// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "src/assembler.h" #include <cmath> #include "src/api.h" #include "src/base/lazy-instance.h" #include "src/builtins.h" #include "src/counters.h" #include "src/cpu.h" #include "src/cpu-profiler.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/execution.h" #include "src/ic.h" #include "src/isolate-inl.h" #include "src/jsregexp.h" #include "src/platform.h" #include "src/regexp-macro-assembler.h" #include "src/regexp-stack.h" #include "src/runtime.h" #include "src/serialize.h" #include "src/store-buffer-inl.h" #include "src/stub-cache.h" #include "src/token.h" #if V8_TARGET_ARCH_IA32 #include "src/ia32/assembler-ia32-inl.h" #elif V8_TARGET_ARCH_X64 #include "src/x64/assembler-x64-inl.h" #elif V8_TARGET_ARCH_ARM64 #include "src/arm64/assembler-arm64-inl.h" #elif V8_TARGET_ARCH_ARM #include "src/arm/assembler-arm-inl.h" #elif V8_TARGET_ARCH_MIPS #include "src/mips/assembler-mips-inl.h" #elif V8_TARGET_ARCH_X87 #include "src/x87/assembler-x87-inl.h" #else #error "Unknown architecture." #endif // Include native regexp-macro-assembler. #ifndef V8_INTERPRETED_REGEXP #if V8_TARGET_ARCH_IA32 #include "src/ia32/regexp-macro-assembler-ia32.h" #elif V8_TARGET_ARCH_X64 #include "src/x64/regexp-macro-assembler-x64.h" #elif V8_TARGET_ARCH_ARM64 #include "src/arm64/regexp-macro-assembler-arm64.h" #elif V8_TARGET_ARCH_ARM #include "src/arm/regexp-macro-assembler-arm.h" #elif V8_TARGET_ARCH_MIPS #include "src/mips/regexp-macro-assembler-mips.h" #elif V8_TARGET_ARCH_X87 #include "src/x87/regexp-macro-assembler-x87.h" #else // Unknown architecture. #error "Unknown architecture." #endif // Target architecture. #endif // V8_INTERPRETED_REGEXP namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Common double constants. struct DoubleConstant BASE_EMBEDDED { double min_int; double one_half; double minus_one_half; double minus_zero; double zero; double uint8_max_value; double negative_infinity; double canonical_non_hole_nan; double the_hole_nan; double uint32_bias; }; static DoubleConstant double_constants; const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; static bool math_exp_data_initialized = false; static Mutex* math_exp_data_mutex = NULL; static double* math_exp_constants_array = NULL; static double* math_exp_log_table_array = NULL; // ----------------------------------------------------------------------------- // Implementation of AssemblerBase AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size) : isolate_(isolate), jit_cookie_(0), enabled_cpu_features_(0), emit_debug_code_(FLAG_debug_code), predictable_code_size_(false), // We may use the assembler without an isolate. serializer_enabled_(isolate && isolate->serializer_enabled()) { if (FLAG_mask_constants_with_cookie && isolate != NULL) { jit_cookie_ = isolate->random_number_generator()->NextInt(); } if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (isolate->assembler_spare_buffer() != NULL) { buffer = isolate->assembler_spare_buffer(); isolate->set_assembler_spare_buffer(NULL); } } if (buffer == NULL) buffer = NewArray<byte>(buffer_size); own_buffer_ = true; } else { // Use externally provided buffer instead. ASSERT(buffer_size > 0); own_buffer_ = false; } buffer_ = static_cast<byte*>(buffer); buffer_size_ = buffer_size; pc_ = buffer_; } AssemblerBase::~AssemblerBase() { if (own_buffer_) { if (isolate() != NULL && isolate()->assembler_spare_buffer() == NULL && buffer_size_ == kMinimalBufferSize) { isolate()->set_assembler_spare_buffer(buffer_); } else { DeleteArray(buffer_); } } } // ----------------------------------------------------------------------------- // Implementation of PredictableCodeSizeScope PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size) : assembler_(assembler), expected_size_(expected_size), start_offset_(assembler->pc_offset()), old_value_(assembler->predictable_code_size()) { assembler_->set_predictable_code_size(true); } PredictableCodeSizeScope::~PredictableCodeSizeScope() { // TODO(svenpanne) Remove the 'if' when everything works. if (expected_size_ >= 0) { CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_); } assembler_->set_predictable_code_size(old_value_); } // ----------------------------------------------------------------------------- // Implementation of CpuFeatureScope #ifdef DEBUG CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) : assembler_(assembler) { ASSERT(CpuFeatures::IsSupported(f)); old_enabled_ = assembler_->enabled_cpu_features(); uint64_t mask = static_cast<uint64_t>(1) << f; // TODO(svenpanne) This special case below doesn't belong here! #if V8_TARGET_ARCH_ARM // ARMv7 is implied by VFP3. if (f == VFP3) { mask |= static_cast<uint64_t>(1) << ARMv7; } #endif assembler_->set_enabled_cpu_features(old_enabled_ | mask); } CpuFeatureScope::~CpuFeatureScope() { assembler_->set_enabled_cpu_features(old_enabled_); } #endif bool CpuFeatures::initialized_ = false; unsigned CpuFeatures::supported_ = 0; unsigned CpuFeatures::cache_line_size_ = 0; // ----------------------------------------------------------------------------- // Implementation of Label int Label::pos() const { if (pos_ < 0) return -pos_ - 1; if (pos_ > 0) return pos_ - 1; UNREACHABLE(); return 0; } // ----------------------------------------------------------------------------- // Implementation of RelocInfoWriter and RelocIterator // // Relocation information is written backwards in memory, from high addresses // towards low addresses, byte by byte. Therefore, in the encodings listed // below, the first byte listed it at the highest address, and