiesOffset = kFormalParameterCountOffset + kPointerSize; static const int kNumLiteralsOffset = kExpectedNofPropertiesOffset + kPointerSize; static const int kStartPositionAndTypeOffset = kNumLiteralsOffset + kPointerSize; static const int kEndPositionOffset = kStartPositionAndTypeOffset + kPointerSize; static const int kFunctionTokenPositionOffset = kEndPositionOffset + kPointerSize; static const int kCompilerHintsOffset = kFunctionTokenPositionOffset + kPointerSize; static const int kOptCountAndBailoutReasonOffset = kCompilerHintsOffset + kPointerSize; static const int kCountersOffset = kOptCountAndBailoutReasonOffset + kPointerSize; static const int kAstNodeCountOffset = kCountersOffset + kPointerSize; static const int kProfilerTicksOffset = kAstNodeCountOffset + kPointerSize; // Total size. static const int kSize = kProfilerTicksOffset + kPointerSize; #else // The only reason to use smi fields instead of int fields // is to allow iteration without maps decoding during // garbage collections. // To avoid wasting space on 64-bit architectures we use // the following trick: we group integer fields into pairs // First integer in each pair is shifted left by 1. // By doing this we guarantee that LSB of each kPointerSize aligned // word is not set and thus this word cannot be treated as pointer // to HeapObject during old space traversal. static const int kLengthOffset = kFeedbackVectorOffset + kPointerSize; static const int kFormalParameterCountOffset = kLengthOffset + kIntSize; static const int kExpectedNofPropertiesOffset = kFormalParameterCountOffset + kIntSize; static const int kNumLiteralsOffset = kExpectedNofPropertiesOffset + kIntSize; static const int kEndPositionOffset = kNumLiteralsOffset + kIntSize; static const int kStartPositionAndTypeOffset = kEndPositionOffset + kIntSize; static const int kFunctionTokenPositionOffset = kStartPositionAndTypeOffset + kIntSize; static const int kCompilerHintsOffset = kFunctionTokenPositionOffset + kIntSize; static const int kOptCountAndBailoutReasonOffset = kCompilerHintsOffset + kIntSize; static const int kCountersOffset = kOptCountAndBailoutReasonOffset + kIntSize; static const int kAstNodeCountOffset = kCountersOffset + kIntSize; static const int kProfilerTicksOffset = kAstNodeCountOffset + kIntSize; // Total size. static const int kSize = kProfilerTicksOffset + kIntSize; #endif static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize); typedef FixedBodyDescriptor<kNameOffset, kFeedbackVectorOffset + kPointerSize, kSize> BodyDescriptor; // Bit positions in start_position_and_type. // The source code start position is in the 30 most significant bits of // the start_position_and_type field. static const int kIsExpressionBit = 0; static const int kIsTopLevelBit = 1; static const int kStartPositionShift = 2; static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1); // Bit positions in compiler_hints. enum CompilerHints { kAllowLazyCompilation, kAllowLazyCompilationWithoutContext, kOptimizationDisabled, kStrictModeFunction, kUsesArguments, kHasDuplicateParameters, kNative, kInlineBuiltin, kBoundFunction, kIsAnonymous, kNameShouldPrintAsAnonymous, kIsFunction, kDontOptimize, kDontInline, kDontCache, kDontFlush, kIsGenerator, kCompilerHintsCount // Pseudo entry }; class DeoptCountBits: public BitField<int, 0, 4> {}; class OptReenableTriesBits: public BitField<int, 4, 18> {}; class ICAgeBits: public BitField<int, 22, 8> {}; class OptCountBits: public BitField<int, 0, 22> {}; class DisabledOptimizationReasonBits: public BitField<int, 22, 8> {}; private: #if V8_HOST_ARCH_32_BIT // On 32 bit platforms, compiler hints is a smi. static const int kCompilerHintsSmiTagSize = kSmiTagSize; static const int kCompilerHintsSize = kPointerSize; #else // On 64 bit platforms, compiler hints is not a smi, see comment above. static const int kCompilerHintsSmiTagSize = 0; static const int kCompilerHintsSize = kIntSize; #endif STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <= SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte); public: // Constants for optimizing codegen for strict mode function and // native tests. // Allows to use byte-width instructions. static const int kStrictModeBitWithinByte = (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte; static const int kNativeBitWithinByte = (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte; #if defined(V8_TARGET_LITTLE_ENDIAN) static const int kStrictModeByteOffset = kCompilerHintsOffset + (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte; static const int kNativeByteOffset = kCompilerHintsOffset + (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte; #elif defined(V8_TARGET_BIG_ENDIAN) static const int kStrictModeByteOffset = kCompilerHintsOffset + (kCompilerHintsSize - 1) - ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte); static const int kNativeByteOffset = kCompilerHintsOffset + (kCompilerHintsSize - 1) - ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte); #else #error Unknown byte ordering #endif private: DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo); }; class JSGeneratorObject: public JSObject { public: // [function]: The function corresponding to this generator object. DECL_ACCESSORS(function, JSFunction) // [context]: The context of the suspended computation. DECL_ACCESSORS(context, Context) // [receiver]: The receiver of the suspended computation. DECL_ACCESSORS(receiver, Object) // [continuation]: Offset into code of continuation. // // A positive offset indicates a suspended generator. The special // kGeneratorExecuting and kGeneratorClosed values indicate that a generator // cannot be resumed. inline int continuation(); inline void set_continuation(int continuation); inline bool is_closed(); inline bool is_executing(); inline bool is_suspended(); // [operand_stack]: Saved operand stack. DECL_ACCESSORS(operand_stack, FixedArray) // [stack_handler_index]: Index of first stack handler in operand_stack, or -1 // if the captured activation had no stack handler. inline int stack_handler_index(); inline void set_stack_handler_index(int stack_handler_index); // Casting. static inline JSGeneratorObject* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSGeneratorObject) DECLARE_VERIFIER(JSGeneratorObject) // Magic sentinel values for the continuation. static const int kGeneratorExecuting = -1; static const int kGeneratorClosed = 0; // Layout description. static const int kFunctionOffset = JSObject::kHeaderSize; static const int kContextOffset = kFunctionOffset + kPointerSize; static const int kReceiverOffset = kContextOffset + kPointerSize; static const int kContinuationOffset = kReceiverOffset + kPointerSize; static const int kOperandStackOffset = kContinuationOffset + kPointerSize; static const int kStackHandlerIndexOffset = kOperandStackOffset + kPointerSize; static const int kSize = kStackHandlerIndexOffset + kPointerSize; // Resume mode, for use by runtime functions. enum ResumeMode { NEXT, THROW }; // Yielding from a generator returns an object with the following inobject // properties. See Context::iterator_result_map() for the map. static const int kResultValuePropertyIndex = 0; static const int kResultDonePropertyIndex = 1; static const int kResultPropertyCount = 2; static const int kResultValuePropertyOffset = JSObject::kHeaderSize; static const int kResultDonePropertyOffset = kResultValuePropertyOffset + kPointerSize; static const int kResultSize = kResultDonePropertyOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject); }; // Representation for module instance objects. class JSModule: public JSObject { public: // [context]: the context holding the module's locals, or undefined if none. DECL_ACCESSORS(context, Object) // [scope_info]: Scope info. DECL_ACCESSORS(scope_info, ScopeInfo) // Casting. static inline JSModule* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSModule) DECLARE_VERIFIER(JSModule) // Layout description. static const int kContextOffset = JSObject::kHeaderSize; static const int kScopeInfoOffset = kContextOffset + kPointerSize; static const int kSize = kScopeInfoOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule); }; // JSFunction describes JavaScript functions. class JSFunction: public JSObject { public: // [prototype_or_initial_map]: DECL_ACCESSORS(prototype_or_initial_map, Object) // [shared]: The information about the function that // can be shared by instances. DECL_ACCESSORS(shared, SharedFunctionInfo) // [context]: The context for this function. inline Context* context(); inline void set_context(Object* context); // [code]: The generated code object for this function. Executed // when the function is invoked, e.g. foo() or new foo(). See // [[Call]] and [[Construct]] description in ECMA-262, section // 8.6.2, page 27. inline Code* code(); inline void set_code(Code* code); inline void set_code_no_write_barrier(Code* code); inline void ReplaceCode(Code* code); // Tells whether this function is builtin. inline bool IsBuiltin(); // Tells whether this function is defined in a native script. inline bool IsNative(); // Tells whether or not the function needs arguments adaption. inline bool NeedsArgumentsAdaption(); // Tells whether or not this function has been optimized. inline bool IsOptimized(); // Tells whether or not this function can be optimized. inline bool IsOptimizable(); // Mark this function for lazy recompilation. The function will be // recompiled the next time it is executed. void MarkForOptimization(); void MarkForConcurrentOptimization(); void MarkInOptimizationQueue(); // Tells whether or not the function is already marked for lazy // recompilation. inline bool IsMarkedForOptimization(); inline bool IsMarkedForConcurrentOptimization(); // Tells whether or not the function is on the concurrent recompilation queue. inline bool IsInOptimizationQueue(); // Inobject slack tracking is the way to reclaim unused inobject space. // // The instance size is initially determined by adding some slack to // expected_nof_properties (to allow for a few extra properties added // after the constructor). There is no guarantee that the extra space // will not be wasted. // // Here is the algorithm to reclaim the unused inobject space: // - Detect the first constructor call for this JSFunction. // When it happens enter the "in progress" state: initialize construction // counter in the initial_map and set the |done_inobject_slack_tracking| // flag. // - While the tracking is in progress create objects filled with // one_pointer_filler_map instead of undefined_value. This way they can be // resized quickly and safely. // - Once enough (kGenerousAllocationCount) objects have been created // compute the 'slack' (traverse the map transition tree starting from the // initial_map and find the lowest value of unused_property_fields). // - Traverse the transition tree again and decrease the instance size // of every map. Existing objects will resize automatically (they are // filled with one_pointer_filler_map). All further allocations will // use the adjusted instance size. // - SharedFunctionInfo's expected_nof_properties left unmodified since // allocations made using different closures could actually create different // kind of objects (see prototype inheritance pattern). // // Important: inobject slack tracking is not attempted during the snapshot // creation. static const int kGenerousAllocationCount = Map::ConstructionCount::kMax; static const int kFinishSlackTracking = 1; static const int kNoSlackTracking = 0; // True if the initial_map is set and the object constructions countdown // counter is not zero. inline bool IsInobjectSlackTrackingInProgress(); // Starts the tracking. // Initializes object constructions countdown counter in the initial map. // IsInobjectSlackTrackingInProgress is normally true after this call, // except when tracking have not been started (e.g. the map has no unused // properties or the snapshot is being built). void StartInobjectSlackTracking(); // Completes the tracking. // IsInobjectSlackTrackingInProgress is false after this call. void CompleteInobjectSlackTracking(); // [literals_or_bindings]: Fixed array holding either // the materialized literals or the bindings of a bound function. // // If the function contains object, regexp or array literals, the // literals array prefix contains the object, regexp, and array // function to be used when creating these literals. This is // necessary so that we do not dynamically lookup the object, regexp // or array functions. Performing a dynamic lookup, we might end up // using the functions from a new context that we should not have // access to. // // On bound functions, the array is a (copy-on-write) fixed-array containing // the function that was bound, bound this-value and any bound // arguments. Bound functions never contain literals. DECL_ACCESSORS(literals_or_bindings, FixedArray) inline FixedArray* literals(); inline void set_literals(FixedArray* literals); inline FixedArray* function_bindings(); inline void set_function_bindings(FixedArray* bindings); // The initial map for an object created by this constructor. inline Map* initial_map(); inline void set_initial_map(Map* value); inline bool has_initial_map(); static void EnsureHasInitialMap(Handle<JSFunction> function); // Get and set the prototype property on a JSFunction. If the // function has an initial map the prototype is set on the initial // map. Otherwise, the prototype is put in the initial map field // until an initial map is needed. inline bool has_prototype(); inline bool has_instance_prototype(); inline Object* prototype(); inline Object* instance_prototype(); static void SetPrototype(Handle<JSFunction> function, Handle<Object> value); static void SetInstancePrototype(Handle<JSFunction> function, Handle<Object> value); // After prototype is removed, it will not be created when accessed, and // [[Construct]] from this function will not be allowed. bool RemovePrototype(); inline bool should_have_prototype(); // Accessor for this function's initial map's [[class]] // property. This is primarily used by ECMA native functions. This // method sets the class_name field of this function's initial map // to a given value. It creates an initial map if this function does // not have one. Note that this method does not copy the initial map // if it has one already, but simply replaces it with the new value. // Instances created afterwards will have a map whose [[class]] is // set to 'value', but there is no guarantees on instances created // before. void SetInstanceClassName(String* name); // Returns if this function has been compiled to native code yet. inline bool is_compiled(); // [next_function_link]: Links functions into various lists, e.g. the list // of optimized functions hanging off the native_context. The CodeFlusher // uses this link to chain together flushing candidates. Treated weakly // by the garbage collector. DECL_ACCESSORS(next_function_link, Object) // Prints the name of the function using PrintF. void PrintName(FILE* out = stdout); // Casting. static inline