// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/hydrogen-check-elimination.h" #include "src/hydrogen-alias-analysis.h" #include "src/hydrogen-flow-engine.h" #define GLOBAL 1 // Only collect stats in debug mode. #if DEBUG #define INC_STAT(x) phase_->x++ #else #define INC_STAT(x) #endif // For code de-uglification. #define TRACE(x) if (FLAG_trace_check_elimination) PrintF x namespace v8 { namespace internal { typedef const UniqueSet<Map>* MapSet; struct HCheckTableEntry { enum State { // We have seen a map check (i.e. an HCheckMaps) for these maps, so we can // use this information to eliminate further map checks, elements kind // transitions, etc. CHECKED, // Same as CHECKED, but we also know that these maps are stable. CHECKED_STABLE, // These maps are stable, but not checked (i.e. we learned this via field // type tracking or from a constant, or they were initially CHECKED_STABLE, // but became UNCHECKED_STABLE because of an instruction that changes maps // or elements kind), and we need a stability check for them in order to use // this information for check elimination (which turns them back to // CHECKED_STABLE). UNCHECKED_STABLE }; static const char* State2String(State state) { switch (state) { case CHECKED: return "checked"; case CHECKED_STABLE: return "checked stable"; case UNCHECKED_STABLE: return "unchecked stable"; } UNREACHABLE(); return NULL; } static State StateMerge(State state1, State state2) { if (state1 == state2) return state1; if ((state1 == CHECKED && state2 == CHECKED_STABLE) || (state2 == CHECKED && state1 == CHECKED_STABLE)) { return CHECKED; } ASSERT((state1 == CHECKED_STABLE && state2 == UNCHECKED_STABLE) || (state2 == CHECKED_STABLE && state1 == UNCHECKED_STABLE)); return UNCHECKED_STABLE; } HValue* object_; // The object being approximated. NULL => invalid entry. HInstruction* check_; // The last check instruction. MapSet maps_; // The set of known maps for the object. State state_; // The state of this entry. }; // The main data structure used during check elimination, which stores a // set of known maps for each object. class HCheckTable : public ZoneObject { public: static const int kMaxTrackedObjects = 16; explicit HCheckTable(HCheckEliminationPhase* phase) : phase_(phase), cursor_(0), size_(0) { } // The main processing of instructions. HCheckTable* Process(HInstruction* instr, Zone* zone) { switch (instr->opcode()) { case HValue::kCheckMaps: { ReduceCheckMaps(HCheckMaps::cast(instr)); break; } case HValue::kLoadNamedField: { ReduceLoadNamedField(HLoadNamedField::cast(instr)); break; } case HValue::kStoreNamedField: { ReduceStoreNamedField(HStoreNamedField::cast(instr)); break; } case HValue::kCompareMap: { ReduceCompareMap(HCompareMap::cast(instr)); break; } case HValue::kCompareObjectEqAndBranch: { ReduceCompareObjectEqAndBranch(HCompareObjectEqAndBranch::cast(instr)); break; } case HValue::kIsStringAndBranch: { ReduceIsStringAndBranch(HIsStringAndBranch::cast(instr)); break; } case HValue::kTransitionElementsKind: { ReduceTransitionElementsKind( HTransitionElementsKind::cast(instr)); break; } case HValue::kCheckHeapObject: { ReduceCheckHeapObject(HCheckHeapObject::cast(instr)); break; } case HValue::kCheckInstanceType: { ReduceCheckInstanceType(HCheckInstanceType::cast(instr)); break; } default: { // If the instruction changes maps uncontrollably, drop everything. if (instr->CheckChangesFlag(kOsrEntries)) { Kill(); break; } if (instr->CheckChangesFlag(kElementsKind) || instr->CheckChangesFlag(kMaps)) { KillUnstableEntries(); } } // Improvements possible: // - eliminate redundant HCheckSmi instructions // - track which values have been HCheckHeapObject'd } return this; } // Support for global analysis with HFlowEngine: Merge given state with // the other incoming state. static