// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_UTIL_H_ #define V8_UTIL_H_ #include "v8.h" #include <map> #include <vector> /** * Support for Persistent containers. * * C++11 embedders can use STL containers with UniquePersistent values, * but pre-C++11 does not support the required move semantic and hence * may want these container classes. */ namespace v8 { typedef uintptr_t PersistentContainerValue; static const uintptr_t kPersistentContainerNotFound = 0; enum PersistentContainerCallbackType { kNotWeak, kWeak }; /** * A default trait implemenation for PersistentValueMap which uses std::map * as a backing map. * * Users will have to implement their own weak callbacks & dispose traits. */ template<typename K, typename V> class StdMapTraits { public: // STL map & related: typedef std::map<K, PersistentContainerValue> Impl; typedef typename Impl::iterator Iterator; static bool Empty(Impl* impl) { return impl->empty(); } static size_t Size(Impl* impl) { return impl->size(); } static void Swap(Impl& a, Impl& b) { std::swap(a, b); } // NOLINT static Iterator Begin(Impl* impl) { return impl->begin(); } static Iterator End(Impl* impl) { return impl->end(); } static K Key(Iterator it) { return it->first; } static PersistentContainerValue Value(Iterator it) { return it->second; } static PersistentContainerValue Set(Impl* impl, K key, PersistentContainerValue value) { std::pair<Iterator, bool> res = impl->insert(std::make_pair(key, value)); PersistentContainerValue old_value = kPersistentContainerNotFound; if (!res.second) { old_value = res.first->second; res.first->second = value; } return old_value; } static PersistentContainerValue Get(Impl* impl, K key) { Iterator it = impl->find(key); if (it == impl->end()) return kPersistentContainerNotFound; return it->second; } static PersistentContainerValue Remove(Impl* impl, K key) { Iterator it = impl->find(key); if (it == impl->end()) return kPersistentContainerNotFound; PersistentContainerValue value = it->second; impl->erase(it); return value; } }; /** * A default trait implementation for PersistentValueMap, which inherits * a std:map backing map from StdMapTraits and holds non-weak persistent * objects and has no special Dispose handling. * * You should not derive from this class, since MapType depends on the * surrounding class, and hence a subclass cannot simply inherit the methods. */ template<typename K, typename V> class DefaultPersistentValueMapTraits : public StdMapTraits<K, V> { public: // Weak callback & friends: static const PersistentContainerCallbackType kCallbackType = kNotWeak; typedef PersistentValueMap<K, V, DefaultPersistentValueMapTraits<K, V> > MapType; typedef void WeakCallbackDataType; static WeakCallbackDataType* WeakCallbackParameter( MapType* map, const K& key, Local<V> value) { return NULL; } static MapType* MapFromWeakCallbackData( const WeakCallbackData<V, WeakCallbackDataType>& data) { return NULL; } static K KeyFromWeakCallbackData( const WeakCallbackData<V, WeakCallbackDataType>& data) { return K(); } static void DisposeCallbackData(WeakCallbackDataType* data) { } static void Dispose(Isolate* isolate, UniquePersistent<V> value, K key) { } }; /** * A map wrapper that allows using UniquePersistent as a mapped value. * C++11 embedders don't need this class, as they can use UniquePersistent * directly in std containers. * * The map relies on a backing map, whose type and accessors are described * by the Traits class. The backing map will handle values of type * PersistentContainerValue, with all conversion into and out of V8 * handles being transparently handled by this class. */ template<typename K, typename V, typename Traits> class PersistentValueMap { public: explicit PersistentValueMap(Isolate* isolate) : isolate_(isolate) {} ~PersistentValueMap() { Clear(); } Isolate* GetIsolate() { return isolate_; } /** * Return size of the map. */ size_t Size() { return Traits::Size(&impl_); } /** * Return whether the map holds weak persistents. */ bool IsWeak() { return Traits::kCallbackType != kNotWeak; } /** * Get value stored in map. */ Local<V> Get(const K& key) { return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, key))); } /** * Check whether a value is contained in the map. */ bool Contains(const K& key) { return Traits::Get(&impl_, key) != kPersistentContainerNotFound; } /** * Get value stored in map and set it in returnValue. * Return true if