JSFunction* cast(Object* obj); // Iterates the objects, including code objects indirectly referenced // through pointers to the first instruction in the code object. void JSFunctionIterateBody(int object_size, ObjectVisitor* v); // Dispatched behavior. DECLARE_PRINTER(JSFunction) DECLARE_VERIFIER(JSFunction) // Returns the number of allocated literals. inline int NumberOfLiterals(); // Retrieve the native context from a function's literal array. static Context* NativeContextFromLiterals(FixedArray* literals); // Used for flags such as --hydrogen-filter. bool PassesFilter(const char* raw_filter); // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to // kSize) is weak and has special handling during garbage collection. static const int kCodeEntryOffset = JSObject::kHeaderSize; static const int kPrototypeOrInitialMapOffset = kCodeEntryOffset + kPointerSize; static const int kSharedFunctionInfoOffset = kPrototypeOrInitialMapOffset + kPointerSize; static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize; static const int kLiteralsOffset = kContextOffset + kPointerSize; static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize; static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset; static const int kSize = kNextFunctionLinkOffset + kPointerSize; // Layout of the literals array. static const int kLiteralsPrefixSize = 1; static const int kLiteralNativeContextIndex = 0; // Layout of the bound-function binding array. static const int kBoundFunctionIndex = 0; static const int kBoundThisIndex = 1; static const int kBoundArgumentsStartIndex = 2; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction); }; // JSGlobalProxy's prototype must be a JSGlobalObject or null, // and the prototype is hidden. JSGlobalProxy always delegates // property accesses to its prototype if the prototype is not null. // // A JSGlobalProxy can be reinitialized which will preserve its identity. // // Accessing a JSGlobalProxy requires security check. class JSGlobalProxy : public JSObject { public: // [native_context]: the owner native context of this global proxy object. // It is null value if this object is not used by any context. DECL_ACCESSORS(native_context, Object) // [hash]: The hash code property (undefined if not initialized yet). DECL_ACCESSORS(hash, Object) // Casting. static inline JSGlobalProxy* cast(Object* obj); inline bool IsDetachedFrom(GlobalObject* global); // Dispatched behavior. DECLARE_PRINTER(JSGlobalProxy) DECLARE_VERIFIER(JSGlobalProxy) // Layout description. static const int kNativeContextOffset = JSObject::kHeaderSize; static const int kHashOffset = kNativeContextOffset + kPointerSize; static const int kSize = kHashOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy); }; // Forward declaration. class JSBuiltinsObject; // Common super class for JavaScript global objects and the special // builtins global objects. class GlobalObject: public JSObject { public: // [builtins]: the object holding the runtime routines written in JS. DECL_ACCESSORS(builtins, JSBuiltinsObject) // [native context]: the natives corresponding to this global object. DECL_ACCESSORS(native_context, Context) // [global context]: the most recent (i.e. innermost) global context. DECL_ACCESSORS(global_context, Context) // [global receiver]: the global receiver object of the context DECL_ACCESSORS(global_receiver, JSObject) // Retrieve the property cell used to store a property. PropertyCell* GetPropertyCell(LookupResult* result); // Casting. static inline GlobalObject* cast(Object* obj); // Layout description. static const int kBuiltinsOffset = JSObject::kHeaderSize; static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize; static const int kGlobalContextOffset = kNativeContextOffset + kPointerSize; static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize; static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject); }; // JavaScript global object. class JSGlobalObject: public GlobalObject { public: // Casting. static inline JSGlobalObject* cast(Object* obj); // Ensure that the global object has a cell for the given property name. static Handle<PropertyCell> EnsurePropertyCell(Handle<JSGlobalObject> global, Handle<Name> name); inline bool IsDetached(); // Dispatched behavior. DECLARE_PRINTER(JSGlobalObject) DECLARE_VERIFIER(JSGlobalObject) // Layout description. static const int kSize = GlobalObject::kHeaderSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject); }; // Builtins global object which holds the runtime routines written in // JavaScript. class JSBuiltinsObject: public GlobalObject { public: // Accessors for the runtime routines written in JavaScript. inline Object* javascript_builtin(Builtins::JavaScript id); inline void set_javascript_builtin(Builtins::JavaScript id, Object* value); // Accessors for code of the runtime routines written in JavaScript. inline Code* javascript_builtin_code(Builtins::JavaScript id); inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value); // Casting. static inline JSBuiltinsObject* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSBuiltinsObject) DECLARE_VERIFIER(JSBuiltinsObject) // Layout description. The size of the builtins object includes // room for two pointers per runtime routine written in javascript // (function and code object). static const int kJSBuiltinsCount = Builtins::id_count; static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize; static const int kJSBuiltinsCodeOffset = GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize); static const int kSize = kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize); static int OffsetOfFunctionWithId(Builtins::JavaScript id) { return kJSBuiltinsOffset + id * kPointerSize; } static int OffsetOfCodeWithId(Builtins::JavaScript id) { return kJSBuiltinsCodeOffset + id * kPointerSize; } private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject); }; // Representation for JS Wrapper objects, String, Number, Boolean, etc. class JSValue: public JSObject { public: // [value]: the object being wrapped. DECL_ACCESSORS(value, Object) // Casting. static inline JSValue* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSValue) DECLARE_VERIFIER(JSValue) // Layout description. static const int kValueOffset = JSObject::kHeaderSize; static const int kSize = kValueOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue); }; class DateCache; // Representation for JS date objects. class JSDate: public JSObject { public: // If one component is NaN, all of them are, indicating a NaN time value. // [value]: the time value. DECL_ACCESSORS(value, Object) // [year]: caches year. Either undefined, smi, or NaN. DECL_ACCESSORS(year, Object) // [month]: caches month. Either undefined, smi, or NaN. DECL_ACCESSORS(month, Object) // [day]: caches day. Either undefined, smi, or NaN. DECL_ACCESSORS(day, Object) // [weekday]: caches day of week. Either undefined, smi, or NaN. DECL_ACCESSORS(weekday, Object) // [hour]: caches hours. Either undefined, smi, or NaN. DECL_ACCESSORS(hour, Object) // [min]: caches minutes. Either undefined, smi, or NaN. DECL_ACCESSORS(min, Object) // [sec]: caches seconds. Either undefined, smi, or NaN. DECL_ACCESSORS(sec, Object) // [cache stamp]: sample of the date cache stamp at the // moment when chached fields were cached. DECL_ACCESSORS(cache_stamp, Object) // Casting. static inline JSDate* cast(Object* obj); // Returns the date field with the specified index. // See FieldIndex for the list of date fields. static Object* GetField(Object* date, Smi* index); void SetValue(Object* value, bool is_value_nan); // Dispatched behavior. DECLARE_PRINTER(JSDate) DECLARE_VERIFIER(JSDate) // The order is important. It must be kept in sync with date macros // in macros.py. enum FieldIndex { kDateValue, kYear, kMonth, kDay, kWeekday, kHour, kMinute, kSecond, kFirstUncachedField, kMillisecond = kFirstUncachedField, kDays, kTimeInDay, kFirstUTCField, kYearUTC = kFirstUTCField, kMonthUTC, kDayUTC, kWeekdayUTC, kHourUTC, kMinuteUTC, kSecondUTC, kMillisecondUTC, kDaysUTC, kTimeInDayUTC, kTimezoneOffset }; // Layout description. static const int kValueOffset = JSObject::kHeaderSize; static const int kYearOffset = kValueOffset + kPointerSize; static const int kMonthOffset = kYearOffset + kPointerSize; static const int kDayOffset = kMonthOffset + kPointerSize; static const int kWeekdayOffset = kDayOffset + kPointerSize; static const int kHourOffset = kWeekdayOffset + kPointerSize; static const int kMinOffset = kHourOffset + kPointerSize; static const int kSecOffset = kMinOffset + kPointerSize; static const int kCacheStampOffset = kSecOffset + kPointerSize; static const int kSize = kCacheStampOffset + kPointerSize; private: inline Object* DoGetField(FieldIndex index); Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache); // Computes and caches the cacheable fields of the date. inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache); DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate); }; // Representation of message objects used for error reporting through // the API. The messages are formatted in JavaScript so this object is // a real JavaScript object. The information used for formatting the // error messages are not directly accessible from JavaScript to // prevent leaking information to user code called during error // formatting. class JSMessageObject: public JSObject { public: // [type]: the type of error message. DECL_ACCESSORS(type, String) // [arguments]: the arguments for formatting the error message. DECL_ACCESSORS(arguments, JSArray) // [script]: the script from which the error message originated. DECL_ACCESSORS(script, Object) // [stack_frames]: an array of stack frames for this error object. DECL_ACCESSORS(stack_frames, Object) // [start_position]: the start position in the script for the error message. inline int start_position(); inline void set_start_position(int value); // [end_position]: the end position in the script for the error message. inline int end_position(); inline void set_end_position(int value); // Casting. static inline JSMessageObject* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSMessageObject) DECLARE_VERIFIER(JSMessageObject) // Layout description. static const int kTypeOffset = JSObject::kHeaderSize; static const int kArgumentsOffset = kTypeOffset + kPointerSize; static const int kScriptOffset = kArgumentsOffset + kPointerSize; static const int kStackFramesOffset = kScriptOffset + kPointerSize; static const int kStartPositionOffset = kStackFramesOffset + kPointerSize; static const int kEndPositionOffset = kStartPositionOffset + kPointerSize; static const int kSize = kEndPositionOffset + kPointerSize; typedef FixedBodyDescriptor<HeapObject::kMapOffset, kStackFramesOffset + kPointerSize, kSize> BodyDescriptor; }; // Regular expressions // The regular expression holds a single reference to a FixedArray in // the kDataOffset field. // The FixedArray contains the following data: // - tag : type of regexp implementation (not compiled yet, atom or irregexp) // - reference to the original source string // - reference to the original flag string // If it is an atom regexp // - a reference to a literal string to search for // If it is an irregexp regexp: // - a reference to code for ASCII inputs (bytecode or compiled), or a smi // used for tracking the last usage (used for code flushing). // - a reference to code for UC16 inputs (bytecode or compiled), or a smi // used for tracking the last usage (used for code flushing).. // - max number of registers used by irregexp implementations. // - number of capture registers (output values) of the regexp. class JSRegExp: public JSObject { public: // Meaning of Type: // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet. // ATOM: A simple string to match against using an indexOf operation. // IRREGEXP: Compiled with Irregexp. // IRREGEXP_NATIVE: Compiled to native code with Irregexp. enum Type { NOT_COMPILED, ATOM, IRREGEXP }; enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 }; class Flags { public: explicit Flags(uint32_t value) : value_(value) { } bool is_global() { return (value_ & GLOBAL) != 0; } bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; } bool is_multiline() { return (value_ & MULTILINE) != 0; } uint32_t value() { return value_; } private: uint32_t value_; }; DECL_ACCESSORS(data, Object) inline Type TypeTag(); inline int CaptureCount(); inline Flags GetFlags(); inline String* Pattern(); inline Object* DataAt(int index); // Set implementation data after the object has been prepared. inline void SetDataAt(int index, Object* value); static int code_index(bool is_ascii) { if (is_ascii) { return kIrregexpASCIICodeIndex; } else { return kIrregexpUC16CodeIndex; } } static int saved_code_index(bool is_ascii) { if (is_ascii) { return kIrregexpASCIICodeSavedIndex; } else { return kIrregexpUC16CodeSavedIndex; } } static inline JSRegExp* cast(Object* obj); // Dispatched behavior. DECLARE_VERIFIER(JSRegExp) static const int kDataOffset = JSObject::kHeaderSize; static const int kSize = kDataOffset + kPointerSize; // Indices in the data array. static const int kTagIndex = 0; static const int kSourceIndex = kTagIndex + 1; static const int kFlagsIndex = kSourceIndex + 1; static const int kDataIndex = kFlagsIndex + 1; // The data fields are used in different ways depending on the // value of the tag. // Atom regexps (literal strings). static const int kAtomPatternIndex = kDataIndex; static const int kAtomDataSize = kAtomPatternIndex + 1; // Irregexp compiled code or bytecode for ASCII. If compilation // fails, this fields hold an exception object that should be // thrown if the regexp is used again. static const int kIrregexpASCIICodeIndex = kDataIndex; // Irregexp compiled code or bytecode for UC16. If compilation // fails, this fields hold an exception object that should be // thrown if the regexp is used again. static const int kIrregexpUC16CodeIndex = kDataIndex + 1; // Saved instance of Irregexp compiled code or bytecode for ASCII that // is a potential candidate for flushing. static const int kIrregexpASCIICodeSavedIndex = kDataIndex + 2; // Saved instance of Irregexp compiled code or bytecode for UC16 that is // a potential candidate for flushing. static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3; // Maximal number of registers used by either ASCII or UC16. // Only used to check that there is enough stack space static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4; // Number of captures in the compiled regexp. static const int kIrregexpCaptureCountIndex = kDataIndex + 5; static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1; // Offsets directly into the data fixed array. static const int kDataTagOffset = FixedArray::kHeaderSize + kTagIndex * kPointerSize; static const int kDataAsciiCodeOffset = FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize; static const int kDataUC16CodeOffset = FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize; static const int kIrregexpCaptureCountOffset = FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize; // In-object