HCheckTable* Merge(HCheckTable* succ_state, HBasicBlock* succ_block, HCheckTable* pred_state, HBasicBlock* pred_block, Zone* zone) { if (pred_state == NULL || pred_block->IsUnreachable()) { return succ_state; } if (succ_state == NULL) { return pred_state->Copy(succ_block, pred_block, zone); } else { return succ_state->Merge(succ_block, pred_state, pred_block, zone); } } // Support for global analysis with HFlowEngine: Given state merged with all // the other incoming states, prepare it for use. static HCheckTable* Finish(HCheckTable* state, HBasicBlock* block, Zone* zone) { if (state == NULL) { block->MarkUnreachable(); } else if (block->IsUnreachable()) { state = NULL; } if (FLAG_trace_check_elimination) { PrintF("Processing B%d, checkmaps-table:\n", block->block_id()); Print(state); } return state; } private: // Copy state to successor block. HCheckTable* Copy(HBasicBlock* succ, HBasicBlock* from_block, Zone* zone) { HCheckTable* copy = new(zone) HCheckTable(phase_); for (int i = 0; i < size_; i++) { HCheckTableEntry* old_entry = &entries_[i]; ASSERT(old_entry->maps_->size() > 0); HCheckTableEntry* new_entry = ©->entries_[i]; new_entry->object_ = old_entry->object_; new_entry->maps_ = old_entry->maps_; new_entry->state_ = old_entry->state_; // Keep the check if the existing check's block dominates the successor. if (old_entry->check_ != NULL && old_entry->check_->block()->Dominates(succ)) { new_entry->check_ = old_entry->check_; } else { // Leave it NULL till we meet a new check instruction for this object // in the control flow. new_entry->check_ = NULL; } } copy->cursor_ = cursor_; copy->size_ = size_; // Create entries for succ block's phis. if (!succ->IsLoopHeader() && succ->phis()->length() > 0) { int pred_index = succ->PredecessorIndexOf(from_block); for (int phi_index = 0; phi_index < succ->phis()->length(); ++phi_index) { HPhi* phi = succ->phis()->at(phi_index); HValue* phi_operand = phi->OperandAt(pred_index); HCheckTableEntry* pred_entry = copy->Find(phi_operand); if (pred_entry != NULL) { // Create an entry for a phi in the table. copy->Insert(phi, NULL, pred_entry->maps_, pred_entry->state_); } } } // Branch-sensitive analysis for certain comparisons may add more facts // to the state for the successor on the true branch. bool learned = false; if (succ->predecessors()->length() == 1) { HControlInstruction* end = succ->predecessors()->at(0)->end(); bool is_true_branch = end->SuccessorAt(0) == succ; if (end->IsCompareMap()) { HCompareMap* cmp = HCompareMap::cast(end); HValue* object = cmp->value()->ActualValue(); HCheckTableEntry* entry = copy->Find(object); if (is_true_branch) { HCheckTableEntry::State state = cmp->map_is_stable() ? HCheckTableEntry::CHECKED_STABLE : HCheckTableEntry::CHECKED; // Learn on the true branch of if(CompareMap(x)). if (entry == NULL) { copy->Insert(object, cmp, cmp->map(), state); } else { entry->maps_ = new(zone) UniqueSet<Map>(cmp->map(), zone); entry->check_ = cmp; entry->state_ = state; } } else { // Learn on the false branch of if(CompareMap(x)). if (entry != NULL) { EnsureChecked(entry, object, cmp); UniqueSet<Map>* maps = entry->maps_->Copy(zone); maps->Remove(cmp->map()); entry->maps_ = maps; ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_); } } learned = true; } else if (is_true_branch && end->IsCompareObjectEqAndBranch()) { // Learn on the true branch of if(CmpObjectEq(x, y)). HCompareObjectEqAndBranch* cmp = HCompareObjectEqAndBranch::cast(end); HValue* left = cmp->left()->ActualValue(); HValue* right = cmp->right()->ActualValue(); HCheckTableEntry* le = copy->Find(left); HCheckTableEntry* re = copy->Find(right); if (le == NULL) { if (re != NULL) { copy->Insert(left, NULL, re->maps_, re->state_); } } else if (re == NULL) { copy->Insert(right, NULL, le->maps_, le->state_); } else { EnsureChecked(le, cmp->left(), cmp); EnsureChecked(re, cmp->right(), cmp); le->maps_ = re->maps_ = le->maps_->Intersect(re->maps_, zone); le->state_ = re->state_ = HCheckTableEntry::StateMerge( le->state_, re->state_); ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, le->state_); ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, re->state_); } learned = true; } else if (end->IsIsStringAndBranch()) { HIsStringAndBranch* cmp = HIsStringAndBranch::cast(end); HValue* object = cmp->value()->ActualValue(); HCheckTableEntry* entry = copy->Find(object); if (is_true_branch) { // Learn on the true branch of if(IsString(x)). if (entry == NULL) { copy->Insert(object, NULL, string_maps(), HCheckTableEntry::CHECKED); } else { EnsureChecked(entry, object, cmp); entry->maps_ = entry->maps_->Intersect(string_maps(), zone); ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_); } } else { // Learn on the false branch of if(IsString(x)). if (entry != NULL) { EnsureChecked(entry, object, cmp); entry->maps_ = entry->maps_->Subtract(string_maps(), zone); ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_); } } } // Learning on false branches requires storing negative facts. } if (FLAG_trace_check_elimination) { PrintF("B%d checkmaps-table %s from B%d:\n", succ->block_id(), learned ? "learned" : "copied", from_block->block_id()); Print(copy); } return copy; } // Merge this state with the other incoming state. HCheckTable* Merge(HBasicBlock* succ, HCheckTable* that, HBasicBlock* pred_block, Zone* zone) { if (that->size_ == 0) { // If the other state is empty, simply reset. size_ = 0; cursor_ = 0; } else { int pred_index = succ->PredecessorIndexOf(pred_block); bool compact = false; for (int i = 0; i < size_; i++) { HCheckTableEntry* this_entry = &entries_[i]; HCheckTableEntry* that_entry; if (this_entry->object_->IsPhi() && this_entry->object_->block() == succ) { HPhi* phi = HPhi::cast(this_entry->object_); HValue* phi_operand = phi->OperandAt(pred_index); that_entry = that->Find(phi_operand); } else { that_entry = that->Find(this_entry->object_); } if (that_entry == NULL || (that_entry->state_ == HCheckTableEntry::CHECKED && this_entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) || (this_entry->state_ == HCheckTableEntry::CHECKED && that_entry->state_ == HCheckTableEntry::UNCHECKED_STABLE)) { this_entry->object_ = NULL; compact = true; } else { this_entry->maps_ = this_entry->maps_->Union(that_entry->maps_, zone); this_entry->state_ = HCheckTableEntry::StateMerge( this_entry->state_, that_entry->state_); if (this_entry->check_ != that_entry->check_) { this_entry->check_ = NULL; } ASSERT(this_entry->maps_->size() > 0); } } if (compact) Compact(); } if (FLAG_trace_check_elimination) { PrintF("B%d checkmaps-table merged with B%d table:\n", succ->block_id(), pred_block->block_id()); Print(this); } return this; } void ReduceCheckMaps(HCheckMaps* instr) { HValue* object = instr->value()->ActualValue(); HCheckTableEntry* entry = Find(object); if (entry != NULL) { // entry found; HGraph* graph = instr->block()->graph(); if (entry->maps_->IsSubset(instr->maps())) { // The first check is more strict; the second is redundant. if (entry->check_ != NULL) { ASSERT_NE(HCheckTableEntry::UNCHECKED_STABLE, entry->state_); TRACE(("Replacing redundant CheckMaps #%d at B%d with #%d\n", instr->id(), instr->block()->block_id(), entry->check_->id())); instr->DeleteAndReplaceWith(entry->check_); INC_STAT(redundant_); } else if (entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) { ASSERT_EQ(NULL, entry->check_); TRACE(("Marking redundant CheckMaps #%d at B%d as stability check\n", instr->id(), instr->block()->block_id())); instr->set_maps(entry->maps_->Copy(graph->zone())); instr->MarkAsStabilityCheck(); entry->state_ = HCheckTableEntry::CHECKED_STABLE; } else if (!instr->IsStabilityCheck()) { TRACE(("Marking redundant CheckMaps #%d at B%d