a value was found. */ bool SetReturnValue(const K& key, ReturnValue<Value> returnValue) { return SetReturnValueFromVal(&returnValue, Traits::Get(&impl_, key)); } /** * Call Isolate::SetReference with the given parent and the map value. */ void SetReference(const K& key, const Persistent<Object>& parent) { GetIsolate()->SetReference( reinterpret_cast<internal::Object**>(parent.val_), reinterpret_cast<internal::Object**>(FromVal(Traits::Get(&impl_, key)))); } /** * Put value into map. Depending on Traits::kIsWeak, the value will be held * by the map strongly or weakly. * Returns old value as UniquePersistent. */ UniquePersistent<V> Set(const K& key, Local<V> value) { UniquePersistent<V> persistent(isolate_, value); return SetUnique(key, &persistent); } /** * Put value into map, like Set(const K&, Local<V>). */ UniquePersistent<V> Set(const K& key, UniquePersistent<V> value) { return SetUnique(key, &value); } /** * Return value for key and remove it from the map. */ UniquePersistent<V> Remove(const K& key) { return Release(Traits::Remove(&impl_, key)).Pass(); } /** * Traverses the map repeatedly, * in case side effects of disposal cause insertions. **/ void Clear() { typedef typename Traits::Iterator It; HandleScope handle_scope(isolate_); // TODO(dcarney): figure out if this swap and loop is necessary. while (!Traits::Empty(&impl_)) { typename Traits::Impl impl; Traits::Swap(impl_, impl); for (It i = Traits::Begin(&impl); i != Traits::End(&impl); ++i) { Traits::Dispose(isolate_, Release(Traits::Value(i)).Pass(), Traits::Key(i)); } } } /** * Helper class for GetReference/SetWithReference. Do not use outside * that context. */ class PersistentValueReference { public: PersistentValueReference() : value_(kPersistentContainerNotFound) { } PersistentValueReference(const PersistentValueReference& other) : value_(other.value_) { } Local<V> NewLocal(Isolate* isolate) const { return Local<V>::New(isolate, FromVal(value_)); } bool IsEmpty() const { return value_ == kPersistentContainerNotFound; } template<typename T> bool SetReturnValue(ReturnValue<T> returnValue) { return SetReturnValueFromVal(&returnValue, value_); } void Reset() { value_ = kPersistentContainerNotFound; } void operator=(const PersistentValueReference& other) { value_ = other.value_; } private: friend class PersistentValueMap; explicit PersistentValueReference(PersistentContainerValue value) : value_(value) { } void operator=(PersistentContainerValue value) { value_ = value; } PersistentContainerValue value_; }; /** * Get a reference to a map value. This enables fast, repeated access * to a value stored in the map while the map remains unchanged. * * Careful: This is potentially unsafe, so please use with care. * The value will become invalid if the value for this key changes * in the underlying map, as a result of Set or Remove for the same * key; as a result of the weak callback for the same key; or as a * result of calling Clear() or destruction of the map. */ PersistentValueReference GetReference(const K& key) { return PersistentValueReference(Traits::Get(&impl_, key)); } /** * Put a value into the map and update the reference. * Restrictions of GetReference apply here as well. */ UniquePersistent<V> Set(const K& key, UniquePersistent<V> value, PersistentValueReference* reference) { *reference = Leak(&value); return SetUnique(key, &value); } private: PersistentValueMap(PersistentValueMap&); void operator=(PersistentValueMap&); /** * Put the value into the map, and set the 'weak' callback when demanded * by the Traits class. */ UniquePersistent<V> SetUnique(const K& key, UniquePersistent<V>* persistent) { if (Traits::kCallbackType != kNotWeak) { Local<V> value(Local<V>::New(isolate_, *persistent)); persistent->template SetWeak<typename Traits::WeakCallbackDataType>( Traits::WeakCallbackParameter(this, key, value), WeakCallback); } PersistentContainerValue old_value = Traits::Set(&impl_, key, ClearAndLeak(persistent)); return Release(old_value).Pass(); } static void WeakCallback( const WeakCallbackData<V, typename Traits::WeakCallbackDataType>& data) { if (Traits::kCallbackType != kNotWeak) { PersistentValueMap<K, V, Traits>* persistentValueMap = Traits::MapFromWeakCallbackData(data); K key = Traits::KeyFromWeakCallbackData(data); Traits::Dispose(data.GetIsolate(), persistentValueMap->Remove(key).Pass(), key); Traits::DisposeCallbackData(data.GetParameter()); } } static