fields. static const int kSourceFieldIndex = 0; static const int kGlobalFieldIndex = 1; static const int kIgnoreCaseFieldIndex = 2; static const int kMultilineFieldIndex = 3; static const int kLastIndexFieldIndex = 4; static const int kInObjectFieldCount = 5; // The uninitialized value for a regexp code object. static const int kUninitializedValue = -1; // The compilation error value for the regexp code object. The real error // object is in the saved code field. static const int kCompilationErrorValue = -2; // When we store the sweep generation at which we moved the code from the // code index to the saved code index we mask it of to be in the [0:255] // range. static const int kCodeAgeMask = 0xff; }; class CompilationCacheShape : public BaseShape<HashTableKey*> { public: static inline bool IsMatch(HashTableKey* key, Object* value) { return key->IsMatch(value); } static inline uint32_t Hash(HashTableKey* key) { return key->Hash(); } static inline uint32_t HashForObject(HashTableKey* key, Object* object) { return key->HashForObject(object); } static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key); static const int kPrefixSize = 0; static const int kEntrySize = 2; }; class CompilationCacheTable: public HashTable<CompilationCacheTable, CompilationCacheShape, HashTableKey*> { public: // Find cached value for a string key, otherwise return null. Handle<Object> Lookup(Handle<String> src, Handle<Context> context); Handle<Object> LookupEval(Handle<String> src, Handle<Context> context, StrictMode strict_mode, int scope_position); Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags); static Handle<CompilationCacheTable> Put( Handle<CompilationCacheTable> cache, Handle<String> src, Handle<Context> context, Handle<Object> value); static Handle<CompilationCacheTable> PutEval( Handle<CompilationCacheTable> cache, Handle<String> src, Handle<Context> context, Handle<SharedFunctionInfo> value, int scope_position); static Handle<CompilationCacheTable> PutRegExp( Handle<CompilationCacheTable> cache, Handle<String> src, JSRegExp::Flags flags, Handle<FixedArray> value); void Remove(Object* value); static inline CompilationCacheTable* cast(Object* obj); private: DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable); }; class CodeCache: public Struct { public: DECL_ACCESSORS(default_cache, FixedArray) DECL_ACCESSORS(normal_type_cache, Object) // Add the code object to the cache. static void Update( Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code); // Lookup code object in the cache. Returns code object if found and undefined // if not. Object* Lookup(Name* name, Code::Flags flags); // Get the internal index of a code object in the cache. Returns -1 if the // code object is not in that cache. This index can be used to later call // RemoveByIndex. The cache cannot be modified between a call to GetIndex and // RemoveByIndex. int GetIndex(Object* name, Code* code); // Remove an object from the cache with the provided internal index. void RemoveByIndex(Object* name, Code* code, int index); static inline CodeCache* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(CodeCache) DECLARE_VERIFIER(CodeCache) static const int kDefaultCacheOffset = HeapObject::kHeaderSize; static const int kNormalTypeCacheOffset = kDefaultCacheOffset + kPointerSize; static const int kSize = kNormalTypeCacheOffset + kPointerSize; private: static void UpdateDefaultCache( Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code); static void UpdateNormalTypeCache( Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code); Object* LookupDefaultCache(Name* name, Code::Flags flags); Object* LookupNormalTypeCache(Name* name, Code::Flags flags); // Code cache layout of the default cache. Elements are alternating name and // code objects for non normal load/store/call IC's. static const int kCodeCacheEntrySize = 2; static const int kCodeCacheEntryNameOffset = 0; static const int kCodeCacheEntryCodeOffset = 1; DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache); }; class CodeCacheHashTableShape : public BaseShape<HashTableKey*> { public: static inline bool IsMatch(HashTableKey* key, Object* value) { return key->IsMatch(value); } static inline uint32_t Hash(HashTableKey* key) { return key->Hash(); } static inline uint32_t HashForObject(HashTableKey* key, Object* object) { return key->HashForObject(object); } static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key); static const int kPrefixSize = 0; static const int kEntrySize = 2; }; class CodeCacheHashTable: public HashTable<CodeCacheHashTable, CodeCacheHashTableShape, HashTableKey*> { public: Object* Lookup(Name* name, Code::Flags flags); static Handle<CodeCacheHashTable> Put( Handle<CodeCacheHashTable> table, Handle<Name> name, Handle<Code> code); int GetIndex(Name* name, Code::Flags flags); void RemoveByIndex(int index); static inline CodeCacheHashTable* cast(Object* obj); // Initial size of the fixed array backing the hash table. static const int kInitialSize = 64; private: DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable); }; class PolymorphicCodeCache: public Struct { public: DECL_ACCESSORS(cache, Object) static void Update(Handle<PolymorphicCodeCache> cache, MapHandleList* maps, Code::Flags flags, Handle<Code> code); // Returns an undefined value if the entry is not found. Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags); static inline PolymorphicCodeCache* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(PolymorphicCodeCache) DECLARE_VERIFIER(PolymorphicCodeCache) static const int kCacheOffset = HeapObject::kHeaderSize; static const int kSize = kCacheOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache); }; class PolymorphicCodeCacheHashTable : public HashTable<PolymorphicCodeCacheHashTable, CodeCacheHashTableShape, HashTableKey*> { public: Object* Lookup(MapHandleList* maps, int code_kind); static Handle<PolymorphicCodeCacheHashTable> Put( Handle<PolymorphicCodeCacheHashTable> hash_table, MapHandleList* maps, int code_kind, Handle<Code> code); static inline PolymorphicCodeCacheHashTable* cast(Object* obj); static const int kInitialSize = 64; private: DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable); }; class TypeFeedbackInfo: public Struct { public: inline int ic_total_count(); inline void set_ic_total_count(int count); inline int ic_with_type_info_count(); inline void change_ic_with_type_info_count(int count); inline void initialize_storage(); inline void change_own_type_change_checksum(); inline int own_type_change_checksum(); inline void set_inlined_type_change_checksum(int checksum); inline bool matches_inlined_type_change_checksum(int checksum); static inline TypeFeedbackInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(TypeFeedbackInfo) DECLARE_VERIFIER(TypeFeedbackInfo) static const int kStorage1Offset = HeapObject::kHeaderSize; static const int kStorage2Offset = kStorage1Offset + kPointerSize; static const int kSize = kStorage2Offset + kPointerSize; // TODO(mvstanton): move these sentinel declarations to shared function info. // The object that indicates an uninitialized cache. static inline Handle<Object> UninitializedSentinel(Isolate* isolate); // The object that indicates a megamorphic state. static inline Handle<Object> MegamorphicSentinel(Isolate* isolate); // The object that indicates a monomorphic state of Array with // ElementsKind static inline Handle<Object> MonomorphicArraySentinel(Isolate* isolate, ElementsKind elements_kind); // A raw version of the uninitialized sentinel that's safe to read during // garbage collection (e.g., for patching the cache). static inline Object* RawUninitializedSentinel(Heap* heap); private: static const int kTypeChangeChecksumBits = 7; class ICTotalCountField: public BitField<int, 0, kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT class OwnTypeChangeChecksum: public BitField<int, kSmiValueSize - kTypeChangeChecksumBits, kTypeChangeChecksumBits> {}; // NOLINT class ICsWithTypeInfoCountField: public BitField<int, 0, kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT class InlinedTypeChangeChecksum: public BitField<int, kSmiValueSize - kTypeChangeChecksumBits, kTypeChangeChecksumBits> {}; // NOLINT DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo); }; enum AllocationSiteMode { DONT_TRACK_ALLOCATION_SITE, TRACK_ALLOCATION_SITE, LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE }; class AllocationSite: public Struct { public: static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024; static const double kPretenureRatio; static const int kPretenureMinimumCreated = 100; // Values for pretenure decision field. enum PretenureDecision { kUndecided = 0, kDontTenure = 1, kMaybeTenure = 2, kTenure = 3, kZombie = 4, kLastPretenureDecisionValue = kZombie }; const char* PretenureDecisionName(PretenureDecision decision); DECL_ACCESSORS(transition_info, Object) // nested_site threads a list of sites that represent nested literals // walked in a particular order. So [[1, 2], 1, 2] will have one // nested_site, but [[1, 2], 3, [4]] will have a list of two. DECL_ACCESSORS(nested_site, Object) DECL_ACCESSORS(pretenure_data, Smi) DECL_ACCESSORS(pretenure_create_count, Smi) DECL_ACCESSORS(dependent_code, DependentCode) DECL_ACCESSORS(weak_next, Object) inline void Initialize(); // This method is expensive, it should only be called for reporting. bool IsNestedSite(); // transition_info bitfields, for constructed array transition info. class ElementsKindBits: public BitField<ElementsKind, 0, 15> {}; class UnusedBits: public BitField<int, 15, 14> {}; class DoNotInlineBit: public BitField<bool, 29, 1> {}; // Bitfields for pretenure_data class MementoFoundCountBits: public BitField<int, 0, 26> {}; class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {}; class DeoptDependentCodeBit: public BitField<bool, 29, 1> {}; STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue); // Increments the mementos found counter and returns true when the first // memento was found for a given allocation site. inline bool IncrementMementoFoundCount(); inline void IncrementMementoCreateCount(); PretenureFlag GetPretenureMode(); void ResetPretenureDecision(); PretenureDecision pretenure_decision() { int value = pretenure_data()->value(); return PretenureDecisionBits::decode(value); } void set_pretenure_decision(PretenureDecision decision) { int value = pretenure_data()->value(); set_pretenure_data( Smi::FromInt(PretenureDecisionBits::update(value, decision)), SKIP_WRITE_BARRIER); } bool deopt_dependent_code() { int value = pretenure_data()->value(); return DeoptDependentCodeBit::decode(value); } void set_deopt_dependent_code(bool deopt) { int value = pretenure_data()->value(); set_pretenure_data( Smi::FromInt(DeoptDependentCodeBit::update(value, deopt)), SKIP_WRITE_BARRIER); } int memento_found_count() { int value = pretenure_data()->value(); return MementoFoundCountBits::decode(value); } inline void set_memento_found_count(int count); int memento_create_count() { return pretenure_create_count()->value(); } void set_memento_create_count(int count) { set_pretenure_create_count(Smi::FromInt(count), SKIP_WRITE_BARRIER); } // The pretenuring decision is made during gc, and the zombie state allows // us to recognize when an allocation site is just being kept alive because // a later traversal of new space may discover AllocationMementos that point // to this AllocationSite. bool IsZombie() { return pretenure_decision() == kZombie; } bool IsMaybeTenure() { return pretenure_decision() == kMaybeTenure; } inline void MarkZombie(); inline bool MakePretenureDecision(PretenureDecision current_decision, double ratio, bool maximum_size_scavenge); inline bool DigestPretenuringFeedback(bool maximum_size_scavenge); ElementsKind GetElementsKind() { ASSERT(!SitePointsToLiteral()); int value = Smi::cast(transition_info())->value(); return ElementsKindBits::decode(value); } void SetElementsKind(ElementsKind kind) { int value = Smi::cast(transition_info())->value(); set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)), SKIP_WRITE_BARRIER); } bool CanInlineCall() { int value = Smi::cast(transition_info())->value(); return DoNotInlineBit::decode(value) == 0; } void SetDoNotInlineCall() { int value = Smi::cast(transition_info())->value(); set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)), SKIP_WRITE_BARRIER); } bool SitePointsToLiteral() { // If transition_info is a smi, then it represents an ElementsKind // for a constructed array. Otherwise, it must be a boilerplate // for an object or array literal. return transition_info()->IsJSArray() || transition_info()->IsJSObject(); } static void DigestTransitionFeedback(Handle<AllocationSite> site, ElementsKind to_kind); enum Reason { TENURING, TRANSITIONS }; static void AddDependentCompilationInfo(Handle<AllocationSite> site, Reason reason, CompilationInfo* info); DECLARE_PRINTER(AllocationSite) DECLARE_VERIFIER(AllocationSite) static inline AllocationSite* cast(Object* obj); static inline AllocationSiteMode GetMode( ElementsKind boilerplate_elements_kind); static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to); static inline bool CanTrack(InstanceType type); static const int kTransitionInfoOffset = HeapObject::kHeaderSize; static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize; static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize; static const int kPretenureCreateCountOffset = kPretenureDataOffset + kPointerSize; static const int kDependentCodeOffset = kPretenureCreateCountOffset + kPointerSize; static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize; static const int kSize = kWeakNextOffset + kPointerSize; // During mark compact we need to take special care for the dependent code // field. static const int kPointerFieldsBeginOffset = kTransitionInfoOffset; static const int kPointerFieldsEndOffset = kDependentCodeOffset; // For other visitors, use the fixed body descriptor below. typedef FixedBodyDescriptor<HeapObject::kHeaderSize, kDependentCodeOffset + kPointerSize, kSize> BodyDescriptor; private: inline DependentCode::DependencyGroup ToDependencyGroup(Reason reason); bool PretenuringDecisionMade() { return pretenure_decision() != kUndecided; } DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite); }; class AllocationMemento: public Struct { public: static const int kAllocationSiteOffset = HeapObject::kHeaderSize; static const int kSize = kAllocationSiteOffset + kPointerSize; DECL_ACCESSORS(allocation_site, Object) bool IsValid() { return allocation_site()->IsAllocationSite() && !AllocationSite::cast(allocation_site())->IsZombie(); } AllocationSite* GetAllocationSite() { ASSERT(IsValid()); return AllocationSite::cast(allocation_site()); } DECLARE_PRINTER(AllocationMemento) DECLARE_VERIFIER(AllocationMemento) static inline AllocationMemento* cast(Object* obj); private: DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento); }; // Representation of a slow alias as part of a sloppy arguments objects. // For fast aliases (if HasSloppyArgumentsElements()): // - the parameter map