successive // bytes in the record are at progressively lower addresses. // // Encoding // // The most common modes are given single-byte encodings. Also, it is // easy to identify the type of reloc info and skip unwanted modes in // an iteration. // // The encoding relies on the fact that there are fewer than 14 // different relocation modes using standard non-compact encoding. // // The first byte of a relocation record has a tag in its low 2 bits: // Here are the record schemes, depending on the low tag and optional higher // tags. // // Low tag: // 00: embedded_object: [6-bit pc delta] 00 // // 01: code_target: [6-bit pc delta] 01 // // 10: short_data_record: [6-bit pc delta] 10 followed by // [6-bit data delta] [2-bit data type tag] // // 11: long_record [2-bit high tag][4 bit middle_tag] 11 // followed by variable data depending on type. // // 2-bit data type tags, used in short_data_record and data_jump long_record: // code_target_with_id: 00 // position: 01 // statement_position: 10 // comment: 11 (not used in short_data_record) // // Long record format: // 4-bit middle_tag: // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2 // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM, // and is between 0000 and 1100) // The format is: // 00 [4 bit middle_tag] 11 followed by // 00 [6 bit pc delta] // // 1101: constant or veneer pool. Used only on ARM and ARM64 for now. // The format is: [2-bit sub-type] 1101 11 // signed int (size of the pool). // The 2-bit sub-types are: // 00: constant pool // 01: veneer pool // 1110: long_data_record // The format is: [2-bit data_type_tag] 1110 11 // signed intptr_t, lowest byte written first // (except data_type code_target_with_id, which // is followed by a signed int, not intptr_t.) // // 1111: long_pc_jump // The format is: // pc-jump: 00 1111 11, // 00 [6 bits pc delta] // or // pc-jump (variable length): // 01 1111 11, // [7 bits data] 0 // ... // [7 bits data] 1 // (Bits 6..31 of pc delta, with leading zeroes // dropped, and last non-zero chunk tagged with 1.) #ifdef DEBUG const int kMaxStandardNonCompactModes = 14; #endif const int kTagBits = 2; const int kTagMask = (1 << kTagBits) - 1; const int kExtraTagBits = 4; const int kLocatableTypeTagBits = 2; const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits; const int kEmbeddedObjectTag = 0; const int kCodeTargetTag = 1; const int kLocatableTag = 2; const int kDefaultTag = 3; const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1; const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; const int kVariableLengthPCJumpTopTag = 1; const int kChunkBits = 7; const int kChunkMask = (1 << kChunkBits) - 1; const int kLastChunkTagBits = 1; const int kLastChunkTagMask = 1; const int kLastChunkTag = 1; const int kDataJumpExtraTag = kPCJumpExtraTag - 1; const int kCodeWithIdTag = 0; const int kNonstatementPositionTag = 1; const int kStatementPositionTag = 2; const int kCommentTag = 3; const int kPoolExtraTag = kPCJumpExtraTag - 2; const int kConstPoolTag = 0; const int kVeneerPoolTag = 1; uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) { // Return if the pc_delta can fit in kSmallPCDeltaBits bits. // Otherwise write a variable length PC jump for the bits that do // not fit in the kSmallPCDeltaBits bits. if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag); uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; ASSERT(pc_jump > 0); // Write kChunkBits size chunks of the pc_jump. for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { byte b = pc_jump & kChunkMask; *--pos_ = b << kLastChunkTagBits; } // Tag the last chunk so it can be identified. *pos_ = *pos_ | kLastChunkTag; // Return the remaining kSmallPCDeltaBits of the pc_delta. return pc_delta & kSmallPCDeltaMask; } void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) { // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump. pc_delta = WriteVariableLengthPCJump(pc_delta); *--pos_ = pc_delta << kTagBits | tag; } void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) { *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag); } void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) { *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) | extra_tag << kTagBits | kDefaultTag); } void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) { // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. pc_delta = WriteVariableLengthPCJump(pc_delta); WriteExtraTag(extra_tag, 0); *--pos_ = pc_delta; } void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) { WriteExtraTag(kDataJumpExtraTag, top_tag); for (int i = 0; i < kIntSize; i++) { *--pos_ = static_cast<byte>(data_delta); // Signed right shift is arithmetic shift. Tested in test-utils.cc. data_delta = data_delta >> kBitsPerByte; } } void RelocInfoWriter::WriteExtraTaggedPoolData(int data, int pool_type) { WriteExtraTag(kPoolExtraTag, pool_type); for (int i = 0; i < kIntSize; i++) { *--pos_ = static_cast<byte>(data); // Signed right shift is arithmetic shift. Tested in test-utils.cc. data = data >> kBitsPerByte; } } void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) { WriteExtraTag(kDataJumpExtraTag, top_tag); for (int i = 0; i < kIntptrSize; i++) { *--pos_ = static_cast<byte>(data_delta); // Signed right shift is arithmetic shift. Tested in test-utils.cc. data_delta = data_delta >> kBitsPerByte; } } void RelocInfoWriter::Write(const RelocInfo* rinfo) { #ifdef DEBUG byte* begin_pos = pos_; #endif ASSERT(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES); ASSERT(rinfo->pc() - last_pc_ >= 0); ASSERT(RelocInfo::LAST_STANDARD_NONCOMPACT_ENUM - RelocInfo::LAST_COMPACT_ENUM <= kMaxStandardNonCompactModes); // Use unsigned delta-encoding for pc. uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); RelocInfo::Mode rmode = rinfo->rmode(); // The two most common modes are given small tags, and usually fit in a byte. if (rmode == RelocInfo::EMBEDDED_OBJECT) { WriteTaggedPC(pc_delta, kEmbeddedObjectTag); } else if (rmode == RelocInfo::CODE_TARGET) { WriteTaggedPC(pc_delta, kCodeTargetTag); ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize); } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { // Use signed delta-encoding for id. ASSERT(static_cast<int>(rinfo->data()) == rinfo->data()); int id_delta = static_cast<int>(rinfo->data()) - last_id_; // Check if delta is small enough to fit in a tagged byte. if (is_intn(id_delta, kSmallDataBits)) { WriteTaggedPC(pc_delta, kLocatableTag); WriteTaggedData(id_delta, kCodeWithIdTag); } else { // Otherwise, use costly encoding. WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); WriteExtraTaggedIntData(id_delta, kCodeWithIdTag); } last_id_ = static_cast<int>(rinfo->data()); } else if (RelocInfo::IsPosition(rmode)) { // Use signed delta-encoding for position. ASSERT(static_cast<int>(rinfo->data()) == rinfo->data()); int pos_delta = static_cast<int>(rinfo->data()) - last_position_; int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag : kStatementPositionTag; // Check if delta is small enough to fit in a tagged byte. if (is_intn(pos_delta, kSmallDataBits)) { WriteTaggedPC(pc_delta, kLocatableTag); WriteTaggedData(pos_delta, pos_type_tag); } else { // Otherwise, use costly encoding. WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); WriteExtraTaggedIntData(pos_delta, pos_type_tag); } last_position_ = static_cast<int>(rinfo->data()); } else if (RelocInfo::IsComment(rmode)) { // Comments are normally not generated, so we use the costly encoding. WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); WriteExtraTaggedData(rinfo->data(), kCommentTag); ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize); } else if (RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)) { WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); WriteExtraTaggedPoolData(static_cast<int>(rinfo->data()), RelocInfo::IsConstPool(rmode) ? kConstPoolTag : kVeneerPoolTag); } else { ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM); int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM; // For all other modes we simply use the mode as the extra tag. // None of these modes need a data component. ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag); WriteExtraTaggedPC(pc_delta, saved_mode); } last_pc_ = rinfo->pc(); #ifdef DEBUG ASSERT(begin_pos - pos_ <= kMaxSize); #endif } inline int RelocIterator::AdvanceGetTag() { return *--pos_ & kTagMask; } inline int RelocIterator::GetExtraTag() { return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1); } inline int RelocIterator::GetTopTag() { return *pos_ >> (kTagBits + kExtraTagBits); } inline void RelocIterator::ReadTaggedPC() { rinfo_.pc_ += *pos_ >> kTagBits; } inline void RelocIterator::AdvanceReadPC() { rinfo_.pc_ += *--pos_; } void RelocIterator::AdvanceReadId() { int x = 0; for (int i = 0; i < kIntSize; i++) { x |= static_cast<int>(*--pos_) << i * kBitsPerByte; } last_id_ += x; rinfo_.data_ = last_id_; } void RelocIterator::AdvanceReadPoolData() { int x = 0; for (int i = 0; i < kIntSize; i++) { x |= static_cast<int>(*--pos_) << i * kBitsPerByte; } rinfo_.data_ = x; } void RelocIterator::AdvanceReadPosition() { int x = 0; for (int i = 0; i < kIntSize; i++) { x |= static_cast<int>(*--pos_) << i * kBitsPerByte; } last_position_ += x; rinfo_.data_ = last_position_; } void RelocIterator::AdvanceReadData() { intptr_t x = 0; for (int i = 0; i < kIntptrSize; i++) { x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; } rinfo_.data_ = x; } void RelocIterator::AdvanceReadVariableLengthPCJump() { // Read the 32-kSmallPCDeltaBits most significant bits of the // pc jump in kChunkBits bit chunks and shift them into place. // Stop when the last chunk is encountered. uint32_t pc_jump = 0; for (int i = 0; i < kIntSize; i++) { byte pc_jump_part = *--pos_; pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; if ((pc_jump_part & kLastChunkTagMask) == 1) break; } // The least significant kSmallPCDeltaBits bits will be added // later. rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; } inline int RelocIterator::GetLocatableTypeTag() { return *pos_ & ((1 << kLocatableTypeTagBits) - 1); } inline void RelocIterator::ReadTaggedId() { int8_t signed_b = *pos_; // Signed right shift is arithmetic shift. Tested in test-utils.cc. last_id_ += signed_b >> kLocatableTypeTagBits; rinfo_.data_ = last_id_; } inline void RelocIterator::ReadTaggedPosition() { int8_t signed_b = *pos_; // Signed right shift is arithmetic shift. Tested in test-utils.cc. last_position_ += signed_b >> kLocatableTypeTagBits; rinfo_.data_ = last_position_; } static inline RelocInfo::Mode GetPositionModeFromTag(int tag) { ASSERT(tag == kNonstatementPositionTag || tag == kStatementPositionTag); return (tag == kNonstatementPositionTag) ? RelocInfo::POSITION : RelocInfo::STATEMENT_POSITION; } void RelocIterator::next() { ASSERT(!done()); // Basically, do the opposite of RelocInfoWriter::Write. // Reading of data is as far as possible avoided for unwanted modes, // but we must always update the pc. // // We exit this loop by returning when we find a mode we want. while (pos_ > end_) { int tag = AdvanceGetTag(); if (tag == kEmbeddedObjectTag) { ReadTaggedPC(); if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; } else if (tag == kCodeTargetTag) { ReadTaggedPC(); if (SetMode(RelocInfo::CODE_TARGET)) return; } else if (tag == kLocatableTag) { ReadTaggedPC(); Advance(); int locatable_tag = GetLocatableTypeTag(); if (locatable_tag == kCodeWithIdTag) { if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { ReadTaggedId(); return; } } else { // Compact encoding is never used for comments, // so it must be a position. ASSERT(locatable_tag == kNonstatementPositionTag || locatable_tag == kStatementPositionTag); if (mode_mask_ & RelocInfo::kPositionMask) { ReadTaggedPosition(); if (SetMode(GetPositionModeFromTag(locatable_tag))) return; } } } else { ASSERT(tag == kDefaultTag); int extra_tag = GetExtraTag(); if (extra_tag == kPCJumpExtraTag) { if (GetTopTag() == kVariableLengthPCJumpTopTag) { AdvanceReadVariableLengthPCJump(); } else { AdvanceReadPC(); } } else if (extra_tag == kDataJumpExtraTag) { int locatable_tag = GetTopTag(); if (locatable_tag == kCodeWithIdTag) { if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { AdvanceReadId(); return; } Advance(kIntSize); } else if (locatable_tag != kCommentTag) { ASSERT(locatable_tag == kNonstatementPositionTag || locatable_tag == kStatementPositionTag); if (mode_mask_ & RelocInfo::kPositionMask) { AdvanceReadPosition(); if (SetMode(GetPositionModeFromTag(locatable_tag))) return; } else { Advance(kIntSize); } } else { ASSERT(locatable_tag == kCommentTag); if (SetMode(RelocInfo::COMMENT)) { AdvanceReadData(); return; } Advance(kIntptrSize); } } else if (extra_tag == kPoolExtraTag) { int pool_type = GetTopTag(); ASSERT(pool_type == kConstPoolTag || pool_type == kVeneerPoolTag); RelocInfo::Mode rmode = (pool_type == kConstPoolTag) ? RelocInfo::CONST_POOL : RelocInfo::VENEER_POOL; if (SetMode(rmode)) { AdvanceReadPoolData(); return; } Advance(kIntSize); } else { AdvanceReadPC(); int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM; if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return; } } } if (code_age_sequence_ != NULL) { byte* old_code_age_sequence = code_age_sequence_; code_age_sequence_ = NULL; if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) { rinfo_.data_ = 0; rinfo_.pc_ = old_code_age_sequence; return; } } done_ = true; } RelocIterator::RelocIterator(Code* code, int mode_mask) { rinfo_.host_ = code; rinfo_.pc_ = code->instruction_start(); rinfo_.data_ = 0; // Relocation info is read backwards. pos_ = code->relocation_start() + code->relocation_size(); end_ = code->relocation_start(); done_ = false; mode_mask_ = mode_mask; last_id_ = 0; last_position_ = 0; byte* sequence = code->FindCodeAgeSequence(); // We get the isolate from the map, because at serialization time // the code pointer has been cloned and isn't really in heap space. Isolate* isolate = code->map()->GetIsolate(); if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) { code_age_sequence_ = sequence; } else { code_age_sequence_ = NULL; } if (mode_mask_ == 0) pos_ = end_; next(); } RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { rinfo_.pc_ = desc.buffer; rinfo_.data_ = 0; // Relocation info is read backwards. pos_ = desc.buffer + desc.buffer_size; end_ = pos_ - desc.reloc_size; done_ = false; mode_mask_ = mode_mask; last_id_ = 0; last_position_ = 0; code_age_sequence_ = NULL; if (mode_mask_ == 0) pos_ = end_; next(); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo #ifdef DEBUG bool RelocInfo::RequiresRelocation(const CodeDesc& desc) { // Ensure there are no code targets or embedded objects present in the // deoptimization entries, they would require relocation after code // generation. int mode_mask = RelocInfo::kCodeTargetMask | RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL) | RelocInfo::kApplyMask; RelocIterator it(desc, mode_mask); return !it.done(); } #endif #ifdef ENABLE_DISASSEMBLER const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { switch (rmode) { case RelocInfo::NONE32: return "no reloc 32"; case RelocInfo::NONE64: return "no reloc 64"; case RelocInfo::EMBEDDED_OBJECT: return "embedded object"; case RelocInfo::CONSTRUCT_CALL: return "code target (js construct call)"; case RelocInfo::DEBUG_BREAK: return "debug break"; case RelocInfo::CODE_TARGET: return "code target"; case RelocInfo::CODE_TARGET_WITH_ID: return "code target with id"; case RelocInfo::CELL: return "property cell"; case RelocInfo::RUNTIME_ENTRY: return "runtime entry"; case RelocInfo::JS_RETURN: return "js return"; case RelocInfo::COMMENT: return "comment"; case RelocInfo::POSITION: return "position"; case RelocInfo::STATEMENT_POSITION: return "statement position"; case RelocInfo::EXTERNAL_REFERENCE: return "external reference"; case RelocInfo::INTERNAL_REFERENCE: return "internal reference"; case RelocInfo::CONST_POOL: return "constant pool"; case RelocInfo::VENEER_POOL: return "veneer pool"; case RelocInfo::DEBUG_BREAK_SLOT: return "debug break slot"; case RelocInfo::CODE_AGE_SEQUENCE: return "code_age_sequence"; case RelocInfo::NUMBER_OF_MODES: UNREACHABLE(); return "number_of_modes"; } return "unknown relocation type"; } void RelocInfo::Print(Isolate* isolate, FILE* out) { PrintF(out, "%p %s", pc_, RelocModeName(rmode_)); if (IsComment(rmode_)) { PrintF(out, " (%s)", reinterpret_cast<char*>(data_)); } else if (rmode_ == EMBEDDED_OBJECT) { PrintF(out, " ("); target_object()->ShortPrint(out); PrintF(out, ")"); } else if (rmode_ == EXTERNAL_REFERENCE) { ExternalReferenceEncoder ref_encoder(isolate); PrintF(out, " (%s) (%p)", ref_encoder.NameOfAddress(target_reference()), target_reference()); } else