V* FromVal(PersistentContainerValue v) { return reinterpret_cast<V*>(v); } static bool SetReturnValueFromVal( ReturnValue<Value>* returnValue, PersistentContainerValue value) { bool hasValue = value != kPersistentContainerNotFound; if (hasValue) { returnValue->SetInternal( *reinterpret_cast<internal::Object**>(FromVal(value))); } return hasValue; } static PersistentContainerValue ClearAndLeak( UniquePersistent<V>* persistent) { V* v = persistent->val_; persistent->val_ = 0; return reinterpret_cast<PersistentContainerValue>(v); } static PersistentContainerValue Leak( UniquePersistent<V>* persistent) { return reinterpret_cast<PersistentContainerValue>(persistent->val_); } /** * Return a container value as UniquePersistent and make sure the weak * callback is properly disposed of. All remove functionality should go * through this. */ static UniquePersistent<V> Release(PersistentContainerValue v) { UniquePersistent<V> p; p.val_ = FromVal(v); if (Traits::kCallbackType != kNotWeak && p.IsWeak()) { Traits::DisposeCallbackData( p.template ClearWeak<typename Traits::WeakCallbackDataType>()); } return p.Pass(); } Isolate* isolate_; typename Traits::Impl impl_; }; /** * A map that uses UniquePersistent as value and std::map as the backing * implementation. Persistents are held non-weak. * * C++11 embedders don't need this class, as they can use * UniquePersistent directly in std containers. */ template<typename K, typename V, typename Traits = DefaultPersistentValueMapTraits<K, V> > class StdPersistentValueMap : public PersistentValueMap<K, V, Traits> { public: explicit StdPersistentValueMap(Isolate* isolate) : PersistentValueMap<K, V, Traits>(isolate) {} }; class DefaultPersistentValueVectorTraits { public: typedef std::vector<PersistentContainerValue> Impl; static void Append(Impl* impl, PersistentContainerValue value) { impl->push_back(value); } static bool IsEmpty(const Impl* impl) { return impl->empty(); } static size_t Size(const Impl* impl) { return impl->size(); } static PersistentContainerValue Get(const Impl* impl, size_t i) { return (i < impl->size()) ? impl->at(i) : kPersistentContainerNotFound; } static void ReserveCapacity(Impl* impl, size_t capacity) { impl->reserve(capacity); } static void Clear(Impl* impl) { impl->clear(); } }; /** * A vector wrapper that safely stores UniquePersistent values. * C++11 embedders don't need this class, as they can use UniquePersistent * directly in std containers. * * This class relies on a backing vector implementation, whose type and methods * are described by the Traits class. The backing map will handle values of type * PersistentContainerValue, with all conversion into and out of V8 * handles being transparently handled by this class. */ template<typename V, typename Traits = DefaultPersistentValueVectorTraits> class PersistentValueVector { public: explicit PersistentValueVector(Isolate* isolate) : isolate_(isolate) { } ~PersistentValueVector() { Clear(); } /** * Append a value to the vector. */ void Append(Local<V> value) { UniquePersistent<V> persistent(isolate_, value); Traits::Append(&impl_, ClearAndLeak(&persistent)); } /** * Append a persistent's value to the vector. */ void Append(UniquePersistent<V> persistent) { Traits::Append(&impl_, ClearAndLeak(&persistent)); } /** * Are there any values in the vector? */ bool IsEmpty() const { return Traits::IsEmpty(&impl_); } /** * How many elements are in the vector? */ size_t Size() const { return Traits::Size(&impl_); } /** * Retrieve the i-th value in the vector. */ Local<V> Get(size_t index) const { return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, index))); } /** * Remove all elements from the vector. */ void Clear() { size_t length = Traits::Size(&impl_); for (size_t i = 0; i < length; i++) { UniquePersistent<V> p; p.val_ = FromVal(Traits::Get(&impl_, i)); } Traits::Clear(&impl_); } /** * Reserve capacity in the vector. * (Efficiency gains depend on the backing implementation.) */ void ReserveCapacity(size_t capacity) { Traits::ReserveCapacity(&impl_, capacity); } private: static PersistentContainerValue ClearAndLeak( UniquePersistent<V>* persistent) { V* v = persistent->val_; persistent->val_ = 0; return reinterpret_cast<PersistentContainerValue>(v); } static V* FromVal(PersistentContainerValue v) { return reinterpret_cast<V*>(v); } Isolate* isolate_; typename Traits::Impl impl_; }; } // namespace v8 #endif // V8_UTIL_H_