as dead\n", instr->id(), instr->block()->block_id())); // Mark check as dead but leave it in the graph as a checkpoint for // subsequent checks. instr->SetFlag(HValue::kIsDead); entry->check_ = instr; INC_STAT(removed_); } return; } MapSet intersection = instr->maps()->Intersect( entry->maps_, graph->zone()); if (intersection->size() == 0) { // Intersection is empty; probably megamorphic. INC_STAT(empty_); entry->object_ = NULL; Compact(); } else { // Update set of maps in the entry. entry->maps_ = intersection; // Update state of the entry. if (instr->maps_are_stable() || entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) { entry->state_ = HCheckTableEntry::CHECKED_STABLE; } if (intersection->size() != instr->maps()->size()) { // Narrow set of maps in the second check maps instruction. if (entry->check_ != NULL && entry->check_->block() == instr->block() && entry->check_->IsCheckMaps()) { // There is a check in the same block so replace it with a more // strict check and eliminate the second check entirely. HCheckMaps* check = HCheckMaps::cast(entry->check_); ASSERT(!check->IsStabilityCheck()); TRACE(("CheckMaps #%d at B%d narrowed\n", check->id(), check->block()->block_id())); // Update map set and ensure that the check is alive. check->set_maps(intersection); check->ClearFlag(HValue::kIsDead); TRACE(("Replacing redundant CheckMaps #%d at B%d with #%d\n", instr->id(), instr->block()->block_id(), entry->check_->id())); instr->DeleteAndReplaceWith(entry->check_); } else { TRACE(("CheckMaps #%d at B%d narrowed\n", instr->id(), instr->block()->block_id())); instr->set_maps(intersection); entry->check_ = instr->IsStabilityCheck() ? NULL : instr; } if (FLAG_trace_check_elimination) { Print(this); } INC_STAT(narrowed_); } } } else { // No entry; insert a new one. HCheckTableEntry::State state = instr->maps_are_stable() ? HCheckTableEntry::CHECKED_STABLE : HCheckTableEntry::CHECKED; HCheckMaps* check = instr->IsStabilityCheck() ? NULL : instr; Insert(object, check, instr->maps(), state); } } void ReduceCheckInstanceType(HCheckInstanceType* instr) { HValue* value = instr->value()->ActualValue(); HCheckTableEntry* entry = Find(value); if (entry == NULL) { if (instr->check() == HCheckInstanceType::IS_STRING) { Insert(value, NULL, string_maps(), HCheckTableEntry::CHECKED); } return; } UniqueSet<Map>* maps = new(zone()) UniqueSet<Map>( entry->maps_->size(), zone()); for (int i = 0; i < entry->maps_->size(); ++i) { InstanceType type; Unique<Map> map = entry->maps_->at(i); { // This is safe, because maps don't move and their instance type does // not change. AllowHandleDereference allow_deref; type = map.handle()->instance_type(); } if (instr->is_interval_check()) { InstanceType first_type, last_type; instr->GetCheckInterval(&first_type, &last_type); if (first_type <= type && type <= last_type) maps->Add(map, zone()); } else { uint8_t mask, tag; instr->GetCheckMaskAndTag(&mask, &tag); if ((type & mask) == tag) maps->Add(map, zone()); } } if (maps->size() == entry->maps_->size()) { TRACE(("Removing redundant CheckInstanceType #%d at B%d\n", instr->id(), instr->block()->block_id())); EnsureChecked(entry, value, instr); instr->DeleteAndReplaceWith(value); INC_STAT(removed_cit_); } else if (maps->size() != 0) { entry->maps_ = maps; if (entry->state_ == HCheckTableEntry::UNCHECKED_STABLE) { entry->state_ = HCheckTableEntry::CHECKED_STABLE; } } } void ReduceLoadNamedField(HLoadNamedField* instr) { // Reduce a load of the map field when it is known to be a constant. if (!instr->access().IsMap()) { // Check if we introduce field maps here. MapSet maps = instr->maps(); if (maps != NULL) { ASSERT_NE(0, maps->size()); Insert(instr, NULL, maps, HCheckTableEntry::UNCHECKED_STABLE); } return; } HValue* object = instr->object()->ActualValue(); HCheckTableEntry* entry = Find(object); if (entry == NULL || entry->maps_->size() != 1) return; // Not a constant. EnsureChecked(entry, object, instr); Unique<Map> map = entry->maps_->at(0); bool map_is_stable = (entry->state_ != HCheckTableEntry::CHECKED); HConstant* constant = HConstant::CreateAndInsertBefore( instr->block()->graph()->zone(), map, map_is_stable, instr); instr->DeleteAndReplaceWith(constant); INC_STAT(loads_); } void ReduceCheckHeapObject(HCheckHeapObject* instr) { HValue* value = instr->value()->ActualValue(); if (Find(value) != NULL) { // If the object has known maps, it's definitely a heap object. instr->DeleteAndReplaceWith(value); INC_STAT(removed_cho_); } } void ReduceStoreNamedField(HStoreNamedField* instr) { HValue* object = instr->object()->ActualValue(); if (instr->has_transition()) { // This store transitions the object to a new map. Kill(object); HConstant* c_transition = HConstant::cast(instr->transition()); HCheckTableEntry::State state = c_transition->HasStableMapValue() ? HCheckTableEntry::CHECKED_STABLE : HCheckTableEntry::CHECKED; Insert(object, NULL, c_transition->MapValue(), state); } else if (instr->access().IsMap()) { // This is a store directly to the map field of the object. Kill(object); if (!instr->value()->IsConstant()) return; HConstant* c_value = HConstant::cast(instr->value()); HCheckTableEntry::State state = c_value->HasStableMapValue() ? HCheckTableEntry::CHECKED_STABLE : HCheckTableEntry::CHECKED; Insert(object, NULL, c_value->MapValue(), state); } else { // If the instruction changes maps, it should be handled above. CHECK(!instr->CheckChangesFlag(kMaps)); } } void ReduceCompareMap(HCompareMap* instr) { HCheckTableEntry* entry = Find(instr->value()->ActualValue()); if (entry == NULL) return; EnsureChecked(entry, instr->value(), instr); int succ; if (entry->maps_->Contains(instr->map())) { if (entry->maps_->size() != 1) { TRACE(("CompareMap #%d for #%d at B%d can't be eliminated: " "ambiguous set of maps\n", instr->id(), instr->value()->id(), instr->block()->block_id())); return; } succ = 0; INC_STAT(compares_true_); } else { succ = 1; INC_STAT(compares_false_); } TRACE(("Marking redundant CompareMap #%d for #%d at B%d as %s\n", instr->id(), instr->value()->id(), instr->block()->block_id(), succ == 0 ? "true" : "false")); instr->set_known_successor_index(succ); int unreachable_succ = 1 - succ; instr->block()->MarkSuccEdgeUnreachable(unreachable_succ); } void ReduceCompareObjectEqAndBranch(HCompareObjectEqAndBranch* instr) { HValue* left = instr->left()->ActualValue(); HCheckTableEntry* le = Find(left); if (le == NULL) return; HValue* right = instr->right()->ActualValue(); HCheckTableEntry* re = Find(right); if (re == NULL) return; EnsureChecked(le, left, instr); EnsureChecked(re, right, instr); // TODO(bmeurer): Add a predicate here instead of computing the intersection MapSet intersection = le->maps_->Intersect(re->maps_, zone()); if (intersection->size() > 0) return; TRACE(("Marking redundant CompareObjectEqAndBranch #%d at B%d as false\n", instr->id(), instr->block()->block_id())); int succ = 1; instr->set_known_successor_index(succ); int unreachable_succ = 1 - succ; instr->block()->MarkSuccEdgeUnreachable(unreachable_succ); } void ReduceIsStringAndBranch(HIsStringAndBranch* instr) { HValue* value = instr->value()->ActualValue(); HCheckTableEntry* entry = Find(value); if (entry == NULL) return; EnsureChecked(entry, value, instr); int succ; if (entry->maps_->IsSubset(string_maps())) { TRACE(("Marking redundant IsStringAndBranch #%d at B%d as true\n", instr->id(), instr->block()->block_id())); succ = 0; } else { MapSet intersection = entry->maps_->Intersect(string_maps(), zone()); if (intersection->size() > 0) return; TRACE(("Marking redundant IsStringAndBranch #%d at B%d as false\n", instr->id(), instr->block()->block_id())); succ = 