// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/skbitmap_operations.h" #include <algorithm> #include <string.h> #include "base/logging.h" #include "skia/ext/refptr.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkCanvas.h" #include "third_party/skia/include/core/SkColorFilter.h" #include "third_party/skia/include/core/SkColorPriv.h" #include "third_party/skia/include/core/SkUnPreMultiply.h" #include "third_party/skia/include/effects/SkBlurImageFilter.h" #include "ui/gfx/insets.h" #include "ui/gfx/point.h" #include "ui/gfx/size.h" // static SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) { DCHECK(image.colorType() == kPMColor_SkColorType); SkAutoLockPixels lock_image(image); SkBitmap inverted; inverted.allocN32Pixels(image.width(), image.height()); inverted.eraseARGB(0, 0, 0, 0); for (int y = 0; y < image.height(); ++y) { uint32* image_row = image.getAddr32(0, y); uint32* dst_row = inverted.getAddr32(0, y); for (int x = 0; x < image.width(); ++x) { uint32 image_pixel = image_row[x]; dst_row[x] = (image_pixel & 0xFF000000) | (0x00FFFFFF - (image_pixel & 0x00FFFFFF)); } } return inverted; } // static SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first, const SkBitmap& second) { DCHECK(first.width() == second.width()); DCHECK(first.height() == second.height()); DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); DCHECK(first.colorType() == kPMColor_SkColorType); SkAutoLockPixels lock_first(first); SkAutoLockPixels lock_second(second); SkBitmap superimposed; superimposed.allocN32Pixels(first.width(), first.height()); superimposed.eraseARGB(0, 0, 0, 0); SkCanvas canvas(superimposed); SkRect rect; rect.fLeft = 0; rect.fTop = 0; rect.fRight = SkIntToScalar(first.width()); rect.fBottom = SkIntToScalar(first.height()); canvas.drawBitmapRect(first, NULL, rect); canvas.drawBitmapRect(second, NULL, rect); return superimposed; } // static SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first, const SkBitmap& second, double alpha) { DCHECK((alpha >= 0) && (alpha <= 1)); DCHECK(first.width() == second.width()); DCHECK(first.height() == second.height()); DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); DCHECK(first.colorType() == kPMColor_SkColorType); // Optimize for case where we won't need to blend anything. static const double alpha_min = 1.0 / 255; static const double alpha_max = 254.0 / 255; if (alpha < alpha_min) return first; else if (alpha > alpha_max) return second; SkAutoLockPixels lock_first(first); SkAutoLockPixels lock_second(second); SkBitmap blended; blended.allocN32Pixels(first.width(), first.height()); blended.eraseARGB(0, 0, 0, 0); double first_alpha = 1 - alpha; for (int y = 0; y < first.height(); ++y) { uint32* first_row = first.getAddr32(0, y); uint32* second_row = second.getAddr32(0, y); uint32* dst_row = blended.getAddr32(0, y); for (int x = 0; x < first.width(); ++x) { uint32 first_pixel = first_row[x]; uint32 second_pixel = second_row[x]; int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) + (SkColorGetA(second_pixel) * alpha)); int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) + (SkColorGetR(second_pixel) * alpha)); int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) + (SkColorGetG(second_pixel) * alpha)); int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) + (SkColorGetB(second_pixel) * alpha)); dst_row[x] = SkColorSetARGB(a, r, g, b); } } return blended; } // static SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb, const SkBitmap& alpha) { DCHECK(rgb.width() == alpha.width()); DCHECK(rgb.height() == alpha.height()); DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel()); DCHECK(rgb.colorType() == kPMColor_SkColorType); DCHECK(alpha.colorType() == kPMColor_SkColorType); SkBitmap masked; masked.allocN32Pixels(rgb.width(), rgb.height()); masked.eraseARGB(0, 0, 0, 0); SkAutoLockPixels lock_rgb(rgb); SkAutoLockPixels lock_alpha(alpha); SkAutoLockPixels lock_masked(masked); for (int y = 0; y < masked.height(); ++y) { uint32* rgb_row = rgb.getAddr32(0, y); uint32* alpha_row = alpha.getAddr32(0, y); uint32* dst_row = masked.getAddr32(0, y); for (int x = 0; x < masked.width(); ++x) { SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]); SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]); int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkAlpha255To256(SkColorGetA(alpha_pixel))); int alpha_256 = SkAlpha255To256(alpha); dst_row[x] = SkColorSetARGB(alpha, SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256), SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256), SkAlphaMul(SkColorGetB(rgb_pixel), alpha_256)); } } return masked; } // static SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color, const SkBitmap& image, const SkBitmap& mask) { DCHECK(image.colorType() == kPMColor_SkColorType); DCHECK(mask.colorType() == kPMColor_SkColorType); SkBitmap