if (IsCodeTarget(rmode_)) { Code* code = Code::GetCodeFromTargetAddress(target_address()); PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()), target_address()); if (rmode_ == CODE_TARGET_WITH_ID) { PrintF(out, " (id=%d)", static_cast<int>(data_)); } } else if (IsPosition(rmode_)) { PrintF(out, " (%" V8_PTR_PREFIX "d)", data()); } else if (IsRuntimeEntry(rmode_) && isolate->deoptimizer_data() != NULL) { // Depotimization bailouts are stored as runtime entries. int id = Deoptimizer::GetDeoptimizationId( isolate, target_address(), Deoptimizer::EAGER); if (id != Deoptimizer::kNotDeoptimizationEntry) { PrintF(out, " (deoptimization bailout %d)", id); } } PrintF(out, "\n"); } #endif // ENABLE_DISASSEMBLER #ifdef VERIFY_HEAP void RelocInfo::Verify(Isolate* isolate) { switch (rmode_) { case EMBEDDED_OBJECT: Object::VerifyPointer(target_object()); break; case CELL: Object::VerifyPointer(target_cell()); break; case DEBUG_BREAK: case CONSTRUCT_CALL: case CODE_TARGET_WITH_ID: case CODE_TARGET: { // convert inline target address to code object Address addr = target_address(); CHECK(addr != NULL); // Check that we can find the right code object. Code* code = Code::GetCodeFromTargetAddress(addr); Object* found = isolate->FindCodeObject(addr); CHECK(found->IsCode()); CHECK(code->address() == HeapObject::cast(found)->address()); break; } case RUNTIME_ENTRY: case JS_RETURN: case COMMENT: case POSITION: case STATEMENT_POSITION: case EXTERNAL_REFERENCE: case INTERNAL_REFERENCE: case CONST_POOL: case VENEER_POOL: case DEBUG_BREAK_SLOT: case NONE32: case NONE64: break; case NUMBER_OF_MODES: UNREACHABLE(); break; case CODE_AGE_SEQUENCE: ASSERT(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode()); break; } } #endif // VERIFY_HEAP // ----------------------------------------------------------------------------- // Implementation of ExternalReference void ExternalReference::SetUp() { double_constants.min_int = kMinInt; double_constants.one_half = 0.5; double_constants.minus_one_half = -0.5; double_constants.minus_zero = -0.0; double_constants.uint8_max_value = 255; double_constants.zero = 0.0; double_constants.canonical_non_hole_nan = OS::nan_value(); double_constants.the_hole_nan = BitCast<double>(kHoleNanInt64); double_constants.negative_infinity = -V8_INFINITY; double_constants.uint32_bias = static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1; math_exp_data_mutex = new Mutex(); } void ExternalReference::InitializeMathExpData() { // Early return? if (math_exp_data_initialized) return; LockGuard<Mutex> lock_guard(math_exp_data_mutex); if (!math_exp_data_initialized) { // If this is changed, generated code must be adapted too. const int kTableSizeBits = 11; const int kTableSize = 1 << kTableSizeBits; const double kTableSizeDouble = static_cast<double>(kTableSize); math_exp_constants_array = new double[9]; // Input values smaller than this always return 0. math_exp_constants_array[0] = -708.39641853226408; // Input values larger than this always return +Infinity. math_exp_constants_array[1] = 709.78271289338397; math_exp_constants_array[2] = V8_INFINITY; // The rest is black magic. Do not attempt to understand it. It is // loosely based on the "expd" function published at: // http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html const double constant3 = (1 << kTableSizeBits) / std::log(2.0); math_exp_constants_array[3] = constant3; math_exp_constants_array[4] = static_cast<double>(static_cast<int64_t>(3) << 51); math_exp_constants_array[5] = 1 / constant3; math_exp_constants_array[6] = 3.0000000027955394; math_exp_constants_array[7] = 0.16666666685227835; math_exp_constants_array[8] = 1; math_exp_log_table_array = new double[kTableSize]; for (int i = 0; i < kTableSize; i++) { double value = std::pow(2, i / kTableSizeDouble); uint64_t bits = BitCast<uint64_t, double>(value); bits &= (static_cast<uint64_t>(1) << 52) - 1; double mantissa = BitCast<double, uint64_t>(bits); math_exp_log_table_array[i] = mantissa; } math_exp_data_initialized = true; } } void ExternalReference::TearDownMathExpData() { delete[] math_exp_constants_array; delete[] math_exp_log_table_array; delete math_exp_data_mutex; } ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate) : address_(Redirect(isolate, Builtins::c_function_address(id))) {} ExternalReference::ExternalReference( ApiFunction* fun, Type type = ExternalReference::BUILTIN_CALL, Isolate* isolate = NULL) : address_(Redirect(isolate, fun->address(), type)) {} ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate) : address_(isolate->builtins()->builtin_address(name)) {} ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate) : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {} ExternalReference::ExternalReference(const Runtime::Function* f, Isolate* isolate) : address_(Redirect(isolate, f->entry)) {} ExternalReference ExternalReference::isolate_address(Isolate* isolate) { return ExternalReference(isolate); } ExternalReference::ExternalReference(const IC_Utility& ic_utility, Isolate* isolate) : address_(Redirect(isolate, ic_utility.address())) {} ExternalReference::ExternalReference(StatsCounter* counter) : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate) : address_(isolate->get_address_from_id(id)) {} ExternalReference::ExternalReference(const SCTableReference& table_ref) : address_(table_ref.address()) {} ExternalReference ExternalReference:: incremental_marking_record_write_function(Isolate* isolate) { return ExternalReference(Redirect( isolate, FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode))); } ExternalReference