contains an index into the context // - all attributes of the element have default values // For slow aliases (if HasDictionaryArgumentsElements()): // - the parameter map contains no fast alias mapping (i.e. the hole) // - this struct (in the slow backing store) contains an index into the context // - all attributes are available as part if the property details class AliasedArgumentsEntry: public Struct { public: inline int aliased_context_slot(); inline void set_aliased_context_slot(int count); static inline AliasedArgumentsEntry* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(AliasedArgumentsEntry) DECLARE_VERIFIER(AliasedArgumentsEntry) static const int kAliasedContextSlot = HeapObject::kHeaderSize; static const int kSize = kAliasedContextSlot + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry); }; enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS}; enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL}; class StringHasher { public: explicit inline StringHasher(int length, uint32_t seed); template <typename schar> static inline uint32_t HashSequentialString(const schar* chars, int length, uint32_t seed); // Reads all the data, even for long strings and computes the utf16 length. static uint32_t ComputeUtf8Hash(Vector<const char> chars, uint32_t seed, int* utf16_length_out); // Calculated hash value for a string consisting of 1 to // String::kMaxArrayIndexSize digits with no leading zeros (except "0"). // value is represented decimal value. static uint32_t MakeArrayIndexHash(uint32_t value, int length); // No string is allowed to have a hash of zero. That value is reserved // for internal properties. If the hash calculation yields zero then we // use 27 instead. static const int kZeroHash = 27; // Reusable parts of the hashing algorithm. INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c)); INLINE(static uint32_t GetHashCore(uint32_t running_hash)); protected: // Returns the value to store in the hash field of a string with // the given length and contents. uint32_t GetHashField(); // Returns true if the hash of this string can be computed without // looking at the contents. inline bool has_trivial_hash(); // Adds a block of characters to the hash. template<typename Char> inline void AddCharacters(const Char* chars, int len); private: // Add a character to the hash. inline void AddCharacter(uint16_t c); // Update index. Returns true if string is still an index. inline bool UpdateIndex(uint16_t c); int length_; uint32_t raw_running_hash_; uint32_t array_index_; bool is_array_index_; bool is_first_char_; DISALLOW_COPY_AND_ASSIGN(StringHasher); }; // The characteristics of a string are stored in its map. Retrieving these // few bits of information is moderately expensive, involving two memory // loads where the second is dependent on the first. To improve efficiency // the shape of the string is given its own class so that it can be retrieved // once and used for several string operations. A StringShape is small enough // to be passed by value and is immutable, but be aware that flattening a // string can potentially alter its shape. Also be aware that a GC caused by // something else can alter the shape of a string due to ConsString // shortcutting. Keeping these restrictions in mind has proven to be error- // prone and so we no longer put StringShapes in variables unless there is a // concrete performance benefit at that particular point in the code. class StringShape BASE_EMBEDDED { public: inline explicit StringShape(String* s); inline explicit StringShape(Map* s); inline explicit StringShape(InstanceType t); inline bool IsSequential(); inline bool IsExternal(); inline bool IsCons(); inline bool IsSliced(); inline bool IsIndirect(); inline bool IsExternalAscii(); inline bool IsExternalTwoByte(); inline bool IsSequentialAscii(); inline bool IsSequentialTwoByte(); inline bool IsInternalized(); inline StringRepresentationTag representation_tag(); inline uint32_t encoding_tag(); inline uint32_t full_representation_tag(); inline uint32_t size_tag(); #ifdef DEBUG inline uint32_t type() { return type_; } inline void invalidate() { valid_ = false; } inline bool valid() { return valid_; } #else inline void invalidate() { } #endif private: uint32_t type_; #ifdef DEBUG inline void set_valid() { valid_ = true; } bool valid_; #else inline void set_valid() { } #endif }; // The Name abstract class captures anything that can be used as a property // name, i.e., strings and symbols. All names store a hash value. class Name: public HeapObject { public: // Get and set the hash field of the name. inline uint32_t hash_field(); inline void set_hash_field(uint32_t value); // Tells whether the hash code has been computed. inline bool HasHashCode(); // Returns a hash value used for the property table inline uint32_t Hash(); // Equality operations. inline bool Equals(Name* other); inline static bool Equals(Handle<Name> one, Handle<Name> two); // Conversion. inline bool AsArrayIndex(uint32_t* index); // Casting. static inline Name* cast(Object* obj); DECLARE_PRINTER(Name) // Layout description. static const int kHashFieldOffset = HeapObject::kHeaderSize; static const int kSize = kHashFieldOffset + kPointerSize; // Mask constant for checking if a name has a computed hash code // and if it is a string that is an array index. The least significant bit // indicates whether a hash code has been computed. If the hash code has // been computed the 2nd bit tells whether the string can be used as an // array index. static const int kHashNotComputedMask = 1; static const int kIsNotArrayIndexMask = 1 << 1; static const int kNofHashBitFields = 2; // Shift constant retrieving hash code from hash field. static const int kHashShift = kNofHashBitFields; // Only these bits are relevant in the hash, since the top two are shifted // out. static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift; // Array index strings this short can keep their index in the hash field. static const int kMaxCachedArrayIndexLength = 7; // For strings which are array indexes the hash value has the string length // mixed into the hash, mainly to avoid a hash value of zero which would be // the case for the string '0'. 24 bits are used for the array index value. static const int kArrayIndexValueBits = 24; static const int kArrayIndexLengthBits = kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields; STATIC_ASSERT((kArrayIndexLengthBits > 0)); class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields, kArrayIndexValueBits> {}; // NOLINT class ArrayIndexLengthBits : public BitField<unsigned int, kNofHashBitFields + kArrayIndexValueBits, kArrayIndexLengthBits> {}; // NOLINT // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we // could use a mask to test if the length of string is less than or equal to // kMaxCachedArrayIndexLength. STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1)); static const unsigned int kContainsCachedArrayIndexMask = (~kMaxCachedArrayIndexLength << ArrayIndexLengthBits::kShift) | kIsNotArrayIndexMask; // Value of empty hash field indicating that the hash is not computed. static const int kEmptyHashField = kIsNotArrayIndexMask | kHashNotComputedMask; protected: static inline bool IsHashFieldComputed(uint32_t field); private: DISALLOW_IMPLICIT_CONSTRUCTORS(Name); }; // ES6 symbols. class Symbol: public Name { public: // [name]: the print name of a symbol, or undefined if none. DECL_ACCESSORS(name, Object) DECL_ACCESSORS(flags, Smi) // [is_private]: whether this is a private symbol. DECL_BOOLEAN_ACCESSORS(is_private) // Casting. static inline Symbol* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(Symbol) DECLARE_VERIFIER(Symbol) // Layout description. static const int kNameOffset = Name::kSize; static const int kFlagsOffset = kNameOffset + kPointerSize; static const int kSize = kFlagsOffset + kPointerSize; typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor; private: static const int kPrivateBit = 0; DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol); }; class ConsString; // The String abstract class captures JavaScript string values: // // Ecma-262: // 4.3.16 String Value // A string value is a member of the type String and is a finite // ordered sequence of zero or more 16-bit unsigned integer values. // // All string values have a length field. class String: public Name { public: enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING }; // Array index strings this short can keep their index in the hash field. static const int kMaxCachedArrayIndexLength = 7; // For strings which are array indexes the hash value has the string length // mixed into the hash, mainly to avoid a hash value of zero which would be // the case for the string '0'. 24 bits are used for the array index value. static const int kArrayIndexValueBits = 24; static const int kArrayIndexLengthBits = kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields; STATIC_ASSERT((kArrayIndexLengthBits > 0)); class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields, kArrayIndexValueBits> {}; // NOLINT class ArrayIndexLengthBits : public BitField<unsigned int, kNofHashBitFields + kArrayIndexValueBits, kArrayIndexLengthBits> {}; // NOLINT // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we // could use a mask to test if the length of string is less than or equal to // kMaxCachedArrayIndexLength. STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1)); static const unsigned int kContainsCachedArrayIndexMask = (~kMaxCachedArrayIndexLength << ArrayIndexLengthBits::kShift) | kIsNotArrayIndexMask; // Representation of the flat content of a String. // A non-flat string doesn't have flat content. // A flat string has content that's encoded as a sequence of either // ASCII chars or two-byte UC16. // Returned by String::GetFlatContent(). class FlatContent { public: // Returns true if the string is flat and this structure contains content. bool IsFlat() { return state_ != NON_FLAT; } // Returns true if the structure contains ASCII content. bool IsAscii() { return state_ == ASCII; } // Returns true if the structure contains two-byte content. bool IsTwoByte() { return state_ == TWO_BYTE; } // Return the one byte content of the string. Only use if IsAscii() returns // true. Vector<const uint8_t> ToOneByteVector() { ASSERT_EQ(ASCII, state_); return Vector<const uint8_t>(onebyte_start, length_); } // Return the two-byte content of the string. Only use if IsTwoByte() // returns true. Vector<const uc16> ToUC16Vector() { ASSERT_EQ(TWO_BYTE, state_); return Vector<const uc16>(twobyte_start, length_); } uc16 Get(int i) { ASSERT(i < length_); ASSERT(state_ != NON_FLAT); if (state_ == ASCII) return onebyte_start[i]; return twobyte_start[i]; } private: enum State { NON_FLAT, ASCII, TWO_BYTE }; // Constructors only used by String::GetFlatContent(). explicit FlatContent(const uint8_t* start, int length) : onebyte_start(start), length_(length), state_(ASCII) { } explicit FlatContent(const uc16* start, int length) : twobyte_start(start), length_(length), state_(TWO_BYTE) { } FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { } union { const uint8_t* onebyte_start; const uc16* twobyte_start; }; int length_; State state_; friend class String; }; // Get and set the length of the string. inline int length(); inline void set_length(int value); // Get and set the length of the string using acquire loads and release // stores. inline int synchronized_length(); inline void synchronized_set_length(int value); // Returns whether this string has only ASCII chars, i.e. all of them can // be ASCII encoded. This might be the case even if the string is // two-byte. Such strings may appear when the embedder prefers // two-byte external representations even for ASCII data. inline bool IsOneByteRepresentation(); inline bool IsTwoByteRepresentation(); // Cons and slices have an encoding flag that may not represent the actual // encoding of the underlying string. This is taken into account here. // Requires: this->IsFlat() inline bool IsOneByteRepresentationUnderneath(); inline bool IsTwoByteRepresentationUnderneath(); // NOTE: this should be considered only a hint. False negatives are // possible. inline bool HasOnlyOneByteChars(); // Get and set individual two byte chars in the string. inline void Set(int index, uint16_t value); // Get individual two byte char in the string. Repeated calls // to this method are not efficient unless the string is flat. INLINE(uint16_t Get(int index)); // Flattens the string. Checks first inline to see if it is // necessary. Does nothing if the string is not a cons string. // Flattening allocates a sequential string with the same data as // the given string and mutates the cons string to a degenerate // form, where the first component is the new sequential string and // the second component is the empty string. If allocation fails, // this function returns a failure. If flattening succeeds, this // function returns the sequential string that is now the first // component of the cons string. // // Degenerate cons strings are handled specially by the garbage // collector (see IsShortcutCandidate). static inline Handle<String> Flatten(Handle<String> string, PretenureFlag pretenure = NOT_TENURED); // Tries to return the content of a flat string as a structure holding either // a flat vector of char or of uc16. // If the string isn't flat, and therefore doesn't have flat content, the // returned structure will report so, and can't provide a vector of either // kind. FlatContent GetFlatContent(); // Returns the parent of a sliced string or first part of a flat cons string. // Requires: StringShape(this).IsIndirect() && this->IsFlat() inline String* GetUnderlying(); // Mark the string as an undetectable object. It only applies to // ASCII and two byte string types. bool MarkAsUndetectable(); // String equality operations. inline bool Equals(String* other); inline static bool Equals(Handle<String> one, Handle<String> two); bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false); bool IsOneByteEqualTo(Vector<const uint8_t> str); bool IsTwoByteEqualTo(Vector<const uc16> str); // Return a UTF8 representation of the string. The string is null // terminated but may optionally contain nulls. Length is returned // in length_output if length_output is not a null pointer The string // should be nearly flat, otherwise the performance of this method may // be very slow (quadratic in the length). Setting robustness_flag to // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it // handles unexpected data without causing assert failures and it does not // do any heap allocations. This is useful when printing stack traces. SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robustness_flag, int offset, int length, int* length_output = 0); SmartArrayPointer<char> ToCString( AllowNullsFlag allow_nulls = DISALLOW_NULLS, RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL, int* length_output = 0); // Return a 16 bit Unicode representation of the string. // The string should be nearly flat, otherwise the