background; background.allocN32Pixels(mask.width(), mask.height()); double bg_a = SkColorGetA(color); double bg_r = SkColorGetR(color); double bg_g = SkColorGetG(color); double bg_b = SkColorGetB(color); SkAutoLockPixels lock_mask(mask); SkAutoLockPixels lock_image(image); SkAutoLockPixels lock_background(background); for (int y = 0; y < mask.height(); ++y) { uint32* dst_row = background.getAddr32(0, y); uint32* image_row = image.getAddr32(0, y % image.height()); uint32* mask_row = mask.getAddr32(0, y); for (int x = 0; x < mask.width(); ++x) { uint32 image_pixel = image_row[x % image.width()]; double img_a = SkColorGetA(image_pixel); double img_r = SkColorGetR(image_pixel); double img_g = SkColorGetG(image_pixel); double img_b = SkColorGetB(image_pixel); double img_alpha = static_cast<double>(img_a) / 255.0; double img_inv = 1 - img_alpha; double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0; dst_row[x] = SkColorSetARGB( static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a), static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a), static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a), static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a)); } } return background; } namespace { namespace HSLShift { // TODO(viettrungluu): Some things have yet to be optimized at all. // Notes on and conventions used in the following code // // Conventions: // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below) // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below) // - variables derived from S, L shift parameters: |sdec| and |sinc| for S // increase and decrease factors, |ldec| and |linc| for L (see also below) // // To try to optimize HSL shifts, we do several things: // - Avoid unpremultiplying (then processing) then premultiplying. This means // that R, G, B values (and also L, but not H and S) should be treated as // having a range of 0..A (where A is alpha). // - Do things in integer/fixed-point. This avoids costly conversions between // floating-point and integer, though I should study the tradeoff more // carefully (presumably, at some point of processing complexity, converting // and processing using simpler floating-point code will begin to win in // performance). Also to be studied is the speed/type of floating point // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>. // // Conventions for fixed-point arithmetic // - Each function has a constant denominator (called |den|, which should be a // power of 2), appropriate for the computations done in that function. // - A value |x| is then typically represented by a numerator, named |x_num|, // so that its actual value is |x_num / den| (casting to floating-point // before division). // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x * // den| (casting appropriately). // - When necessary, a value |x| may also be represented as a numerator over // the denominator squared (set |den2 = den * den|). In such a case, the // corresponding variable is called |x_num2| (so that its actual value is // |x_num^2 / den2|. // - The representation of the product of |x| and |y| is be called |x_y_num| if // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|. // Routine used to process a line; typically specialized for specific kinds of // HSL shifts (to optimize). typedef void (*LineProcessor)(const color_utils::HSL&, const SkPMColor*, SkPMColor*, int width); enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps }; enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps }; enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps }; // Epsilon used to judge when shift values are close enough to various critical // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should // be small enough, but let's play it safe> const double epsilon = 0.0005; // Line processor: default/universal (i.e., old-school). void LineProcDefault(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { for (int x = 0; x < width; x++) { out[x] = SkPreMultiplyColor(color_utils::HSLShift( SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift)); } } // Line processor: no-op (i.e., copy). void LineProcCopy(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { DCHECK(hsl_shift.h < 0); DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0])); } // Line processor: H no-op, S no-op, L decrease. void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { const uint32_t den = 65536; DCHECK(hsl_shift.h < 0); DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0); uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den); for (int x = 0; x < width; x++) { uint32_t a = SkGetPackedA32(in[x]); uint32_t r = SkGetPackedR32(in[x]); uint32_t g = SkGetPackedG32(in[x]); uint32_t b = SkGetPackedB32(in[x]); r = r * ldec_num / den; g = g * ldec_num / den; b = b * ldec_num / den; out[x] = SkPackARGB32(a, r, g, b); } } // Line processor: H no-op, S no-op, L increase. void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { const uint32_t den = 65536; DCHECK(hsl_shift.h < 0); DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon); DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den); for (int x = 0; x < width; x++) { uint32_t a = SkGetPackedA32(in[x]); uint32_t r = SkGetPackedR32(in[x]); uint32_t g = SkGetPackedG32(in[x]); uint32_t b = SkGetPackedB32(in[x]); r += (a - r) * linc_num / den; g += (a - g) * linc_num / den; b += (a - b) * linc_num / den; out[x] = SkPackARGB32(a, r, g, b); } } // Saturation changes modifications in RGB // // (Note that as a further complication, the values we deal in are // premultiplied, so R/G/B values must be in the range 0..A. For mathematical // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of // generality, assume that R/G/B values are in the range 0..1.) // // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L = // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant. // // For H to remain constant, first, the (numerical) order of R/G/B (from // smallest to largest) must remain the same. Second, all the ratios // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of // course, if Max = Min, then S = 0 and no saturation change is well-defined, // since H is not well-defined). // // Let C_max be a colour with value Max, C_min be one with value Min, and C_med // the remaining colour. Increasing saturation (to the maximum) is accomplished // by increasing the value of C_max while simultaneously decreasing C_min and // changing C_med so that the ratios are maintained; for the latter, it suffices // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to // (Med-Min)/(Max-Min)). // Line processor: H no-op, S decrease, L no-op. void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { DCHECK(hsl_shift.h < 0); DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon); const int32_t denom = 65536; int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); for (int x = 0; x < width; x++) { int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); int32_t vmax, vmin; if (r > g) { // This uses 3 compares rather than 4. vmax = std::max(r, b); vmin = std::min(g, b); } else { vmax = std::max(g, b); vmin = std::min(r, b); } // Use denom * L to avoid rounding. int32_t denom_l = (vmax + vmin) * (denom / 2); int32_t s_numer_l = (vmax + vmin) * s_numer / 2; r = (denom_l + r * s_numer - s_numer_l) / denom; g = (denom_l + g * s_numer - s_numer_l) / denom; b = (denom_l + b * s_numer - s_numer_l) / denom; out[x] = SkPackARGB32(a, r, g, b); } } // Line processor: H no-op, S decrease, L decrease. void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { DCHECK(hsl_shift.h < 0); DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon); // Can't be too big since we need room for denom*denom and a bit for sign. const int32_t denom = 1024; int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom); int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); for (int x = 0; x < width; x++) { int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); int32_t vmax, vmin; if (r > g) { // This uses 3 compares rather than 4. vmax = std::max(r, b); vmin = std::min(g, b); } else { vmax = std::max(g, b); vmin = std::min(r, b); } // Use denom * L to avoid rounding. int32_t denom_l = (vmax + vmin) * (denom / 2); int32_t s_numer_l = (vmax + vmin) * s_numer / 2; r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom); g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom); b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom); out[x] = SkPackARGB32(a, r, g, b); } } // Line processor: H no-op, S decrease, L increase. void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift, const SkPMColor* in, SkPMColor* out, int width) { DCHECK(hsl_shift.h < 0); DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon); DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1); // Can't be too big since we need room for denom*denom and a bit for sign. const int32_t denom = 1024; int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom); int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom); for (int x = 0; x < width; x++) { int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x])); int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x])); int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x])); int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x])); int32_t vmax, vmin; if (r > g) { // This uses 3 compares rather than 4. vmax = std::max(r, b); vmin = std::min(g, b); } else { vmax = std::max(g, b); vmin = std::min(r, b); } // Use denom * L to avoid rounding. int32_t denom_l = (vmax + vmin) * (denom / 2); int32_t s_numer_l = (vmax + vmin) * s_numer / 2; r = denom_l + r * s_numer - s_numer_l; g = denom_l + g * s_numer - s_numer_l; b = denom_l + b * s_numer - s_numer_l; r = (r * denom + (a * denom - r) * l_numer) / (denom * denom); g = (g * denom + (a * denom - g) * l_numer) / (denom * denom); b = (b * denom + (a * denom - b) * l_numer) / (denom * denom); out[x] = SkPackARGB32(a, r, g, b); } } const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = { { // H: kOpHNone { // S: kOpSNone LineProcCopy, // L: kOpLNone LineProcHnopSnopLdec, // L: kOpLDec LineProcHnopSnopLinc // L: kOpLInc }, { // S: kOpSDec LineProcHnopSdecLnop, // L: kOpLNone LineProcHnopSdecLdec, // L: kOpLDec LineProcHnopSdecLinc // L: kOpLInc }, { // S: kOpSInc LineProcDefault, // L: kOpLNone LineProcDefault, // L: kOpLDec LineProcDefault // L: kOpLInc } }, { // H: kOpHShift { // S: kOpSNone LineProcDefault, // L: kOpLNone LineProcDefault, // L: kOpLDec LineProcDefault // L: kOpLInc }, { // S: kOpSDec LineProcDefault, // L: kOpLNone LineProcDefault, // L: kOpLDec LineProcDefault // L: kOpLInc }, { // S: kOpSInc LineProcDefault, // L: kOpLNone LineProcDefault, // L: kOpLDec LineProcDefault // L: kOpLInc } } }; } // namespace HSLShift } // namespace // static SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap( const SkBitmap& bitmap, const color_utils::HSL& hsl_shift) { // Default to NOPs. HSLShift::OperationOnH H_op = HSLShift::kOpHNone; HSLShift::OperationOnS S_op = HSLShift::kOpSNone; HSLShift::OperationOnL L_op = HSLShift::kOpLNone; if (hsl_shift.h >= 0 && hsl_shift.h <= 1) H_op = HSLShift::kOpHShift; // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate. if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon)) S_op = HSLShift::kOpSDec; else if (hsl_shift.s >= (0.5 + HSLShift::epsilon)) S_op = HSLShift::kOpSInc; // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white. if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon)) L_op = HSLShift::kOpLDec; else if (hsl_shift.l >= (0.5 + HSLShift::epsilon)) L_op = HSLShift::kOpLInc; HSLShift::LineProcessor line_proc = HSLShift::kLineProcessors[H_op][S_op][L_op]; DCHECK(bitmap.empty() == false); DCHECK(bitmap.colorType() == kPMColor_SkColorType); SkBitmap shifted; shifted.allocN32Pixels(bitmap.width(), bitmap.height()); shifted.eraseARGB(0, 0, 0, 0); SkAutoLockPixels lock_bitmap(bitmap); SkAutoLockPixels lock_shifted(shifted); // Loop through the pixels of the original bitmap. for (int y = 0; y < bitmap.height(); ++y) { SkPMColor* pixels = bitmap.getAddr32(0, y); SkPMColor* tinted_pixels = shifted.getAddr32(0, y); (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width()); } return shifted; } // static SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source, int src_x, int src_y, int dst_w, int dst_h) { DCHECK(source.colorType() == kPMColor_SkColorType); SkBitmap cropped; cropped.allocN32Pixels(dst_w, dst_h); cropped.eraseARGB(0, 0, 0, 0); SkAutoLockPixels lock_source(source); SkAutoLockPixels lock_cropped(cropped); // Loop through the pixels of the original bitmap. for (int y = 0; y < dst_h; ++y) { int y_pix = (src_y + y) % source.height(); while (y_pix < 0) y_pix += source.height(); uint32* source_row = source.getAddr32(0, y_pix); uint32* dst_row = cropped.getAddr32(0, y); for (int x = 0; x < dst_w; ++x) { int x_pix = (src_x + x) % source.width(); while (x_pix < 0) x_pix += source.width(); dst_row[x] = source_row[x_pix]; } } return cropped; } // static SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap, int min_w, int min_h) { if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) || (min_w < 0) || (min_h < 0)) return bitmap; // Since bitmaps are refcounted, this copy will be fast. SkBitmap current = bitmap; while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) && (current.width() > 1) && (current.height() > 1)) current = DownsampleByTwo(current); return current; } // static SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) { // Handle the nop case. if ((bitmap.width() <= 1) || (bitmap.height() <= 1)) return bitmap; SkBitmap result; result.allocN32Pixels((bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2); SkAutoLockPixels lock(bitmap); const int resultLastX = result.width() - 1; const int srcLastX = bitmap.width() - 1; for (int dest_y = 0; dest_y < result.height(); ++dest_y) { const int src_y = dest_y << 1; const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y); const SkPMColor* SK_RESTRICT cur_src1 = cur_src0; if (src_y + 1 < bitmap.height()) cur_src1 = bitmap.getAddr32(0, src_y + 1); SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y); for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) { // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very // clever in that it does two channels at once: alpha and green ("ag") // and red and blue ("rb"). Each channel gets averaged across 4 pixels // to get the result. int bump_x = (dest_x << 