ExternalReference:: store_buffer_overflow_function(Isolate* isolate) { return ExternalReference(Redirect( isolate, FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow))); } ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) { return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache))); } ExternalReference ExternalReference::delete_handle_scope_extensions( Isolate* isolate) { return ExternalReference(Redirect( isolate, FUNCTION_ADDR(HandleScope::DeleteExtensions))); } ExternalReference ExternalReference::get_date_field_function( Isolate* isolate) { return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField))); } ExternalReference ExternalReference::get_make_code_young_function( Isolate* isolate) { return ExternalReference(Redirect( isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung))); } ExternalReference ExternalReference::get_mark_code_as_executed_function( Isolate* isolate) { return ExternalReference(Redirect( isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted))); } ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) { return ExternalReference(isolate->date_cache()->stamp_address()); } ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) { return ExternalReference(isolate->stress_deopt_count_address()); } ExternalReference ExternalReference::new_deoptimizer_function( Isolate* isolate) { return ExternalReference( Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); } ExternalReference ExternalReference::compute_output_frames_function( Isolate* isolate) { return ExternalReference( Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); } ExternalReference ExternalReference::log_enter_external_function( Isolate* isolate) { return ExternalReference( Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal))); } ExternalReference ExternalReference::log_leave_external_function( Isolate* isolate) { return ExternalReference( Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal))); } ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) { return ExternalReference(isolate->keyed_lookup_cache()->keys_address()); } ExternalReference ExternalReference::keyed_lookup_cache_field_offsets( Isolate* isolate) { return ExternalReference( isolate->keyed_lookup_cache()->field_offsets_address()); } ExternalReference ExternalReference::roots_array_start(Isolate* isolate) { return ExternalReference(isolate->heap()->roots_array_start()); } ExternalReference ExternalReference::allocation_sites_list_address( Isolate* isolate) { return ExternalReference(isolate->heap()->allocation_sites_list_address()); } ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { return ExternalReference(isolate->stack_guard()->address_of_jslimit()); } ExternalReference ExternalReference::address_of_real_stack_limit( Isolate* isolate) { return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); } ExternalReference ExternalReference::address_of_regexp_stack_limit( Isolate* isolate) { return ExternalReference(isolate->regexp_stack()->limit_address()); } ExternalReference ExternalReference::new_space_start(Isolate* isolate) { return ExternalReference(isolate->heap()->NewSpaceStart()); } ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) { return ExternalReference(isolate->heap()->store_buffer()->TopAddress()); } ExternalReference ExternalReference::new_space_mask(Isolate* isolate) { return ExternalReference(reinterpret_cast<Address>( isolate->heap()->NewSpaceMask())); } ExternalReference ExternalReference::new_space_allocation_top_address( Isolate* isolate) { return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); } ExternalReference ExternalReference::heap_always_allocate_scope_depth( Isolate* isolate) { Heap* heap = isolate->heap(); return ExternalReference(heap->always_allocate_scope_depth_address()); } ExternalReference ExternalReference::new_space_allocation_limit_address( Isolate* isolate) { return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); } ExternalReference ExternalReference::old_pointer_space_allocation_top_address( Isolate* isolate) { return ExternalReference( isolate->heap()->OldPointerSpaceAllocationTopAddress()); } ExternalReference ExternalReference::old_pointer_space_allocation_limit_address( Isolate* isolate) { return ExternalReference( isolate->heap()->OldPointerSpaceAllocationLimitAddress()); } ExternalReference ExternalReference::old_data_space_allocation_top_address( Isolate* isolate) { return ExternalReference( isolate->heap()->OldDataSpaceAllocationTopAddress()); } ExternalReference ExternalReference::old_data_space_allocation_limit_address( Isolate* isolate) { return ExternalReference( isolate->heap()->OldDataSpaceAllocationLimitAddress()); } ExternalReference ExternalReference::handle_scope_level_address( Isolate* isolate) { return ExternalReference(HandleScope::current_level_address(isolate)); } ExternalReference ExternalReference::handle_scope_next_address( Isolate* isolate) { return ExternalReference(HandleScope::current_next_address(isolate)); } ExternalReference ExternalReference::handle_scope_limit_address( Isolate* isolate) { return ExternalReference(HandleScope::current_limit_address(isolate)); } ExternalReference ExternalReference::scheduled_exception_address( Isolate* isolate) { return ExternalReference(isolate->scheduled_exception_address()); } ExternalReference ExternalReference::address_of_pending_message_obj( Isolate* isolate) { return ExternalReference(isolate->pending_message_obj_address()); } ExternalReference ExternalReference::address_of_has_pending_message( Isolate* isolate) { return