// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "url/url_canon_ip.h" #include <stdlib.h> #include "base/basictypes.h" #include "base/logging.h" #include "url/url_canon_internal.h" namespace url { namespace { // Converts one of the character types that represent a numerical base to the // corresponding base. int BaseForType(SharedCharTypes type) { switch (type) { case CHAR_HEX: return 16; case CHAR_DEC: return 10; case CHAR_OCT: return 8; default: return 0; } } template<typename CHAR, typename UCHAR> bool DoFindIPv4Components(const CHAR* spec, const Component& host, Component components[4]) { if (!host.is_nonempty()) return false; int cur_component = 0; // Index of the component we're working on. int cur_component_begin = host.begin; // Start of the current component. int end = host.end(); for (int i = host.begin; /* nothing */; i++) { if (i >= end || spec[i] == '.') { // Found the end of the current component. int component_len = i - cur_component_begin; components[cur_component] = Component(cur_component_begin, component_len); // The next component starts after the dot. cur_component_begin = i + 1; cur_component++; // Don't allow empty components (two dots in a row), except we may // allow an empty component at the end (this would indicate that the // input ends in a dot). We also want to error if the component is // empty and it's the only component (cur_component == 1). if (component_len == 0 && (i < end || cur_component == 1)) return false; if (i >= end) break; // End of the input. if (cur_component == 4) { // Anything else after the 4th component is an error unless it is a // dot that would otherwise be treated as the end of input. if (spec[i] == '.' && i + 1 == end) break; return false; } } else if (static_cast<UCHAR>(spec[i]) >= 0x80 || !IsIPv4Char(static_cast<unsigned char>(spec[i]))) { // Invalid character for an IPv4 address. return false; } } // Fill in any unused components. while (cur_component < 4) components[cur_component++] = Component(); return true; } // Converts an IPv4 component to a 32-bit number, while checking for overflow. // // Possible return values: // - IPV4 - The number was valid, and did not overflow. // - BROKEN - The input was numeric, but too large for a 32-bit field. // - NEUTRAL - Input was not numeric. // // The input is assumed to be ASCII. FindIPv4Components should have stripped // out any input that is greater than 7 bits. The components are assumed // to be non-empty. template<typename CHAR> CanonHostInfo::Family IPv4ComponentToNumber(const CHAR* spec, const Component& component, uint32* number) { // Figure out the base SharedCharTypes base; int base_prefix_len = 0; // Size of the prefix for this base. if (spec[component.begin] == '0') { // Either hex or dec, or a standalone zero. if (component.len == 1) { base = CHAR_DEC; } else if (spec[component.begin + 1] == 'X' || spec[component.begin + 1] == 'x') { base = CHAR_HEX; base_prefix_len = 2; } else { base = CHAR_OCT; base_prefix_len = 1; } } else { base = CHAR_DEC; } // Extend the prefix to consume all leading zeros. while (base_prefix_len < component.len && spec[component.begin + base_prefix_len] == '0') base_prefix_len++; // Put the component, minus any base prefix, into a NULL-terminated buffer so // we can call the standard library. Because leading zeros have already been // discarded, filling the entire buffer is guaranteed to trigger the 32-bit // overflow check. const int kMaxComponentLen = 16; char buf[kMaxComponentLen + 1]; // digits + '\0' int dest_i = 0; for (int i = component.begin + base_prefix_len; i < component.end(); i++) { // We know the input is 7-bit, so convert to narrow (if this is the wide // version of the template) by casting. char input = static_cast<char>(spec[i]); // Validate that this character is OK for the given base. if (!IsCharOfType(input, base)) return CanonHostInfo::NEUTRAL; // Fill the buffer, if there's space remaining. This check allows us to // verify that all characters are numeric, even those that don't fit. if (dest_i < kMaxComponentLen) buf[dest_i++] = input; } buf[dest_i] = '\0'; // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal // number can overflow a 64-bit number in <= 16 characters). uint64 num = _strtoui64(buf, NULL, BaseForType(base)); // Check for 32-bit overflow. if (num > kuint32max) return CanonHostInfo::BROKEN; // No overflow. Success! *number = static_cast<uint32>(num); return CanonHostInfo::IPV4; } // See declaration of IPv4AddressToNumber for documentation. template<typename CHAR> CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec, const Component& host, unsigned char address[4], int* num_ipv4_components) { // The identified components. Not all may exist. Component components[4]; if (!FindIPv4Components(spec, host, components)) return CanonHostInfo::NEUTRAL; // Convert existing components to digits. Values up to // |existing_components| will be valid. uint32 component_values[4]; int existing_components = 0; // Set to true if one or more components are BROKEN. BROKEN is only // returned if all components are IPV4 or BROKEN, so, for example, // 12345678912345.de returns NEUTRAL rather than broken. bool broken = false; for (int i = 0; i < 4; i++) { if (components[i].len <= 0) continue; CanonHostInfo::Family family = IPv4ComponentToNumber( spec, components[i], &component_values[existing_components]); if (family == CanonHostInfo::BROKEN) { broken = true; } else if (family != CanonHostInfo::IPV4) { // Stop if we hit a non-BROKEN invalid non-empty component. return family; } existing_components++; } if (broken) return CanonHostInfo::BROKEN; // Use that sequence of numbers to fill out the 4-component IP address. // First, process all components but the last, while making sure each fits // within an 8-bit field. for (int i = 0; i < existing_components - 1; i++) { if (component_values[i] > kuint8max) return CanonHostInfo::BROKEN; address[i] = static_cast<unsigned char>(component_values[i]); } // Next, consume the last component to fill in the remaining bytes. uint32 last_value = component_values[existing_components - 1]; for (int i = 3; i >= existing_components - 1; i--) { address[i] = static_cast<unsigned char>(last_value); last_value >>= 8; } // If the last component has residual bits, report overflow. if (last_value != 0) return CanonHostInfo::BROKEN; // Tell the caller how many components we saw. *num_ipv4_components = existing_components; // Success! return CanonHostInfo::IPV4; } // Return true if we've made a final IPV4/BROKEN decision, false if the result // is NEUTRAL, and we could use a second opinion. template<typename CHAR, typename UCHAR> bool DoCanonicalizeIPv4Address(const CHAR* spec, const Component& host, CanonOutput* output, CanonHostInfo* host_info) { host_info->family = IPv4AddressToNumber( spec, host, host_info->address, &host_info->num_ipv4_components); switch (host_info->family) { case CanonHostInfo::IPV4: // Definitely an IPv4 address. host_info->out_host.begin = output->length(); AppendIPv4Address(host_info->address, output); host_info->out_host.len = output->length() - host_info->out_host.begin; return true; case CanonHostInfo::BROKEN: // Definitely broken. return true; default: // Could be IPv6 or a hostname. return false; } } // Helper class that describes the main components of an IPv6 input string. // See the following examples to understand how it breaks up an input string: // // [Example 1]: input = "[::aa:bb]" // ==> num_hex_components = 2 // ==> hex_components[0] = Component(3,2) "aa" // ==> hex_components[1] = Component(6,2) "bb" // ==> index_of_contraction = 0 // ==> ipv4_component = Component(0, -1) // // [Example 2]: input = "[1:2::3:4:5]" // ==> num_hex_components = 5 // ==> hex_components[0] = Component(1,1) "1" // ==> hex_components[1] = Component(3,1) "2" // ==> hex_components[2] = Component(6,1) "3" // ==> hex_components[3] = Component(8,1) "4" // ==> hex_components[4] = Component(10,1) "5" // ==> index_of_contraction = 2 // ==> ipv4_component = Component(0, -1) // // [Example 3]: input = "[::ffff:192.168.0.1]" // ==> num_hex_components = 1 // ==> hex_components[0] = Component(3,4) "ffff" // ==> index_of_contraction = 0 // ==> ipv4_component = Component(8, 11) "192.168.0.1" // // [Example 4]: input = "[1::]" // ==> num_hex_components = 1 // ==> hex_components[0] = Component(1,1) "1" // ==> index_of_contraction = 1 // ==> ipv4_component = Component(0, -1) // // [Example 5]: input = "[::192.168.0.1]" // ==> num_hex_components = 0 // ==> index_of_contraction = 0 // ==> ipv4_component = Component(8, 11) "192.168.0.1" // struct IPv6Parsed { // Zero-out the parse information. void reset() { num_hex_components = 0; index_of_contraction = -1; ipv4_component.reset(); } // There can be up to 8 hex components (colon separated) in the literal. Component hex_components[8]; // The count of hex components present. Ranges from [0,8]. int num_hex_components; // The index of the hex component that the "::" contraction precedes, or // -1 if there is no contraction. int index_of_contraction; // The range of characters which are an IPv4 literal. Component ipv4_component; }; // Parse the IPv6 input string. If parsing succeeded returns true and fills // |parsed| with the information. If parsing failed (because the input is // invalid) returns false. template<typename CHAR, typename UCHAR> bool DoParseIPv6(const CHAR* spec, const Component& host, IPv6Parsed* parsed) { // Zero-out the info. parsed->reset(); if (!host.is_nonempty()) return false; // The index for start and end of address range (no brackets). int begin = host.begin; int end = host.end(); int cur_component_begin = begin; // Start of the current component. // Scan through the input, searching for hex components, "::" contractions, // and IPv4 components. for (int i = begin; /* i <= end */; i++) { bool is_colon = spec[i] == ':'; bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':'; // We reached the end of the current component if we encounter a colon // (separator between hex components, or start of a contraction), or end of // input. if (is_colon || i == end) { int component_len = i - cur_component_begin; // A component should not have more than 4 hex digits. if (component_len > 4) return false; // Don't allow empty components. if (component_len == 0) { // The exception is when contractions appear at beginning of the // input or at the end of the input. if (!((is_contraction && i == begin) || (i == end && parsed->index_of_contraction == parsed->num_hex_components))) return false; } // Add the hex component we just found to running list. if (component_len > 0) { // Can't have more than 8 components! if (parsed->num_hex_components >= 8) return false; parsed->hex_components[parsed->num_hex_components++] = Component(cur_component_begin, component_len); } } if (i == end) break; // Reached the end of the input, DONE. // We found a "::" contraction. if (is_contraction) { // There can be at most one contraction in the literal. if (parsed->index_of_contraction != -1) return false; parsed->index_of_contraction = parsed->num_hex_components; ++i; // Consume the colon we peeked. } if (is_colon) { // Colons are separators between components, keep track of where the // current component started (after this colon). cur_component_begin = i + 1; } else { if (static_cast<UCHAR>(spec[i]) >= 0x80) return false; // Not ASCII. if (!IsHexChar(static_cast<unsigned char>(spec[i]))) { // Regular components are hex numbers. It is also possible for // a component to be an IPv4 address in dotted form. if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) { // Since IPv4 address can only appear at the end, assume the rest // of the string is an IPv4 address. (We will parse this separately // later). parsed->ipv4_component = Component(cur_component_begin, end - cur_component_begin); break; } else { // The character was neither a hex digit, nor an IPv4 character. return false; } } } } return true; } // Verifies the parsed IPv6 information, checking that the various components // add up to the right number of bits (hex components are 16 bits, while // embedded IPv4 formats are 32 bits, and contractions are placeholdes for // 16 or more bits). Returns true if sizes match up, false otherwise. On // success writes the length of the contraction (if any) to // |out_num_bytes_of_contraction|. bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed, int* out_num_bytes_of_contraction) { // Each group of four hex digits contributes 16 bits. int num_bytes_without_contraction = parsed.num_hex_components * 2; // If an IPv4 address was embedded at the end, it contributes 32 bits. if (parsed.ipv4_component.is_valid()) num_bytes_without_contraction += 4; // If