1; } instr->set_known_successor_index(succ); int unreachable_succ = 1 - succ; instr->block()->MarkSuccEdgeUnreachable(unreachable_succ); } void ReduceTransitionElementsKind(HTransitionElementsKind* instr) { HValue* object = instr->object()->ActualValue(); HCheckTableEntry* entry = Find(object); // Can only learn more about an object that already has a known set of maps. if (entry == NULL) return; EnsureChecked(entry, object, instr); if (entry->maps_->Contains(instr->original_map())) { // If the object has the original map, it will be transitioned. UniqueSet<Map>* maps = entry->maps_->Copy(zone()); maps->Remove(instr->original_map()); maps->Add(instr->transitioned_map(), zone()); entry->maps_ = maps; } else { // Object does not have the given map, thus the transition is redundant. instr->DeleteAndReplaceWith(object); INC_STAT(transitions_); } } void EnsureChecked(HCheckTableEntry* entry, HValue* value, HInstruction* instr) { if (entry->state_ != HCheckTableEntry::UNCHECKED_STABLE) return; HGraph* graph = instr->block()->graph(); HCheckMaps* check = HCheckMaps::CreateAndInsertBefore( graph->zone(), value, entry->maps_->Copy(graph->zone()), true, instr); check->MarkAsStabilityCheck(); entry->state_ = HCheckTableEntry::CHECKED_STABLE; entry->check_ = NULL; } // Kill everything in the table. void Kill() { size_ = 0; cursor_ = 0; } // Kill all unstable entries in the table. void KillUnstableEntries() { bool compact = false; for (int i = 0; i < size_; ++i) { HCheckTableEntry* entry = &entries_[i]; ASSERT_NOT_NULL(entry->object_); if (entry->state_ == HCheckTableEntry::CHECKED) { entry->object_ = NULL; compact = true; } else { // All checked stable entries become unchecked stable. entry->state_ = HCheckTableEntry::UNCHECKED_STABLE; entry->check_ = NULL; } } if (compact) Compact(); } // Kill everything in the table that may alias {object}. void Kill(HValue* object) { bool compact = false; for (int i = 0; i < size_; i++) { HCheckTableEntry* entry = &entries_[i]; ASSERT(entry->object_ != NULL); if (phase_->aliasing_->MayAlias(entry->object_, object)) { entry->object_ = NULL; compact = true; } } if (compact) Compact(); ASSERT(Find(object) == NULL); } void Compact() { // First, compact the array in place. int max = size_, dest = 0, old_cursor = cursor_; for (int i = 0; i < max; i++) { if (entries_[i].object_ != NULL) { if (dest != i) entries_[dest] = entries_[i]; dest++; } else { if (i < old_cursor) cursor_--; size_--; } } ASSERT(size_ == dest); ASSERT(cursor_ <= size_); // Preserve the age of the entries by moving the older entries to the end. if (cursor_ == size_) return; // Cursor already points at end. if (cursor_ != 0) { // | L = oldest | R = newest | | // ^ cursor ^ size ^ MAX HCheckTableEntry tmp_entries[kMaxTrackedObjects]; int L = cursor_; int R = size_ - cursor_; MemMove(&tmp_entries[0], &entries_[0], L * sizeof(HCheckTableEntry)); MemMove(&entries_[0], &entries_[L], R * sizeof(HCheckTableEntry)); MemMove(&entries_[R], &tmp_entries[0], L * sizeof(HCheckTableEntry)); } cursor_ = size_; // Move cursor to end. } static void Print(HCheckTable* table) { if (table == NULL) { PrintF(" unreachable\n"); return; } for (int i = 0; i < table->size_; i++) { HCheckTableEntry* entry = &table->entries_[i]; ASSERT(entry->object_ != NULL); PrintF(" checkmaps-table @%d: %s #%d ", i, entry->object_->IsPhi() ? "phi" : "object", entry->object_->id()); if (entry->check_ != NULL) { PrintF("check #%d ", entry->check_->id()); } MapSet list = entry->maps_; PrintF("%d %s maps { ", list->size(), HCheckTableEntry::State2String(entry->state_)); for (int j = 0; j < list->size(); j++) { if (j > 0) PrintF(", "); PrintF("%" V8PRIxPTR, list->at(j).Hashcode()); } PrintF(" }\n"); } } HCheckTableEntry* Find(HValue* object) { for (int i = size_ - 1; i >= 0; i--) { // Search from most-recently-inserted to