ExternalReference(isolate->has_pending_message_address()); } ExternalReference ExternalReference::address_of_pending_message_script( Isolate* isolate) { return ExternalReference(isolate->pending_message_script_address()); } ExternalReference ExternalReference::address_of_min_int() { return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int)); } ExternalReference ExternalReference::address_of_one_half() { return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half)); } ExternalReference ExternalReference::address_of_minus_one_half() { return ExternalReference( reinterpret_cast<void*>(&double_constants.minus_one_half)); } ExternalReference ExternalReference::address_of_minus_zero() { return ExternalReference( reinterpret_cast<void*>(&double_constants.minus_zero)); } ExternalReference ExternalReference::address_of_zero() { return ExternalReference(reinterpret_cast<void*>(&double_constants.zero)); } ExternalReference ExternalReference::address_of_uint8_max_value() { return ExternalReference( reinterpret_cast<void*>(&double_constants.uint8_max_value)); } ExternalReference ExternalReference::address_of_negative_infinity() { return ExternalReference( reinterpret_cast<void*>(&double_constants.negative_infinity)); } ExternalReference ExternalReference::address_of_canonical_non_hole_nan() { return ExternalReference( reinterpret_cast<void*>(&double_constants.canonical_non_hole_nan)); } ExternalReference ExternalReference::address_of_the_hole_nan() { return ExternalReference( reinterpret_cast<void*>(&double_constants.the_hole_nan)); } ExternalReference ExternalReference::address_of_uint32_bias() { return ExternalReference( reinterpret_cast<void*>(&double_constants.uint32_bias)); } ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) { return ExternalReference(isolate->cpu_profiler()->is_profiling_address()); } ExternalReference ExternalReference::invoke_function_callback( Isolate* isolate) { Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; ApiFunction thunk_fun(thunk_address); return ExternalReference(&thunk_fun, thunk_type, isolate); } ExternalReference ExternalReference::invoke_accessor_getter_callback( Isolate* isolate) { Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); ExternalReference::Type thunk_type = ExternalReference::PROFILING_GETTER_CALL; ApiFunction thunk_fun(thunk_address); return ExternalReference(&thunk_fun, thunk_type, isolate); } #ifndef V8_INTERPRETED_REGEXP ExternalReference ExternalReference::re_check_stack_guard_state( Isolate* isolate) { Address function; #if V8_TARGET_ARCH_X64 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); #elif V8_TARGET_ARCH_IA32 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); #elif V8_TARGET_ARCH_ARM64 function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState); #elif V8_TARGET_ARCH_ARM function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); #elif V8_TARGET_ARCH_MIPS function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); #elif V8_TARGET_ARCH_X87 function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState); #else UNREACHABLE(); #endif return ExternalReference(Redirect(isolate, function)); } ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { return ExternalReference( Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); } ExternalReference ExternalReference::re_case_insensitive_compare_uc16( Isolate* isolate) { return ExternalReference(Redirect( isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); } ExternalReference ExternalReference::re_word_character_map() { return ExternalReference( NativeRegExpMacroAssembler::word_character_map_address()); } ExternalReference ExternalReference::address_of_static_offsets_vector( Isolate* isolate) { return ExternalReference( reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector())); } ExternalReference ExternalReference::address_of_regexp_stack_memory_address( Isolate* isolate) { return ExternalReference( isolate->regexp_stack()->memory_address()); } ExternalReference ExternalReference::address_of_regexp_stack_memory_size( Isolate* isolate) { return ExternalReference(isolate->regexp_stack()->memory_size_address()); } #endif // V8_INTERPRETED_REGEXP ExternalReference ExternalReference::math_log_double_function( Isolate* isolate) { typedef double (*d2d)(double x); return ExternalReference(Redirect(isolate, FUNCTION_ADDR(static_cast<d2d>(std::log)), BUILTIN_FP_CALL)); } ExternalReference ExternalReference::math_exp_constants(int constant_index) { ASSERT(math_exp_data_initialized); return ExternalReference( reinterpret_cast<void*>(math_exp_constants_array + constant_index)); } ExternalReference ExternalReference::math_exp_log_table() { ASSERT(math_exp_data_initialized); return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array)); } ExternalReference ExternalReference::page_flags(Page* page) { return ExternalReference(reinterpret_cast<Address>(page) + MemoryChunk::kFlagsOffset); } ExternalReference ExternalReference::ForDeoptEntry(Address entry) { return ExternalReference(entry); } ExternalReference ExternalReference::cpu_features() { ASSERT(CpuFeatures::initialized_); return ExternalReference(&CpuFeatures::supported_); } ExternalReference ExternalReference::debug_after_break_target_address( Isolate* isolate) { return ExternalReference(isolate->debug()->after_break_target_address()); } ExternalReference ExternalReference::debug_restarter_frame_function_pointer_address( Isolate* isolate) { return ExternalReference( isolate->debug()->restarter_frame_function_pointer_address()); } double power_helper(double x, double y) { int y_int = static_cast<int>(y); if (y == y_int) { return power_double_int(x, y_int); // Returns 1 if exponent is 0. } if (y == 0.5) { return (std::isinf(x)) ? V8_INFINITY : fast_sqrt(x + 0.0); // Convert -0 to +0. } if (y == -0.5) { return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0. } return power_double_double(x, y); } // Helper function to compute x^y, where y is known to be an // integer. Uses binary decomposition to limit the number of // multiplications; see the discussion in "Hacker's Delight" by Henry // S. Warren, Jr., figure 11-6, page 213. double power_double_int(double x, int y) { double m = (y < 0) ? 