performance of // of this method may be very bad. Setting robustness_flag to // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it // handles unexpected data without causing assert failures and it does not // do any heap allocations. This is useful when printing stack traces. SmartArrayPointer<uc16> ToWideCString( RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL); bool ComputeArrayIndex(uint32_t* index); // Externalization. bool MakeExternal(v8::String::ExternalStringResource* resource); bool MakeExternal(v8::String::ExternalAsciiStringResource* resource); // Conversion. inline bool AsArrayIndex(uint32_t* index); // Casting. static inline String* cast(Object* obj); void PrintOn(FILE* out); // For use during stack traces. Performs rudimentary sanity check. bool LooksValid(); // Dispatched behavior. void StringShortPrint(StringStream* accumulator); #ifdef OBJECT_PRINT char* ToAsciiArray(); #endif DECLARE_PRINTER(String) DECLARE_VERIFIER(String) inline bool IsFlat(); // Layout description. static const int kLengthOffset = Name::kSize; static const int kSize = kLengthOffset + kPointerSize; // Maximum number of characters to consider when trying to convert a string // value into an array index. static const int kMaxArrayIndexSize = 10; STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits)); // Max char codes. static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar; static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar; static const int kMaxUtf16CodeUnit = 0xffff; static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit; // Value of hash field containing computed hash equal to zero. static const int kEmptyStringHash = kIsNotArrayIndexMask; // Maximal string length. static const int kMaxLength = (1 << 28) - 16; // Max length for computing hash. For strings longer than this limit the // string length is used as the hash value. static const int kMaxHashCalcLength = 16383; // Limit for truncation in short printing. static const int kMaxShortPrintLength = 1024; // Support for regular expressions. const uc16* GetTwoByteData(unsigned start); // Helper function for flattening strings. template <typename sinkchar> static void WriteToFlat(String* source, sinkchar* sink, int from, int to); // The return value may point to the first aligned word containing the // first non-ascii character, rather than directly to the non-ascii character. // If the return value is >= the passed length, the entire string was ASCII. static inline int NonAsciiStart(const char* chars, int length) { const char* start = chars; const char* limit = chars + length; #ifdef V8_HOST_CAN_READ_UNALIGNED ASSERT(unibrow::Utf8::kMaxOneByteChar == 0x7F); const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80; while (chars + sizeof(uintptr_t) <= limit) { if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) { return static_cast<int>(chars - start); } chars += sizeof(uintptr_t); } #endif while (chars < limit) { if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) { return static_cast<int>(chars - start); } ++chars; } return static_cast<int>(chars - start); } static inline bool IsAscii(const char* chars, int length) { return NonAsciiStart(chars, length) >= length; } static inline bool IsAscii(const uint8_t* chars, int length) { return NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length; } static inline int NonOneByteStart(const uc16* chars, int length) { const uc16* limit = chars + length; const uc16* start = chars; while (chars < limit) { if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start); ++chars; } return static_cast<int>(chars - start); } static inline bool IsOneByte(const uc16* chars, int length) { return NonOneByteStart(chars, length) >= length; } template<class Visitor> static inline ConsString* VisitFlat(Visitor* visitor, String* string, int offset = 0); static Handle<FixedArray> CalculateLineEnds(Handle<String> string, bool include_ending_line); private: friend class Name; static Handle<String> SlowFlatten(Handle<ConsString> cons, PretenureFlag tenure); // Slow case of String::Equals. This implementation works on any strings // but it is most efficient on strings that are almost flat. bool SlowEquals(String* other); static bool SlowEquals(Handle<String> one, Handle<String> two); // Slow case of AsArrayIndex. bool SlowAsArrayIndex(uint32_t* index); // Compute and set the hash code. uint32_t ComputeAndSetHash(); DISALLOW_IMPLICIT_CONSTRUCTORS(String); }; // The SeqString abstract class captures sequential string values. class SeqString: public String { public: // Casting. static inline SeqString* cast(Object* obj); // Layout description. static const int kHeaderSize = String::kSize; // Truncate the string in-place if possible and return the result. // In case of new_length == 0, the empty string is returned without // truncating the original string. MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string, int new_length); private: DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString); }; // The AsciiString class captures sequential ASCII string objects. // Each character in the AsciiString is an ASCII character. class SeqOneByteString: public SeqString { public: static const bool kHasAsciiEncoding = true; // Dispatched behavior. inline uint16_t SeqOneByteStringGet(int index); inline void SeqOneByteStringSet(int index, uint16_t value); // Get the address of the characters in this string. inline Address GetCharsAddress(); inline uint8_t* GetChars(); // Casting static inline SeqOneByteString* cast(Object* obj); // Garbage collection support. This method is called by the // garbage collector to compute the actual size of an AsciiString // instance. inline int SeqOneByteStringSize(InstanceType instance_type); // Computes the size for an AsciiString instance of a given length. static int SizeFor(int length) { return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize); } // Maximal memory usage for a single sequential ASCII string. static const int kMaxSize = 512 * MB - 1; STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength); private: DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString); }; // The TwoByteString class captures sequential unicode string objects. // Each character in the TwoByteString is a two-byte uint16_t. class SeqTwoByteString: public SeqString { public: static const bool kHasAsciiEncoding = false; // Dispatched behavior. inline uint16_t SeqTwoByteStringGet(int index); inline void SeqTwoByteStringSet(int index, uint16_t value); // Get the address of the characters in this string. inline Address GetCharsAddress(); inline uc16* GetChars(); // For regexp code. const uint16_t* SeqTwoByteStringGetData(unsigned start); // Casting static inline SeqTwoByteString* cast(Object* obj); // Garbage collection support. This method is called by the // garbage collector to compute the actual size of a TwoByteString // instance. inline int SeqTwoByteStringSize(InstanceType instance_type); // Computes the size for a TwoByteString instance of a given length. static int SizeFor(int length) { return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize); } // Maximal memory usage for a single sequential two-byte string. static const int kMaxSize = 512 * MB - 1; STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >= String::kMaxLength); private: DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString); }; // The ConsString class describes string values built by using the // addition operator on strings. A ConsString is a pair where the // first and second components are pointers to other string values. // One or both components of a ConsString can be pointers to other // ConsStrings, creating a binary tree of ConsStrings where the leaves // are non-ConsString string values. The string value represented by // a ConsString can be obtained by concatenating the leaf string // values in a left-to-right depth-first traversal of the tree. class ConsString: public String { public: // First string of the cons cell. inline String* first(); // Doesn't check that the result is a string, even in debug mode. This is // useful during GC where the mark bits confuse the checks. inline Object* unchecked_first(); inline void set_first(String* first, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); // Second string of the cons cell. inline String* second(); // Doesn't check that the result is a string, even in debug mode. This is // useful during GC where the mark bits confuse the checks. inline Object* unchecked_second(); inline void set_second(String* second, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); // Dispatched behavior. uint16_t ConsStringGet(int index); // Casting. static inline ConsString* cast(Object* obj); // Layout description. static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize); static const int kSecondOffset = kFirstOffset + kPointerSize; static const int kSize = kSecondOffset + kPointerSize; // Minimum length for a cons string. static const int kMinLength = 13; typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize> BodyDescriptor; DECLARE_VERIFIER(ConsString) private: DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString); }; // The Sliced String class describes strings that are substrings of another // sequential string. The motivation is to save time and memory when creating // a substring. A Sliced String is described as a pointer to the parent, // the offset from the start of the parent string and the length. Using // a Sliced String therefore requires unpacking of the parent string and // adding the offset to the start address. A substring of a Sliced String // are not nested since the double indirection is simplified when creating // such a substring. // Currently missing features are: // - handling externalized parent strings // - external strings as parent // - truncating sliced string to enable otherwise unneeded parent to be GC'ed. class SlicedString: public String { public: inline String* parent(); inline void set_parent(String* parent, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); inline int offset(); inline void set_offset(int offset); // Dispatched behavior. uint16_t SlicedStringGet(int index); // Casting. static inline SlicedString* cast(Object* obj); // Layout description. static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize); static const int kOffsetOffset = kParentOffset + kPointerSize; static const int kSize = kOffsetOffset + kPointerSize; // Minimum length for a sliced string. static const int kMinLength = 13; typedef FixedBodyDescriptor<kParentOffset, kOffsetOffset + kPointerSize, kSize> BodyDescriptor; DECLARE_VERIFIER(SlicedString) private: DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString); }; // The ExternalString class describes string values that are backed by // a string resource that lies outside the V8 heap. ExternalStrings // consist of the length field common to all strings, a pointer to the // external resource. It is important to ensure (externally) that the // resource is not deallocated while the ExternalString is live in the // V8 heap. // // The API expects that all ExternalStrings are created through the // API. Therefore, ExternalStrings should not be used internally. class ExternalString: public String { public: // Casting static inline ExternalString* cast(Object* obj); // Layout description. static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize); static const int kShortSize = kResourceOffset + kPointerSize; static const int kResourceDataOffset = kResourceOffset + kPointerSize; static const int kSize = kResourceDataOffset + kPointerSize; static const int kMaxShortLength = (kShortSize - SeqString::kHeaderSize) / kCharSize; // Return whether external string is short (data pointer is not cached). inline bool is_short(); STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset); private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString); }; // The ExternalAsciiString class is an external string backed by an // ASCII string. class ExternalAsciiString: public ExternalString { public: static const bool kHasAsciiEncoding = true; typedef v8::String::ExternalAsciiStringResource Resource; // The underlying resource. inline const Resource* resource(); inline void set_resource(const Resource* buffer); // Update the pointer cache to the external character array. // The cached pointer is always valid, as the external character array does = // not move during lifetime. Deserialization is the only exception, after // which the pointer cache has to be refreshed. inline void update_data_cache(); inline const uint8_t* GetChars(); // Dispatched behavior. inline uint16_t ExternalAsciiStringGet(int index); // Casting. static inline ExternalAsciiString* cast(Object* obj); // Garbage collection support. inline void ExternalAsciiStringIterateBody(ObjectVisitor* v); template<typename StaticVisitor> inline void ExternalAsciiStringIterateBody(); private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString); }; // The ExternalTwoByteString class is an external string backed by a UTF-16 // encoded string. class ExternalTwoByteString: public ExternalString { public: static const bool kHasAsciiEncoding = false; typedef v8::String::ExternalStringResource Resource; // The underlying string resource. inline const Resource* resource(); inline void set_resource(const Resource* buffer); // Update the pointer cache to the external character array. // The cached pointer is always valid, as the external character array does = // not move during lifetime. Deserialization is the only exception, after // which the pointer cache has to be refreshed. inline void update_data_cache(); inline const uint16_t* GetChars(); // Dispatched behavior. inline uint16_t ExternalTwoByteStringGet(int index); // For regexp code. inline const uint16_t* ExternalTwoByteStringGetData(unsigned start); // Casting. static inline ExternalTwoByteString* cast(Object* obj); // Garbage collection support. inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v); template<typename StaticVisitor> inline void ExternalTwoByteStringIterateBody(); private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString); }; // Utility superclass for stack-allocated objects that must be updated // on gc. It provides two ways for the gc to update instances, either // iterating or updating after gc. class Relocatable BASE_EMBEDDED { public: explicit inline Relocatable(Isolate* isolate); inline virtual ~Relocatable(); virtual void IterateInstance(ObjectVisitor* v) { } virtual void PostGarbageCollection() { } static void PostGarbageCollectionProcessing(Isolate* isolate); static int ArchiveSpacePerThread(); static char* ArchiveState(Isolate* isolate, char* to); static char* RestoreState(Isolate* isolate, char* from); static void Iterate(Isolate* isolate, ObjectVisitor* v); static void Iterate(ObjectVisitor* v, Relocatable* top); static char* Iterate(ObjectVisitor* v, char* t); private: Isolate* isolate_; Relocatable* prev_; }; // A flat string reader provides random access to the contents of a // string