// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/hydrogen-representation-changes.h" namespace v8 { namespace internal { void HRepresentationChangesPhase::InsertRepresentationChangeForUse( HValue* value, HValue* use_value, int use_index, Representation to) { // Insert the representation change right before its use. For phi-uses we // insert at the end of the corresponding predecessor. HInstruction* next = NULL; if (use_value->IsPhi()) { next = use_value->block()->predecessors()->at(use_index)->end(); } else { next = HInstruction::cast(use_value); } // For constants we try to make the representation change at compile // time. When a representation change is not possible without loss of // information we treat constants like normal instructions and insert the // change instructions for them. HInstruction* new_value = NULL; bool is_truncating_to_smi = use_value->CheckFlag(HValue::kTruncatingToSmi); bool is_truncating_to_int = use_value->CheckFlag(HValue::kTruncatingToInt32); if (value->IsConstant()) { HConstant* constant = HConstant::cast(value); // Try to create a new copy of the constant with the new representation. if (is_truncating_to_int && to.IsInteger32()) { Maybe<HConstant*> res = constant->CopyToTruncatedInt32(graph()->zone()); if (res.has_value) new_value = res.value; } else { new_value = constant->CopyToRepresentation(to, graph()->zone()); } } if (new_value == NULL) { new_value = new(graph()->zone()) HChange( value, to, is_truncating_to_smi, is_truncating_to_int); if (!use_value->operand_position(use_index).IsUnknown()) { new_value->set_position(use_value->operand_position(use_index)); } else { ASSERT(!FLAG_hydrogen_track_positions || !graph()->info()->IsOptimizing()); } } new_value->InsertBefore(next); use_value->SetOperandAt(use_index, new_value); } static bool IsNonDeoptingIntToSmiChange(HChange* change) { Representation from_rep = change->from(); Representation to_rep = change->to(); // Flags indicating Uint32 operations are set in a later Hydrogen phase. ASSERT(!change->CheckFlag(HValue::kUint32)); return from_rep.IsInteger32() && to_rep.IsSmi() && SmiValuesAre32Bits(); } void HRepresentationChangesPhase::InsertRepresentationChangesForValue( HValue* value) { Representation r = value->representation(); if (r.IsNone()) return; if (value->HasNoUses()) { if (value->IsForceRepresentation()) value->DeleteAndReplaceWith(NULL); return; } for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { HValue* use_value = it.value(); int use_index = it.index(); Representation req = use_value->RequiredInputRepresentation(use_index); if (req.IsNone() || req.Equals(r)) continue; // If this is an HForceRepresentation instruction, and an HChange has been // inserted above it, examine the input representation of the HChange. If // that's int32, and this HForceRepresentation use is int32, and int32 to // smi changes can't cause deoptimisation, set the input of the use to the // input of the HChange. if (value->IsForceRepresentation()) { HValue* input = HForceRepresentation::cast(value)->value(); if (input->IsChange()) { HChange* change = HChange::cast(input); if (change->from().Equals(req) && IsNonDeoptingIntToSmiChange(change)) { use_value->SetOperandAt(use_index, change->value()); continue; } } } InsertRepresentationChangeForUse(value, use_value, use_index, req); } if (value->HasNoUses()) { ASSERT(value->IsConstant() || value->IsForceRepresentation()); value->DeleteAndReplaceWith(NULL); } else { // The only purpose of a HForceRepresentation is to represent the value // after the (possible) HChange instruction. We make it disappear. if (value->IsForceRepresentation()) { value->DeleteAndReplaceWith(HForceRepresentation::cast(value)->value()); } } } void HRepresentationChangesPhase::Run() { // Compute truncation flag for phis: Initially assume that all // int32-phis allow truncation and iteratively remove the ones that // are used in an operation that does not allow a truncating // conversion. ZoneList<HPhi*> int_worklist(8, zone()); ZoneList<HPhi*> smi_worklist(8, zone()); const ZoneList<HPhi*>* phi_list(graph()->phi_list()); for (int i = 0; i < phi_list->length(); i++) { HPhi* phi = phi_list->at(i); if (phi->representation().IsInteger32()) { phi->SetFlag(HValue::kTruncatingToInt32); } else if (phi->representation().IsSmi()) { phi->SetFlag(HValue::kTruncatingToSmi); phi->SetFlag(HValue::kTruncatingToInt32); } } for (int i = 0; i < phi_list->length(); i++) { HPhi* phi = phi_list->at(i); HValue* value = NULL; if (phi->representation().IsSmiOrInteger32() && !phi->CheckUsesForFlag(HValue::kTruncatingToInt32, &value)) { int_worklist.Add(phi, zone()); phi->ClearFlag(HValue::kTruncatingToInt32); if (FLAG_trace_representation) { PrintF("#%d Phi is not truncating Int32 because of #%d %s\n", phi->id(), value->id(), value->Mnemonic()); } } if (phi->representation().IsSmi() && !phi->CheckUsesForFlag(HValue::kTruncatingToSmi, &value)) { smi_worklist.Add(phi, zone()); phi->ClearFlag(HValue::kTruncatingToSmi); if (FLAG_trace_representation) { PrintF("#%d Phi is not truncating Smi because of #%d %s\n", phi->id(), value->id(), value->Mnemonic()); } } } while (!int_worklist.is_empty()) { HPhi* current = int_worklist.RemoveLast(); for (int i = 0; i < current->OperandCount(); ++i) { HValue* input = current->OperandAt(i); if (input->IsPhi() && input->representation().IsSmiOrInteger32() && input->CheckFlag(HValue::kTruncatingToInt32)) { if (FLAG_trace_representation) { PrintF("#%d Phi is not truncating Int32 because of #%d %s\n", input->id(), current->id(), current->Mnemonic()); } input->ClearFlag(HValue::kTruncatingToInt32); int_worklist.Add(HPhi::cast(input), zone()); } } } while (!smi_worklist.is_empty()) { HPhi* current = smi_worklist.RemoveLast(); for (int i = 0; i < current->OperandCount(); ++i) { HValue* input = current->OperandAt(i); if (input->IsPhi() && input->representation().IsSmi() && input->CheckFlag(HValue::kTruncatingToSmi)) { if (FLAG_trace_representation) { PrintF("#%d Phi is not truncating Smi because of #%d %s\n", input->id(), current->id(), current->Mnemonic()); } input->ClearFlag(HValue::kTruncatingToSmi); smi_worklist.Add(HPhi::cast(input), zone()); } } } const ZoneList<HBasicBlock*>* blocks(graph()->blocks()); for (int i = 0; i < blocks->length(); ++i) { // Process phi instructions first. const HBasicBlock* block(blocks->at(i)); const ZoneList<HPhi*>* phis = block->phis(); for (int j = 0; j < phis->length(); j++) { InsertRepresentationChangesForValue(phis->at(j)); } // Process normal instructions. for (HInstruction* current = block->first(); current != NULL; ) { HInstruction* next = current->next(); InsertRepresentationChangesForValue(current); current = next; } } } } } // namespace v8::internal