there was a "::" contraction, its size is going to be: // MAX([16bits], [128bits] - num_bytes_without_contraction). int num_bytes_of_contraction = 0; if (parsed.index_of_contraction != -1) { num_bytes_of_contraction = 16 - num_bytes_without_contraction; if (num_bytes_of_contraction < 2) num_bytes_of_contraction = 2; } // Check that the numbers add up. if (num_bytes_without_contraction + num_bytes_of_contraction != 16) return false; *out_num_bytes_of_contraction = num_bytes_of_contraction; return true; } // Converts a hex comonent into a number. This cannot fail since the caller has // already verified that each character in the string was a hex digit, and // that there were no more than 4 characters. template<typename CHAR> uint16 IPv6HexComponentToNumber(const CHAR* spec, const Component& component) { DCHECK(component.len <= 4); // Copy the hex string into a C-string. char buf[5]; for (int i = 0; i < component.len; ++i) buf[i] = static_cast<char>(spec[component.begin + i]); buf[component.len] = '\0'; // Convert it to a number (overflow is not possible, since with 4 hex // characters we can at most have a 16 bit number). return static_cast<uint16>(_strtoui64(buf, NULL, 16)); } // Converts an IPv6 address to a 128-bit number (network byte order), returning // true on success. False means that the input was not a valid IPv6 address. template<typename CHAR, typename UCHAR> bool DoIPv6AddressToNumber(const CHAR* spec, const Component& host, unsigned char address[16]) { // Make sure the component is bounded by '[' and ']'. int end = host.end(); if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']') return false; // Exclude the square brackets. Component ipv6_comp(host.begin + 1, host.len - 2); // Parse the IPv6 address -- identify where all the colon separated hex // components are, the "::" contraction, and the embedded IPv4 address. IPv6Parsed ipv6_parsed; if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed)) return false; // Do some basic size checks to make sure that the address doesn't // specify more than 128 bits or fewer than 128 bits. This also resolves // how may zero bytes the "::" contraction represents. int num_bytes_of_contraction; if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction)) return false; int cur_index_in_address = 0; // Loop through each hex components, and contraction in order. for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) { // Append the contraction if it appears before this component. if (i == ipv6_parsed.index_of_contraction) { for (int j = 0; j < num_bytes_of_contraction; ++j) address[cur_index_in_address++] = 0; } // Append the hex component's value. if (i != ipv6_parsed.num_hex_components) { // Get the 16-bit value for this hex component. uint16 number = IPv6HexComponentToNumber<CHAR>( spec, ipv6_parsed.hex_components[i]); // Append to |address|, in network byte order. address[cur_index_in_address++] = (number & 0xFF00) >> 8; address[cur_index_in_address++] = (number & 0x00FF); } } // If there was an IPv4 section, convert it into a 32-bit number and append // it to |address|. if (ipv6_parsed.ipv4_component.is_valid()) { // Append the 32-bit number to |address|. int ignored_num_ipv4_components; if (CanonHostInfo::IPV4 != IPv4AddressToNumber(spec, ipv6_parsed.ipv4_component, &address[cur_index_in_address], &ignored_num_ipv4_components)) return false; } return true; } // Searches for the longest sequence of zeros in |address|, and writes the // range into |contraction_range|. The run of zeros must be at least 16 bits, // and if there is a tie the first is chosen. void ChooseIPv6ContractionRange(const unsigned char address[16], Component* contraction_range) { // The longest run of zeros in |address| seen so far. Component max_range; // The current run of zeros in |address| being iterated over. Component cur_range; for (int i = 0; i < 16; i += 2) { // Test for 16 bits worth of zero. bool is_zero = (address[i] == 0 && address[i + 1] == 0); if (is_zero) { // Add the zero to the current range (or start a new one). if (!cur_range.is_valid()) cur_range = Component(i, 0); cur_range.len += 2; } if (!is_zero || i == 14) { // Just completed a run of zeros. If the run is greater than 16 bits, // it is a candidate