1) < srcLastX; SkPMColor tmp, ag, rb; // Top left pixel of the 2x2 block. tmp = cur_src0[0]; ag = (tmp >> 8) & 0xFF00FF; rb = tmp & 0xFF00FF; // Top right pixel of the 2x2 block. tmp = cur_src0[bump_x]; ag += (tmp >> 8) & 0xFF00FF; rb += tmp & 0xFF00FF; // Bottom left pixel of the 2x2 block. tmp = cur_src1[0]; ag += (tmp >> 8) & 0xFF00FF; rb += tmp & 0xFF00FF; // Bottom right pixel of the 2x2 block. tmp = cur_src1[bump_x]; ag += (tmp >> 8) & 0xFF00FF; rb += tmp & 0xFF00FF; // Put the channels back together, dividing each by 4 to get the average. // |ag| has the alpha and green channels shifted right by 8 bits from // there they should end up, so shifting left by 6 gives them in the // correct position divided by 4. *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00); cur_src0 += 2; cur_src1 += 2; } } return result; } // static SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) { if (bitmap.isNull()) return bitmap; if (bitmap.isOpaque()) return bitmap; SkImageInfo info = bitmap.info(); info.fAlphaType = kOpaque_SkAlphaType; SkBitmap opaque_bitmap; opaque_bitmap.allocPixels(info); { SkAutoLockPixels bitmap_lock(bitmap); SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap); for (int y = 0; y < opaque_bitmap.height(); y++) { for (int x = 0; x < opaque_bitmap.width(); x++) { uint32 src_pixel = *bitmap.getAddr32(x, y); uint32* dst_pixel = opaque_bitmap.getAddr32(x, y); SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel); *dst_pixel = unmultiplied; } } } return opaque_bitmap; } // static SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) { DCHECK(image.colorType() == kPMColor_SkColorType); SkBitmap transposed; transposed.allocN32Pixels(image.height(), image.width()); SkAutoLockPixels lock_image(image); SkAutoLockPixels lock_transposed(transposed); for (int y = 0; y < image.height(); ++y) { uint32* image_row = image.getAddr32(0, y); for (int x = 0; x < image.width(); ++x) { uint32* dst = transposed.getAddr32(y, x); *dst = image_row[x]; } } return transposed; } // static SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap, SkColor c) { DCHECK(bitmap.colorType() == kPMColor_SkColorType); SkBitmap color_mask; color_mask.allocN32Pixels(bitmap.width(), bitmap.height()); color_mask.eraseARGB(0, 0, 0, 0); SkCanvas canvas(color_mask); skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef( SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode)); SkPaint paint; paint.setColorFilter(color_filter.get()); canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint); return color_mask; } // static SkBitmap SkBitmapOperations::CreateDropShadow( const SkBitmap& bitmap, const gfx::ShadowValues& shadows) { DCHECK(bitmap.colorType() == kPMColor_SkColorType); // Shadow margin insets are negative values because they grow outside. // Negate them here as grow direction is not important and only pixel value // is of interest here. gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows); SkBitmap image_with_shadow; image_with_shadow.allocN32Pixels(bitmap.width() + shadow_margin.width(), bitmap.height() + shadow_margin.height()); image_with_shadow.eraseARGB(0, 0, 0, 0); SkCanvas canvas(image_with_shadow); canvas.translate(SkIntToScalar(shadow_margin.left()), SkIntToScalar(shadow_margin.top())); SkPaint paint; for (size_t i = 0; i < shadows.size(); ++i) { const gfx::ShadowValue& shadow = shadows[i]; SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap, shadow.color()); skia::RefPtr<SkBlurImageFilter> filter = skia::AdoptRef(SkBlurImageFilter::Create( SkDoubleToScalar(shadow.blur()), SkDoubleToScalar(shadow.blur()))); paint.setImageFilter(filter.get()); canvas.saveLayer(0, &paint); canvas.drawBitmap(shadow_image, SkIntToScalar(shadow.x()), SkIntToScalar(shadow.y())); canvas.restore(); } canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0)); return image_with_shadow; } // static SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source, RotationAmount rotation) { SkBitmap result; SkScalar angle = SkFloatToScalar(0.0f); switch (rotation) { case ROTATION_90_CW: angle = SkFloatToScalar(90.0f); result.setConfig( SkBitmap::kARGB_8888_Config, source.height(), source.width()); break; case ROTATION_180_CW: angle = SkFloatToScalar(180.0f); result.setConfig( SkBitmap::kARGB_8888_Config, source.width(), source.height()); break; case ROTATION_270_CW: angle = SkFloatToScalar(270.0f); result.setConfig( SkBitmap::kARGB_8888_Config, source.height(), source.width()); break; } result.allocPixels(); SkCanvas canvas(result); canvas.clear(SkColorSetARGB(0, 0, 0, 0)); canvas.translate(SkFloatToScalar(result.width() * 0.5f), SkFloatToScalar(result.height() * 0.5f)); canvas.rotate(angle); canvas.translate(-SkFloatToScalar(source.width() * 0.5f), -SkFloatToScalar(source.height() * 0.5f)); canvas.drawBitmap(source, 0, 0); canvas.flush(); return result; }