1 / x : x; unsigned n = (y < 0) ? -y : y; double p = 1; while (n != 0) { if ((n & 1) != 0) p *= m; m *= m; if ((n & 2) != 0) p *= m; m *= m; n >>= 2; } return p; } double power_double_double(double x, double y) { #if defined(__MINGW64_VERSION_MAJOR) && \ (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) // MinGW64 has a custom implementation for pow. This handles certain // special cases that are different. if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { double f; if (std::modf(y, &f) != 0.0) { return ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0; } } if (x == 2.0) { int y_int = static_cast<int>(y); if (y == y_int) { return std::ldexp(1.0, y_int); } } #endif // The checks for special cases can be dropped in ia32 because it has already // been done in generated code before bailing out here. if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { return OS::nan_value(); } return std::pow(x, y); } ExternalReference ExternalReference::power_double_double_function( Isolate* isolate) { return ExternalReference(Redirect(isolate, FUNCTION_ADDR(power_double_double), BUILTIN_FP_FP_CALL)); } ExternalReference ExternalReference::power_double_int_function( Isolate* isolate) { return ExternalReference(Redirect(isolate, FUNCTION_ADDR(power_double_int), BUILTIN_FP_INT_CALL)); } bool EvalComparison(Token::Value op, double op1, double op2) { ASSERT(Token::IsCompareOp(op)); switch (op) { case Token::EQ: case Token::EQ_STRICT: return (op1 == op2); case Token::NE: return (op1 != op2); case Token::LT: return (op1 < op2); case Token::GT: return (op1 > op2); case Token::LTE: return (op1 <= op2); case Token::GTE: return (op1 >= op2); default: UNREACHABLE(); return false; } } ExternalReference ExternalReference::mod_two_doubles_operation( Isolate* isolate) { return ExternalReference(Redirect(isolate, FUNCTION_ADDR(modulo), BUILTIN_FP_FP_CALL)); } ExternalReference ExternalReference::debug_break(Isolate* isolate) { return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break))); } ExternalReference ExternalReference::debug_step_in_fp_address( Isolate* isolate) { return ExternalReference(isolate->debug()->step_in_fp_addr()); } void PositionsRecorder::RecordPosition(int pos) { ASSERT(pos != RelocInfo::kNoPosition); ASSERT(pos >= 0); state_.current_position = pos; #ifdef ENABLE_GDB_JIT_INTERFACE if (gdbjit_lineinfo_ != NULL) { gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false); } #endif LOG_CODE_EVENT(assembler_->isolate(), CodeLinePosInfoAddPositionEvent(jit_handler_data_, assembler_->pc_offset(), pos)); } void PositionsRecorder::RecordStatementPosition(int pos) { ASSERT(pos != RelocInfo::kNoPosition); ASSERT(pos >= 0); state_.current_statement_position = pos; #ifdef ENABLE_GDB_JIT_INTERFACE if (gdbjit_lineinfo_ != NULL) { gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true); } #endif LOG_CODE_EVENT(assembler_->isolate(), CodeLinePosInfoAddStatementPositionEvent( jit_handler_data_, assembler_->pc_offset(), pos)); } bool PositionsRecorder::WriteRecordedPositions() { bool written = false; // Write the statement position if it is different from what was written last // time. if (state_.current_statement_position != state_.written_statement_position) { EnsureSpace ensure_space(assembler_); assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION, state_.current_statement_position); state_.written_statement_position = state_.current_statement_position; written = true; } // Write the position if it is different from what was written last time and // also different from the written statement position. if (state_.current_position != state_.written_position && state_.current_position != state_.written_statement_position) { EnsureSpace ensure_space(assembler_); assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position); state_.written_position = state_.current_position; written = true; } // Return whether something was written. return written; } MultiplierAndShift::MultiplierAndShift(int32_t d) { ASSERT(d <= -2 || 2 <= d); const uint32_t two31 = 0x80000000; uint32_t ad = Abs(d); uint32_t t = two31 + (uint32_t(d) >> 31); uint32_t anc = t - 1 - t % ad; // Absolute value of nc. int32_t p = 31; // Init. p. uint32_t q1 = two31 / anc; // Init. q1 = 2**p/|nc|. uint32_t r1 = two31 - q1 * anc; // Init. r1 = rem(2**p, |nc|). uint32_t q2 = two31 / ad; // Init. q2 = 2**p/|d|. uint32_t r2 = two31 - q2 * ad; // Init. r2 = rem(2**p, |d|). uint32_t delta; do { p++; q1 *= 2; // Update q1 = 2**p/|nc|. r1 *= 2; // Update r1 = rem(2**p, |nc|). if (r1 >= anc) { // Must be an unsigned comparison here. q1++; r1 = r1 - anc; } q2 *= 2; // Update q2 = 2**p/|d|. r2 *= 2; // Update r2 = rem(2**p, |d|). if (r2 >= ad) { // Must be an unsigned comparison here. q2++; r2 = r2 - ad; } delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); int32_t mul = static_cast<int32_t>(q2 + 1); multiplier_ = (d < 0) ? -mul : mul; shift_ = p - 32; } } } // namespace v8::internal