for the contraction. if (cur_range.len > 2 && cur_range.len > max_range.len) { max_range = cur_range; } cur_range.reset(); } } *contraction_range = max_range; } // Return true if we've made a final IPV6/BROKEN decision, false if the result // is NEUTRAL, and we could use a second opinion. template<typename CHAR, typename UCHAR> bool DoCanonicalizeIPv6Address(const CHAR* spec, const Component& host, CanonOutput* output, CanonHostInfo* host_info) { // Turn the IP address into a 128 bit number. if (!IPv6AddressToNumber(spec, host, host_info->address)) { // If it's not an IPv6 address, scan for characters that should *only* // exist in an IPv6 address. for (int i = host.begin; i < host.end(); i++) { switch (spec[i]) { case '[': case ']': case ':': host_info->family = CanonHostInfo::BROKEN; return true; } } // No invalid characters. Could still be IPv4 or a hostname. host_info->family = CanonHostInfo::NEUTRAL; return false; } host_info->out_host.begin = output->length(); output->push_back('['); AppendIPv6Address(host_info->address, output); output->push_back(']'); host_info->out_host.len = output->length() - host_info->out_host.begin; host_info->family = CanonHostInfo::IPV6; return true; } } // namespace void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) { for (int i = 0; i < 4; i++) { char str[16]; _itoa_s(address[i], str, 10); for (int ch = 0; str[ch] != 0; ch++) output->push_back(str[ch]); if (i != 3) output->push_back('.'); } } void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) { // We will output the address according to the rules in: // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4 // Start by finding where to place the "::" contraction (if any). Component contraction_range; ChooseIPv6ContractionRange(address, &contraction_range); for (int i = 0; i <= 14;) { // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive. DCHECK(i % 2 == 0); if (i == contraction_range.begin && contraction_range.len > 0) { // Jump over the contraction. if (i == 0) output->push_back(':'); output->push_back(':'); i = contraction_range.end(); } else { // Consume the next 16 bits from |address|. int x = address[i] << 8 | address[i + 1]; i += 2; // Stringify the 16 bit number (at most requires 4 hex digits). char str[5]; _itoa_s(x, str, 16); for (int ch = 0; str[ch] != 0; ++ch) output->push_back(str[ch]); // Put a colon after each number, except the last. if (i < 16) output->push_back(':'); } } } bool FindIPv4Components(const char* spec, const Component& host, Component components[4]) { return DoFindIPv4Components<char, unsigned char>(spec, host, components); } bool FindIPv4Components(const base::char16* spec, const Component& host, Component components[4]) { return DoFindIPv4Components<base::char16, base::char16>( spec, host, components); } void CanonicalizeIPAddress(const char* spec, const Component& host, CanonOutput* output, CanonHostInfo* host_info) { if (DoCanonicalizeIPv4Address<char, unsigned char>( spec, host, output, host_info)) return; if (DoCanonicalizeIPv6Address<char, unsigned char>( spec, host, output, host_info)) return; } void CanonicalizeIPAddress(const base::char16* spec, const Component& host, CanonOutput* output, CanonHostInfo* host_info) { if (DoCanonicalizeIPv4Address<base::char16, base::char16>( spec, host, output, host_info)) return; if (DoCanonicalizeIPv6Address<base::char16, base::char16>( spec, host, output, host_info)) return; } CanonHostInfo::Family IPv4AddressToNumber(const char* spec, const Component& host, unsigned char address[4], int* num_ipv4_components) { return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components); } CanonHostInfo::Family IPv4AddressToNumber(const base::char16* spec, const Component& host, unsigned char address[4], int* num_ipv4_components) { return DoIPv4AddressToNumber<base::char16>( spec, host, address, num_ipv4_components); } bool IPv6AddressToNumber(const char* spec, const Component& host, unsigned char address[16]) { return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address); } bool IPv6AddressToNumber(const base::char16* spec, const Component& host, unsigned char address[16]) { return DoIPv6AddressToNumber<base::char16, base::char16>(spec, host, address); } } // namespace url