independent of the character width of the string. The handle // must be valid as long as the reader is being used. class FlatStringReader : public Relocatable { public: FlatStringReader(Isolate* isolate, Handle<String> str); FlatStringReader(Isolate* isolate, Vector<const char> input); void PostGarbageCollection(); inline uc32 Get(int index); int length() { return length_; } private: String** str_; bool is_ascii_; int length_; const void* start_; }; // A ConsStringOp that returns null. // Useful when the operation to apply on a ConsString // requires an expensive data structure. class ConsStringNullOp { public: inline ConsStringNullOp() {} static inline String* Operate(String*, unsigned*, int32_t*, unsigned*); private: DISALLOW_COPY_AND_ASSIGN(ConsStringNullOp); }; // This maintains an off-stack representation of the stack frames required // to traverse a ConsString, allowing an entirely iterative and restartable // traversal of the entire string class ConsStringIteratorOp { public: inline ConsStringIteratorOp() {} inline ConsStringIteratorOp(ConsString* cons_string, int offset = 0) { Reset(cons_string, offset); } inline void Reset(ConsString* cons_string, int offset = 0) { depth_ = 0; // Next will always return NULL. if (cons_string == NULL) return; Initialize(cons_string, offset); } // Returns NULL when complete. inline String* Next(int* offset_out) { *offset_out = 0; if (depth_ == 0) return NULL; return Continue(offset_out); } private: static const int kStackSize = 32; // Use a mask instead of doing modulo operations for stack wrapping. static const int kDepthMask = kStackSize-1; STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize)); static inline int OffsetForDepth(int depth); inline void PushLeft(ConsString* string); inline void PushRight(ConsString* string); inline void AdjustMaximumDepth(); inline void Pop(); inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; } void Initialize(ConsString* cons_string, int offset); String* Continue(int* offset_out); String* NextLeaf(bool* blew_stack); String* Search(int* offset_out); // Stack must always contain only frames for which right traversal // has not yet been performed. ConsString* frames_[kStackSize]; ConsString* root_; int depth_; int maximum_depth_; int consumed_; DISALLOW_COPY_AND_ASSIGN(ConsStringIteratorOp); }; class StringCharacterStream { public: inline StringCharacterStream(String* string, ConsStringIteratorOp* op, int offset = 0); inline uint16_t GetNext(); inline bool HasMore(); inline void Reset(String* string, int offset = 0); inline void VisitOneByteString(const uint8_t* chars, int length); inline void VisitTwoByteString(const uint16_t* chars, int length); private: bool is_one_byte_; union { const uint8_t* buffer8_; const uint16_t* buffer16_; }; const uint8_t* end_; ConsStringIteratorOp* op_; DISALLOW_COPY_AND_ASSIGN(StringCharacterStream); }; template <typename T> class VectorIterator { public: VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { } explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { } T GetNext() { return data_[index_++]; } bool has_more() { return index_ < data_.length(); } private: Vector<const T> data_; int index_; }; // The Oddball describes objects null, undefined, true, and false. class Oddball: public HeapObject { public: // [to_string]: Cached to_string computed at startup. DECL_ACCESSORS(to_string, String) // [to_number]: Cached to_number computed at startup. DECL_ACCESSORS(to_number, Object) inline byte kind(); inline void set_kind(byte kind); // Casting. static inline Oddball* cast(Object* obj); // Dispatched behavior. DECLARE_VERIFIER(Oddball) // Initialize the fields. static void Initialize(Isolate* isolate, Handle<Oddball> oddball, const char* to_string, Handle<Object> to_number, byte kind); // Layout description. static const int kToStringOffset = HeapObject::kHeaderSize; static const int kToNumberOffset = kToStringOffset + kPointerSize; static const int kKindOffset = kToNumberOffset + kPointerSize; static const int kSize = kKindOffset + kPointerSize; static const byte kFalse = 0; static const byte kTrue = 1; static const byte kNotBooleanMask = ~1; static const byte kTheHole = 2; static const byte kNull = 3; static const byte kArgumentMarker = 4; static const byte kUndefined = 5; static const byte kUninitialized = 6; static const byte kOther = 7; static const byte kException = 8; typedef FixedBodyDescriptor<kToStringOffset, kToNumberOffset + kPointerSize, kSize> BodyDescriptor; STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset); STATIC_ASSERT(kNull == Internals::kNullOddballKind); STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind); private: DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball); }; class Cell: public HeapObject { public: // [value]: value of the global property. DECL_ACCESSORS(value, Object) // Casting. static inline Cell* cast(Object* obj); static inline Cell* FromValueAddress(Address value) { Object* result = FromAddress(value - kValueOffset); ASSERT(result->IsCell() || result->IsPropertyCell()); return static_cast<Cell*>(result); } inline Address ValueAddress() { return address() + kValueOffset; } // Dispatched behavior. DECLARE_PRINTER(Cell) DECLARE_VERIFIER(Cell) // Layout description. static const int kValueOffset = HeapObject::kHeaderSize; static const int kSize = kValueOffset + kPointerSize; typedef FixedBodyDescriptor<kValueOffset, kValueOffset + kPointerSize, kSize> BodyDescriptor; private: DISALLOW_IMPLICIT_CONSTRUCTORS(Cell); }; class PropertyCell: public Cell { public: // [type]: type of the global property. HeapType* type(); void set_type(HeapType* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); // [dependent_code]: dependent code that depends on the type of the global // property. DECL_ACCESSORS(dependent_code, DependentCode) // Sets the value of the cell and updates the type field to be the union // of the cell's current type and the value's type. If the change causes // a change of the type of the cell's contents, code dependent on the cell // will be deoptimized. static void SetValueInferType(Handle<PropertyCell> cell, Handle<Object> value); // Computes the new type of the cell's contents for the given value, but // without actually modifying the 'type' field. static Handle<HeapType> UpdatedType(Handle<PropertyCell> cell, Handle<Object> value); static void AddDependentCompilationInfo(Handle<PropertyCell> cell, CompilationInfo* info); // Casting. static inline PropertyCell* cast(Object* obj); inline Address TypeAddress() { return address() + kTypeOffset; } // Dispatched behavior. DECLARE_PRINTER(PropertyCell) DECLARE_VERIFIER(PropertyCell) // Layout description. static const int kTypeOffset = kValueOffset + kPointerSize; static const int kDependentCodeOffset = kTypeOffset + kPointerSize; static const int kSize = kDependentCodeOffset + kPointerSize; static const int kPointerFieldsBeginOffset = kValueOffset; static const int kPointerFieldsEndOffset = kDependentCodeOffset; typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor; private: DECL_ACCESSORS(type_raw, Object) DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell); }; // The JSProxy describes EcmaScript Harmony proxies class JSProxy: public JSReceiver { public: // [handler]: The handler property. DECL_ACCESSORS(handler, Object) // [hash]: The hash code property (undefined if not initialized yet). DECL_ACCESSORS(hash, Object) // Casting. static inline JSProxy* cast(Object* obj); MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler( Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name); MUST_USE_RESULT static inline MaybeHandle<Object> GetElementWithHandler( Handle<JSProxy> proxy, Handle<Object> receiver, uint32_t index); // If the handler defines an accessor property with a setter, invoke it. // If it defines an accessor property without a setter, or a data property // that is read-only, throw. In all these cases set '*done' to true, // otherwise set it to false. MUST_USE_RESULT static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler( Handle<JSProxy> proxy, Handle<JSReceiver> receiver, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool* done); static PropertyAttributes GetPropertyAttributesWithHandler( Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name); static PropertyAttributes GetElementAttributeWithHandler( Handle<JSProxy> proxy, Handle<JSReceiver> receiver, uint32_t index); // Turn the proxy into an (empty) JSObject. static void Fix(Handle<JSProxy> proxy); // Initializes the body after the handler slot. inline void InitializeBody(int object_size, Object* value); // Invoke a trap by name. If the trap does not exist on this's handler, // but derived_trap is non-NULL, invoke that instead. May cause GC. MUST_USE_RESULT static MaybeHandle<Object> CallTrap( Handle<JSProxy> proxy, const char* name, Handle<Object> derived_trap, int argc, Handle<Object> args[]); // Dispatched behavior. DECLARE_PRINTER(JSProxy) DECLARE_VERIFIER(JSProxy) // Layout description. We add padding so that a proxy has the same // size as a virgin JSObject. This is essential for becoming a JSObject // upon freeze. static const int kHandlerOffset = HeapObject::kHeaderSize; static const int kHashOffset = kHandlerOffset + kPointerSize; static const int kPaddingOffset = kHashOffset + kPointerSize; static const int kSize = JSObject::kHeaderSize; static const int kHeaderSize = kPaddingOffset; static const int kPaddingSize = kSize - kPaddingOffset; STATIC_ASSERT(kPaddingSize >= 0); typedef FixedBodyDescriptor<kHandlerOffset, kPaddingOffset, kSize> BodyDescriptor; private: friend class JSReceiver; MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler( Handle<JSProxy> proxy, Handle<JSReceiver> receiver, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode); MUST_USE_RESULT static inline MaybeHandle<Object> SetElementWithHandler( Handle<JSProxy> proxy, Handle<JSReceiver> receiver, uint32_t index, Handle<Object> value, StrictMode strict_mode); static bool HasPropertyWithHandler(Handle<JSProxy> proxy, Handle<Name> name); static inline bool HasElementWithHandler(Handle<JSProxy> proxy, uint32_t index); MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler( Handle<JSProxy> proxy, Handle<Name> name, DeleteMode mode); MUST_USE_RESULT static MaybeHandle<Object> DeleteElementWithHandler( Handle<JSProxy> proxy, uint32_t index, DeleteMode mode); MUST_USE_RESULT Object* GetIdentityHash(); static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy); DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy); }; class JSFunctionProxy: public JSProxy { public: // [call_trap]: The call trap. DECL_ACCESSORS(call_trap, Object) // [construct_trap]: The construct trap. DECL_ACCESSORS(construct_trap, Object) // Casting. static inline JSFunctionProxy* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSFunctionProxy) DECLARE_VERIFIER(JSFunctionProxy) // Layout description. static const int kCallTrapOffset = JSProxy::kPaddingOffset; static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize; static const int kPaddingOffset = kConstructTrapOffset + kPointerSize; static const int kSize = JSFunction::kSize; static const int kPaddingSize = kSize - kPaddingOffset; STATIC_ASSERT(kPaddingSize >= 0); typedef FixedBodyDescriptor<kHandlerOffset, kConstructTrapOffset + kPointerSize, kSize> BodyDescriptor; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy); }; // The JSSet describes EcmaScript Harmony sets class JSSet: public JSObject { public: // [set]: the backing hash set containing keys. DECL_ACCESSORS(table, Object) // Casting. static inline JSSet* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSSet) DECLARE_VERIFIER(JSSet) static const int kTableOffset = JSObject::kHeaderSize; static const int kSize = kTableOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet); }; // The JSMap describes EcmaScript Harmony maps class JSMap: public JSObject { public: // [table]: the backing hash table mapping keys to values. DECL_ACCESSORS(table, Object) // Casting. static inline JSMap* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSMap) DECLARE_VERIFIER(JSMap) static const int kTableOffset = JSObject::kHeaderSize; static const int kSize = kTableOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap); }; // OrderedHashTableIterator is an iterator that iterates over the keys and // values of an OrderedHashTable. // // The iterator has a reference to the underlying OrderedHashTable data, // [table], as well as the current [index] the iterator is at. // // When the OrderedHashTable is rehashed it adds a reference from the old table // to the new table as well as storing enough data about the changes so that the // iterator [index] can be adjusted accordingly. // // When the [Next] result from the iterator is requested, the iterator checks if // there is a newer table that it needs to transition to. template<class Derived, class TableType> class OrderedHashTableIterator: public JSObject { public: // [table]: the backing hash table mapping keys to values. DECL_ACCESSORS(table, Object) // [index]: The index into the data table. DECL_ACCESSORS(index, Smi) // [kind]: The kind of iteration this is. One of the [Kind] enum values. DECL_ACCESSORS(kind, Smi) #ifdef OBJECT_PRINT void OrderedHashTableIteratorPrint(FILE* out); #endif static const int kTableOffset = JSObject::kHeaderSize; static const int kIndexOffset = kTableOffset + kPointerSize; static const int kKindOffset = kIndexOffset + kPointerSize; static const int kSize = kKindOffset + kPointerSize; enum Kind { kKindKeys = 1, kKindValues = 2, kKindEntries = 3 }; // Returns an iterator result object: {value: any, done: boolean} and moves // the index to the next valid entry. Closes the iterator if moving past the // end. static Handle<JSObject> Next(Handle<Derived> iterator); private: // Transitions the iterator to the non obsolote backing store. This is a NOP // if the [table] is not obsolete. void Transition(); DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator); }; class JSSetIterator: public OrderedHashTableIterator<JSSetIterator, OrderedHashSet> { public: // Dispatched behavior. DECLARE_PRINTER(JSSetIterator) DECLARE_VERIFIER(JSSetIterator) // Casting. static inline JSSetIterator* cast(Object* obj); static Handle<Object> ValueForKind( Handle<JSSetIterator> iterator, int entry_index); private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator); }; class JSMapIterator: public OrderedHashTableIterator<JSMapIterator, OrderedHashMap> { public: // Dispatched behavior. DECLARE_PRINTER(JSMapIterator) DECLARE_VERIFIER(JSMapIterator) // Casting. static inline JSMapIterator* cast(Object* obj); static Handle<Object> ValueForKind( Handle<JSMapIterator> iterator, int entry_index); private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator); }; // Base class for both JSWeakMap and JSWeakSet class JSWeakCollection: public JSObject { public: // [table]: the backing hash table mapping keys to values. DECL_ACCESSORS(table, Object) // [next]: linked list of encountered weak maps during GC. DECL_ACCESSORS(next, Object) static