least-recently-inserted. HCheckTableEntry* entry = &entries_[i]; ASSERT(entry->object_ != NULL); if (phase_->aliasing_->MustAlias(entry->object_, object)) return entry; } return NULL; } void Insert(HValue* object, HInstruction* check, Unique<Map> map, HCheckTableEntry::State state) { Insert(object, check, new(zone()) UniqueSet<Map>(map, zone()), state); } void Insert(HValue* object, HInstruction* check, MapSet maps, HCheckTableEntry::State state) { ASSERT(state != HCheckTableEntry::UNCHECKED_STABLE || check == NULL); HCheckTableEntry* entry = &entries_[cursor_++]; entry->object_ = object; entry->check_ = check; entry->maps_ = maps; entry->state_ = state; // If the table becomes full, wrap around and overwrite older entries. if (cursor_ == kMaxTrackedObjects) cursor_ = 0; if (size_ < kMaxTrackedObjects) size_++; } Zone* zone() const { return phase_->zone(); } MapSet string_maps() const { return phase_->string_maps(); } friend class HCheckMapsEffects; friend class HCheckEliminationPhase; HCheckEliminationPhase* phase_; HCheckTableEntry entries_[kMaxTrackedObjects]; int16_t cursor_; // Must be <= kMaxTrackedObjects int16_t size_; // Must be <= kMaxTrackedObjects STATIC_ASSERT(kMaxTrackedObjects < (1 << 15)); }; // Collects instructions that can cause effects that invalidate information // needed for check elimination. class HCheckMapsEffects : public ZoneObject { public: explicit HCheckMapsEffects(Zone* zone) : objects_(0, zone) { } // Effects are _not_ disabled. inline bool Disabled() const { return false; } // Process a possibly side-effecting instruction. void Process(HInstruction* instr, Zone* zone) { switch (instr->opcode()) { case HValue::kStoreNamedField: { HStoreNamedField* store = HStoreNamedField::cast(instr); if (store->access().IsMap() || store->has_transition()) { objects_.Add(store->object(), zone); } break; } case HValue::kTransitionElementsKind: { objects_.Add(HTransitionElementsKind::cast(instr)->object(), zone); break; } default: { flags_.Add(instr->ChangesFlags()); break; } } } // Apply these effects to the given check elimination table. void Apply(HCheckTable* table) { if (flags_.Contains(kOsrEntries)) { // Uncontrollable map modifications; kill everything. table->Kill(); return; } // Kill all unstable entries. if (flags_.Contains(kElementsKind) || flags_.Contains(kMaps)) { table->KillUnstableEntries(); } // Kill maps for each object contained in these effects. for (int i = 0; i < objects_.length(); ++i) { table->Kill(objects_[i]->ActualValue()); } } // Union these effects with the other effects. void Union(HCheckMapsEffects* that, Zone* zone) { flags_.Add(that->flags_); for (int i = 0; i < that->objects_.length(); ++i) { objects_.Add(that->objects_[i], zone); } } private: ZoneList<HValue*> objects_; GVNFlagSet flags_; }; // The main routine of the analysis phase. Use the HFlowEngine for either a // local or a global analysis. void HCheckEliminationPhase::Run() { HFlowEngine<HCheckTable, HCheckMapsEffects> engine(graph(), zone()); HCheckTable* table = new(zone()) HCheckTable(this); if (GLOBAL) { // Perform a global analysis. engine.AnalyzeDominatedBlocks(graph()->blocks()->at(0), table); } else { // Perform only local analysis. for (int i = 0; i < graph()->blocks()->length(); i++) { table->Kill(); engine.AnalyzeOneBlock(graph()->blocks()->at(i), table); } } if (FLAG_trace_check_elimination) PrintStats(); } // Are we eliminated yet? void HCheckEliminationPhase::PrintStats() { #if DEBUG #define PRINT_STAT(x) if (x##_ > 0) PrintF(" %-16s = %2d\n", #x, x##_) #else #define PRINT_STAT(x) #endif PRINT_STAT(redundant); PRINT_STAT(removed); PRINT_STAT(removed_cho); PRINT_STAT(removed_cit); PRINT_STAT(narrowed); PRINT_STAT(loads); PRINT_STAT(empty); PRINT_STAT(compares_true); PRINT_STAT(compares_false); PRINT_STAT(transitions); } } } // namespace v8::internal