const int kTableOffset = JSObject::kHeaderSize; static const int kNextOffset = kTableOffset + kPointerSize; static const int kSize = kNextOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection); }; // The JSWeakMap describes EcmaScript Harmony weak maps class JSWeakMap: public JSWeakCollection { public: // Casting. static inline JSWeakMap* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSWeakMap) DECLARE_VERIFIER(JSWeakMap) private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap); }; // The JSWeakSet describes EcmaScript Harmony weak sets class JSWeakSet: public JSWeakCollection { public: // Casting. static inline JSWeakSet* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSWeakSet) DECLARE_VERIFIER(JSWeakSet) private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet); }; class JSArrayBuffer: public JSObject { public: // [backing_store]: backing memory for this array DECL_ACCESSORS(backing_store, void) // [byte_length]: length in bytes DECL_ACCESSORS(byte_length, Object) // [flags] DECL_ACCESSORS(flag, Smi) inline bool is_external(); inline void set_is_external(bool value); inline bool should_be_freed(); inline void set_should_be_freed(bool value); // [weak_next]: linked list of array buffers. DECL_ACCESSORS(weak_next, Object) // [weak_first_array]: weak linked list of views. DECL_ACCESSORS(weak_first_view, Object) // Casting. static inline JSArrayBuffer* cast(Object* obj); // Neutering. Only neuters the buffer, not associated typed arrays. void Neuter(); // Dispatched behavior. DECLARE_PRINTER(JSArrayBuffer) DECLARE_VERIFIER(JSArrayBuffer) static const int kBackingStoreOffset = JSObject::kHeaderSize; static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize; static const int kFlagOffset = kByteLengthOffset + kPointerSize; static const int kWeakNextOffset = kFlagOffset + kPointerSize; static const int kWeakFirstViewOffset = kWeakNextOffset + kPointerSize; static const int kSize = kWeakFirstViewOffset + kPointerSize; static const int kSizeWithInternalFields = kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize; private: // Bit position in a flag static const int kIsExternalBit = 0; static const int kShouldBeFreed = 1; DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer); }; class JSArrayBufferView: public JSObject { public: // [buffer]: ArrayBuffer that this typed array views. DECL_ACCESSORS(buffer, Object) // [byte_length]: offset of typed array in bytes. DECL_ACCESSORS(byte_offset, Object) // [byte_length]: length of typed array in bytes. DECL_ACCESSORS(byte_length, Object) // [weak_next]: linked list of typed arrays over the same array buffer. DECL_ACCESSORS(weak_next, Object) // Casting. static inline JSArrayBufferView* cast(Object* obj); DECLARE_VERIFIER(JSArrayBufferView) static const int kBufferOffset = JSObject::kHeaderSize; static const int kByteOffsetOffset = kBufferOffset + kPointerSize; static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize; static const int kWeakNextOffset = kByteLengthOffset + kPointerSize; static const int kViewSize = kWeakNextOffset + kPointerSize; protected: void NeuterView(); private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView); }; class JSTypedArray: public JSArrayBufferView { public: // [length]: length of typed array in elements. DECL_ACCESSORS(length, Object) // Neutering. Only neuters this typed array. void Neuter(); // Casting. static inline JSTypedArray* cast(Object* obj); ExternalArrayType type(); size_t element_size(); Handle<JSArrayBuffer> GetBuffer(); // Dispatched behavior. DECLARE_PRINTER(JSTypedArray) DECLARE_VERIFIER(JSTypedArray) static const int kLengthOffset = kViewSize + kPointerSize; static const int kSize = kLengthOffset + kPointerSize; static const int kSizeWithInternalFields = kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize; private: static Handle<JSArrayBuffer> MaterializeArrayBuffer( Handle<JSTypedArray> typed_array); DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray); }; class JSDataView: public JSArrayBufferView { public: // Only neuters this DataView void Neuter(); // Casting. static inline JSDataView* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(JSDataView) DECLARE_VERIFIER(JSDataView) static const int kSize = kViewSize; static const int kSizeWithInternalFields = kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView); }; // Foreign describes objects pointing from JavaScript to C structures. // Since they cannot contain references to JS HeapObjects they can be // placed in old_data_space. class Foreign: public HeapObject { public: // [address]: field containing the address. inline Address foreign_address(); inline void set_foreign_address(Address value); // Casting. static inline Foreign* cast(Object* obj); // Dispatched behavior. inline void ForeignIterateBody(ObjectVisitor* v); template<typename StaticVisitor> inline void ForeignIterateBody(); // Dispatched behavior. DECLARE_PRINTER(Foreign) DECLARE_VERIFIER(Foreign) // Layout description. static const int kForeignAddressOffset = HeapObject::kHeaderSize; static const int kSize = kForeignAddressOffset + kPointerSize; STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset); private: DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign); }; // The JSArray describes JavaScript Arrays // Such an array can be in one of two modes: // - fast, backing storage is a FixedArray and length <= elements.length(); // Please note: push and pop can be used to grow and shrink the array. // - slow, backing storage is a HashTable with numbers as keys. class JSArray: public JSObject { public: // [length]: The length property. DECL_ACCESSORS(length, Object) // Overload the length setter to skip write barrier when the length // is set to a smi. This matches the set function on FixedArray. inline void set_length(Smi* length); static void JSArrayUpdateLengthFromIndex(Handle<JSArray> array, uint32_t index, Handle<Object> value); static bool IsReadOnlyLengthDescriptor(Handle<Map> jsarray_map); static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index); static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array); // Initialize the array with the given capacity. The function may // fail due to out-of-memory situations, but only if the requested // capacity is non-zero. static void Initialize(Handle<JSArray> array, int capacity, int length = 0); // Initializes the array to a certain length. inline bool AllowsSetElementsLength(); // Can cause GC. MUST_USE_RESULT static MaybeHandle<Object> SetElementsLength( Handle<JSArray> array, Handle<Object> length); // Set the content of the array to the content of storage. static inline void SetContent(Handle<JSArray> array, Handle<FixedArrayBase> storage); // Casting. static inline JSArray* cast(Object* obj); // Ensures that the fixed array backing the JSArray has at // least the stated size. static inline void EnsureSize(Handle<JSArray> array, int minimum_size_of_backing_fixed_array); // Expand the fixed array backing of a fast-case JSArray to at least // the requested size. static void Expand(Handle<JSArray> array, int minimum_size_of_backing_fixed_array); // Dispatched behavior. DECLARE_PRINTER(JSArray) DECLARE_VERIFIER(JSArray) // Number of element slots to pre-allocate for an empty array. static const int kPreallocatedArrayElements = 4; // Layout description. static const int kLengthOffset = JSObject::kHeaderSize; static const int kSize = kLengthOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray); }; Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context, Handle<Map> initial_map); // JSRegExpResult is just a JSArray with a specific initial map. // This initial map adds in-object properties for "index" and "input" // properties, as assigned by RegExp.prototype.exec, which allows // faster creation of RegExp exec results. // This class just holds constants used when creating the result. // After creation the result must be treated as a JSArray in all regards. class JSRegExpResult: public JSArray { public: // Offsets of object fields. static const int kIndexOffset = JSArray::kSize; static const int kInputOffset = kIndexOffset + kPointerSize; static const int kSize = kInputOffset + kPointerSize; // Indices of in-object properties. static const int kIndexIndex = 0; static const int kInputIndex = 1; private: DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult); }; class AccessorInfo: public Struct { public: DECL_ACCESSORS(name, Object) DECL_ACCESSORS(flag, Smi) DECL_ACCESSORS(expected_receiver_type, Object) inline bool all_can_read(); inline void set_all_can_read(bool value); inline bool all_can_write(); inline void set_all_can_write(bool value); inline PropertyAttributes property_attributes(); inline void set_property_attributes(PropertyAttributes attributes); // Checks whether the given receiver is compatible with this accessor. inline bool IsCompatibleReceiver(Object* receiver); static inline AccessorInfo* cast(Object* obj); // Dispatched behavior. DECLARE_VERIFIER(AccessorInfo) // Append all descriptors to the array that are not already there. // Return number added. static int AppendUnique(Handle<Object> descriptors, Handle<FixedArray> array, int valid_descriptors); static const int kNameOffset = HeapObject::kHeaderSize; static const int kFlagOffset = kNameOffset + kPointerSize; static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize; static const int kSize = kExpectedReceiverTypeOffset + kPointerSize; private: // Bit positions in flag. static const int kAllCanReadBit = 0; static const int kAllCanWriteBit = 1; class AttributesField: public BitField<PropertyAttributes, 2, 3> {}; DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo); }; enum AccessorDescriptorType { kDescriptorBitmaskCompare, kDescriptorPointerCompare, kDescriptorPrimitiveValue, kDescriptorObjectDereference, kDescriptorPointerDereference, kDescriptorPointerShift, kDescriptorReturnObject }; struct BitmaskCompareDescriptor { uint32_t bitmask; uint32_t compare_value; uint8_t size; // Must be in {1,2,4}. }; struct PointerCompareDescriptor { void* compare_value; }; struct PrimitiveValueDescriptor { v8::DeclaredAccessorDescriptorDataType data_type; uint8_t bool_offset; // Must be in [0,7], used for kDescriptorBoolType. }; struct ObjectDerefenceDescriptor { uint8_t internal_field; }; struct PointerShiftDescriptor { int16_t byte_offset; }; struct DeclaredAccessorDescriptorData { AccessorDescriptorType type; union { struct BitmaskCompareDescriptor bitmask_compare_descriptor; struct PointerCompareDescriptor pointer_compare_descriptor; struct PrimitiveValueDescriptor primitive_value_descriptor; struct ObjectDerefenceDescriptor object_dereference_descriptor; struct PointerShiftDescriptor pointer_shift_descriptor; }; }; class DeclaredAccessorDescriptor; class DeclaredAccessorDescriptorIterator { public: explicit DeclaredAccessorDescriptorIterator( DeclaredAccessorDescriptor* descriptor); const DeclaredAccessorDescriptorData* Next(); bool Complete() const { return length_ == offset_; } private: uint8_t* array_; const int length_; int offset_; DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorDescriptorIterator); }; class DeclaredAccessorDescriptor: public Struct { public: DECL_ACCESSORS(serialized_data, ByteArray) static inline DeclaredAccessorDescriptor* cast(Object* obj); static Handle<DeclaredAccessorDescriptor> Create( Isolate* isolate, const DeclaredAccessorDescriptorData& data, Handle<DeclaredAccessorDescriptor> previous); // Dispatched behavior. DECLARE_PRINTER(DeclaredAccessorDescriptor) DECLARE_VERIFIER(DeclaredAccessorDescriptor) static const int kSerializedDataOffset = HeapObject::kHeaderSize; static const int kSize = kSerializedDataOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorDescriptor); }; class DeclaredAccessorInfo: public AccessorInfo { public: DECL_ACCESSORS(descriptor, DeclaredAccessorDescriptor) static inline DeclaredAccessorInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(DeclaredAccessorInfo) DECLARE_VERIFIER(DeclaredAccessorInfo) static const int kDescriptorOffset = AccessorInfo::kSize; static const int kSize = kDescriptorOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(DeclaredAccessorInfo); }; // An accessor must have a getter, but can have no setter. // // When setting a property, V8 searches accessors in prototypes. // If an accessor was found and it does not have a setter, // the request is ignored. // // If the accessor in the prototype has the READ_ONLY property attribute, then // a new value is added to the derived object when the property is set. // This shadows the accessor in the prototype. class ExecutableAccessorInfo: public AccessorInfo { public: DECL_ACCESSORS(getter, Object) DECL_ACCESSORS(setter, Object) DECL_ACCESSORS(data, Object) static inline ExecutableAccessorInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ExecutableAccessorInfo) DECLARE_VERIFIER(ExecutableAccessorInfo) static const int kGetterOffset = AccessorInfo::kSize; static const int kSetterOffset = kGetterOffset + kPointerSize; static const int kDataOffset = kSetterOffset + kPointerSize; static const int kSize = kDataOffset + kPointerSize; inline void clear_setter(); private: DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo); }; // Support for JavaScript accessors: A pair of a getter and a setter. Each // accessor can either be // * a pointer to a JavaScript function or proxy: a real accessor // * undefined: considered an accessor by the spec, too, strangely enough // * the hole: an accessor which has not been set // * a pointer to a map: a transition used to ensure map sharing // access_flags provides the ability to override access checks on access check // failure. class AccessorPair: public Struct { public: DECL_ACCESSORS(getter, Object) DECL_ACCESSORS(setter, Object) DECL_ACCESSORS(access_flags, Smi) inline void set_access_flags(v8::AccessControl access_control); inline bool all_can_read(); inline bool all_can_write(); static inline AccessorPair* cast(Object* obj); static Handle<AccessorPair> Copy(Handle<AccessorPair> pair); Object* get(AccessorComponent component) { return component == ACCESSOR_GETTER ? getter() : setter(); } void set(AccessorComponent component, Object* value) { if (component == ACCESSOR_GETTER) { set_getter(value); } else { set_setter(value); } } // Note: Returns undefined instead in case of a hole. Object* GetComponent(AccessorComponent component); // Set both components, skipping arguments which are a JavaScript null. void SetComponents(Object* getter, Object* setter) { if (!getter->IsNull()) set_getter(getter); if (!setter->IsNull()) set_setter(setter); } bool ContainsAccessor() { return IsJSAccessor(getter()) || IsJSAccessor(setter()); } // Dispatched behavior. DECLARE_PRINTER(AccessorPair) DECLARE_VERIFIER(AccessorPair) static const int kGetterOffset = HeapObject::kHeaderSize; static const int kSetterOffset = kGetterOffset + kPointerSize; static const int kAccessFlagsOffset = kSetterOffset + kPointerSize; static const int kSize = kAccessFlagsOffset + kPointerSize; private: static const int kAllCanReadBit = 0; static const int kAllCanWriteBit = 1; // Strangely enough, in addition to functions and harmony proxies, the spec // requires us to consider undefined as a kind of accessor, too: // var obj = {}; // Object.defineProperty(obj, "foo", {get: undefined}); // assertTrue("foo" in obj); bool IsJSAccessor(Object* obj) { return obj->IsSpecFunction() || obj->IsUndefined(); } DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair); }; class AccessCheckInfo: public Struct { public: DECL_ACCESSORS(named_callback, Object) DECL_ACCESSORS(indexed_callback, Object) DECL_ACCESSORS(data, Object) static inline AccessCheckInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(AccessCheckInfo) DECLARE_VERIFIER(AccessCheckInfo) static const int kNamedCallbackOffset = HeapObject::kHeaderSize; static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize; static const int kDataOffset = kIndexedCallbackOffset + kPointerSize; static const int kSize = kDataOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo); }; class InterceptorInfo: public Struct { public: DECL_ACCESSORS(getter, Object) DECL_ACCESSORS(setter, Object) DECL_ACCESSORS(query, Object) DECL_ACCESSORS(deleter, Object) DECL_ACCESSORS(enumerator, Object) DECL_ACCESSORS(data, Object) static inline InterceptorInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(InterceptorInfo) DECLARE_VERIFIER(InterceptorInfo) static const int kGetterOffset = HeapObject::kHeaderSize; static const int kSetterOffset = kGetterOffset + kPointerSize; static const int kQueryOffset = kSetterOffset + kPointerSize; static const int kDeleterOffset = kQueryOffset + kPointerSize; static const int kEnumeratorOffset = kDeleterOffset + kPointerSize; static const int kDataOffset = kEnumeratorOffset + kPointerSize; static const int kSize = kDataOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo); }; class CallHandlerInfo: public Struct { public: DECL_ACCESSORS(callback, Object) DECL_ACCESSORS(data, Object) static inline CallHandlerInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(CallHandlerInfo) DECLARE_VERIFIER(CallHandlerInfo) static const int kCallbackOffset = HeapObject::kHeaderSize; static const int kDataOffset = kCallbackOffset + kPointerSize; static const int kSize = kDataOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo); }; class TemplateInfo: public Struct { public: DECL_ACCESSORS(tag, Object) DECL_ACCESSORS(property_list, Object) DECL_ACCESSORS(property_accessors, Object) DECLARE_VERIFIER(TemplateInfo) static const int kTagOffset = HeapObject::kHeaderSize; static const int kPropertyListOffset = kTagOffset + kPointerSize; static const int kPropertyAccessorsOffset = kPropertyListOffset + kPointerSize; static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo); }; class FunctionTemplateInfo: public TemplateInfo { public: DECL_ACCESSORS(serial_number, Object) DECL_ACCESSORS(call_code, Object) DECL_ACCESSORS(prototype_template, Object) DECL_ACCESSORS(parent_template, Object) DECL_ACCESSORS(named_property_handler, Object) DECL_ACCESSORS(indexed_property_handler, Object) DECL_ACCESSORS(instance_template, Object) DECL_ACCESSORS(class_name, Object) DECL_ACCESSORS(signature, Object) DECL_ACCESSORS(instance_call_handler, Object) DECL_ACCESSORS(access_check_info, Object) DECL_ACCESSORS(flag, Smi) inline int length(); inline void set_length(int value); // Following properties use flag bits. DECL_BOOLEAN_ACCESSORS(hidden_prototype) DECL_BOOLEAN_ACCESSORS(undetectable) // If the bit is set, object instances created by this function // requires access check. DECL_BOOLEAN_ACCESSORS(needs_access_check) DECL_BOOLEAN_ACCESSORS(read_only_prototype) DECL_BOOLEAN_ACCESSORS(remove_prototype) DECL_BOOLEAN_ACCESSORS(do_not_cache) static inline FunctionTemplateInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(FunctionTemplateInfo) DECLARE_VERIFIER(FunctionTemplateInfo) static const int kSerialNumberOffset = TemplateInfo::kHeaderSize; static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize; static const int kPrototypeTemplateOffset = kCallCodeOffset + kPointerSize; static const int kParentTemplateOffset = kPrototypeTemplateOffset + kPointerSize; static const int kNamedPropertyHandlerOffset = kParentTemplateOffset + kPointerSize; static const int kIndexedPropertyHandlerOffset = kNamedPropertyHandlerOffset + kPointerSize; static const int kInstanceTemplateOffset = kIndexedPropertyHandlerOffset + kPointerSize; static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize; static const int kSignatureOffset = kClassNameOffset + kPointerSize; static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize; static const int kAccessCheckInfoOffset = kInstanceCallHandlerOffset + kPointerSize; static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize; static const int kLengthOffset = kFlagOffset + kPointerSize; static const int kSize = kLengthOffset + kPointerSize; // Returns true if |object| is an instance of this function template. bool IsTemplateFor(Object* object); bool IsTemplateFor(Map* map); private: // Bit position in the flag, from least significant bit position. static const int kHiddenPrototypeBit = 0; static const int kUndetectableBit = 1; static const int kNeedsAccessCheckBit = 2; static const int kReadOnlyPrototypeBit = 3; static const int kRemovePrototypeBit = 4; static const int kDoNotCacheBit = 5; DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo); }; class ObjectTemplateInfo: public TemplateInfo { public: DECL_ACCESSORS(constructor, Object) DECL_ACCESSORS(internal_field_count, Object) static inline ObjectTemplateInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(ObjectTemplateInfo) DECLARE_VERIFIER(ObjectTemplateInfo) static const int kConstructorOffset = TemplateInfo::kHeaderSize; static const int kInternalFieldCountOffset = kConstructorOffset + kPointerSize; static const int kSize = kInternalFieldCountOffset + kPointerSize; }; class SignatureInfo: public Struct { public: DECL_ACCESSORS(receiver, Object) DECL_ACCESSORS(args, Object) static inline SignatureInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(SignatureInfo) DECLARE_VERIFIER(SignatureInfo) static const int kReceiverOffset = Struct::kHeaderSize; static const int kArgsOffset = kReceiverOffset + kPointerSize; static const int kSize = kArgsOffset + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo); }; class TypeSwitchInfo: public Struct { public: DECL_ACCESSORS(types, Object) static inline TypeSwitchInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(TypeSwitchInfo) DECLARE_VERIFIER(TypeSwitchInfo) static const int kTypesOffset = Struct::kHeaderSize; static const int kSize = kTypesOffset + kPointerSize; }; // The DebugInfo class holds additional information for a function being // debugged. class DebugInfo: public Struct { public: // The shared function info for the source being debugged. DECL_ACCESSORS(shared, SharedFunctionInfo) // Code object for the original code. DECL_ACCESSORS(original_code, Code) // Code object for the patched code. This code object is the code object // currently active for the function. DECL_ACCESSORS(code, Code) // Fixed array holding status information for each active break point. DECL_ACCESSORS(break_points, FixedArray) // Check if there is a break point at a code position. bool HasBreakPoint(int code_position); // Get the break point info object for a code position. Object* GetBreakPointInfo(int code_position); // Clear a break point. static void ClearBreakPoint(Handle<DebugInfo> debug_info, int code_position, Handle<Object> break_point_object); // Set a break point. static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position, int source_position, int statement_position, Handle<Object> break_point_object); // Get the break point objects for a code position. Object* GetBreakPointObjects(int code_position); // Find the break point info holding this break point object. static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info, Handle<Object> break_point_object); // Get the number of break points for this function. int GetBreakPointCount(); static inline DebugInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(DebugInfo) DECLARE_VERIFIER(DebugInfo) static const int kSharedFunctionInfoIndex = Struct::kHeaderSize; static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize; static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize; static const int kActiveBreakPointsCountIndex = kPatchedCodeIndex + kPointerSize; static const int kBreakPointsStateIndex = kActiveBreakPointsCountIndex + kPointerSize; static const int kSize = kBreakPointsStateIndex + kPointerSize; static const int kEstimatedNofBreakPointsInFunction = 16; private: static const int kNoBreakPointInfo = -1; // Lookup the index in the break_points array for a code position. int GetBreakPointInfoIndex(int code_position); DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo); }; // The BreakPointInfo class holds information for break points set in a // function. The DebugInfo object holds a BreakPointInfo object for each code // position with one or more break points. class BreakPointInfo: public Struct { public: // The position in the code for the break point. DECL_ACCESSORS(code_position, Smi) // The position in the source for the break position. DECL_ACCESSORS(source_position, Smi) // The position in the source for the last statement before this break // position. DECL_ACCESSORS(statement_position, Smi) // List of related JavaScript break points. DECL_ACCESSORS(break_point_objects, Object) // Removes a break point. static void ClearBreakPoint(Handle<BreakPointInfo> info, Handle<Object> break_point_object); // Set a break point. static void SetBreakPoint(Handle<BreakPointInfo> info, Handle<Object> break_point_object); // Check if break point info has this break point object. static bool HasBreakPointObject(Handle<BreakPointInfo> info, Handle<Object> break_point_object); // Get the number of break points for this code position. int GetBreakPointCount(); static inline BreakPointInfo* cast(Object* obj); // Dispatched behavior. DECLARE_PRINTER(BreakPointInfo) DECLARE_VERIFIER(BreakPointInfo) static const int kCodePositionIndex = Struct::kHeaderSize; static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize; static const int kStatementPositionIndex = kSourcePositionIndex + kPointerSize; static const int kBreakPointObjectsIndex = kStatementPositionIndex + kPointerSize; static const int kSize = kBreakPointObjectsIndex + kPointerSize; private: DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo); }; #undef DECL_BOOLEAN_ACCESSORS #undef DECL_ACCESSORS #undef DECLARE_VERIFIER #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \ V(kStringTable, "string_table", "(Internalized strings)") \ V(kExternalStringsTable, "external_strings_table", "(External strings)") \ V(kStrongRootList, "strong_root_list", "(Strong roots)") \ V(kSmiRootList, "smi_root_list", "(Smi roots)") \ V(kInternalizedString, "internalized_string", "(Internal string)") \ V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \ V(kTop, "top", "(Isolate)") \ V(kRelocatable, "relocatable", "(Relocatable)") \ V(kDebug, "debug", "(Debugger)") \ V(kCompilationCache, "compilationcache", "(Compilation cache)") \ V(kHandleScope, "handlescope", "(Handle scope)") \ V(kBuiltins, "builtins", "(Builtins)") \ V(kGlobalHandles, "globalhandles", "(Global handles)") \ V(kEternalHandles, "eternalhandles", "(Eternal handles)") \ V(kThreadManager, "threadmanager", "(Thread manager)") \ V(kExtensions, "Extensions", "(Extensions)") class VisitorSynchronization : public AllStatic { public: #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item, enum SyncTag { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM) kNumberOfSyncTags }; #undef DECLARE_ENUM static const char* const kTags[kNumberOfSyncTags]; static const char* const kTagNames[kNumberOfSyncTags]; }; // Abstract base class for visiting, and optionally modifying, the // pointers contained in Objects. Used in GC and serialization/deserialization. class ObjectVisitor BASE_EMBEDDED { public: virtual ~ObjectVisitor() {} // Visits a contiguous arrays of pointers in the half-open range // [start, end). Any or all of the values may be modified on return. virtual void VisitPointers(Object** start, Object** end) = 0; // Handy shorthand for visiting a single pointer. virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); } // Visit weak next_code_link in Code object. virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); } // To allow lazy clearing of inline caches the visitor has // a rich interface for iterating over Code objects.. // Visits a code target in the instruction stream. virtual void VisitCodeTarget(RelocInfo* rinfo); // Visits a code entry in a JS function. virtual void VisitCodeEntry(Address entry_address); // Visits a global property cell reference in the instruction stream. virtual void VisitCell(RelocInfo* rinfo); // Visits a runtime entry in the instruction stream. virtual void VisitRuntimeEntry(RelocInfo* rinfo) {} // Visits the resource of an ASCII or two-byte string. virtual void VisitExternalAsciiString( v8::String::ExternalAsciiStringResource** resource) {} virtual void VisitExternalTwoByteString( v8::String::ExternalStringResource** resource) {} // Visits a debug call target in the instruction stream. virtual void VisitDebugTarget(RelocInfo* rinfo); // Visits the byte sequence in a function's prologue that contains information // about the code's age. virtual void VisitCodeAgeSequence(RelocInfo* rinfo); // Visit pointer embedded into a code object. virtual void VisitEmbeddedPointer(RelocInfo* rinfo); // Visits an external reference embedded into a code object. virtual void VisitExternalReference(RelocInfo* rinfo); // Visits an external reference. The value may be modified on return. virtual void VisitExternalReference(Address* p) {} // Visits a handle that has an embedder-assigned class ID. virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {} // Intended for serialization/deserialization checking: insert, or // check for the presence of, a tag at this position in the stream. // Also used for marking up GC roots in heap snapshots. virtual void Synchronize(VisitorSynchronization::SyncTag tag) {} }; class StructBodyDescriptor : public FlexibleBodyDescriptor<HeapObject::kHeaderSize> { public: static inline int SizeOf(Map* map, HeapObject* object) { return map->instance_size(); } }; // BooleanBit is a helper class for setting and getting a bit in an // integer or Smi. class BooleanBit : public AllStatic { public: static inline bool get(Smi* smi, int bit_position) { return get(smi->value(), bit_position); } static inline bool get(int value, int bit_position) { return (value & (1 << bit_position)) != 0; } static inline Smi* set(Smi* smi, int bit_position, bool v) { return Smi::FromInt(set(smi->value(), bit_position, v)); } static inline int set(int value, int bit_position, bool v) { if (v) { value |= (1 << bit_position); } else { value &= ~(1 << bit_position); } return value; } }; } } // namespace v8::internal #endif // V8_OBJECTS_H_