// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/events/x/device_data_manager.h" #include <X11/extensions/XInput.h> #include <X11/extensions/XInput2.h> #include <X11/Xlib.h> #include "base/logging.h" #include "base/memory/singleton.h" #include "base/sys_info.h" #include "ui/events/event_constants.h" #include "ui/events/event_switches.h" #include "ui/events/x/device_list_cache_x.h" #include "ui/events/x/touch_factory_x11.h" #include "ui/gfx/display.h" #include "ui/gfx/point3_f.h" #include "ui/gfx/x/x11_types.h" // XIScrollClass was introduced in XI 2.1 so we need to define it here // for backward-compatibility with older versions of XInput. #if !defined(XIScrollClass) #define XIScrollClass 3 #endif // Multi-touch support was introduced in XI 2.2. Add XI event types here // for backward-compatibility with older versions of XInput. #if !defined(XI_TouchBegin) #define XI_TouchBegin 18 #define XI_TouchUpdate 19 #define XI_TouchEnd 20 #endif // Copied from xserver-properties.h #define AXIS_LABEL_PROP_REL_HWHEEL "Rel Horiz Wheel" #define AXIS_LABEL_PROP_REL_WHEEL "Rel Vert Wheel" // CMT specific timings #define AXIS_LABEL_PROP_ABS_DBL_START_TIME "Abs Dbl Start Timestamp" #define AXIS_LABEL_PROP_ABS_DBL_END_TIME "Abs Dbl End Timestamp" // Ordinal values #define AXIS_LABEL_PROP_ABS_DBL_ORDINAL_X "Abs Dbl Ordinal X" #define AXIS_LABEL_PROP_ABS_DBL_ORDINAL_Y "Abs Dbl Ordinal Y" // Fling properties #define AXIS_LABEL_PROP_ABS_DBL_FLING_VX "Abs Dbl Fling X Velocity" #define AXIS_LABEL_PROP_ABS_DBL_FLING_VY "Abs Dbl Fling Y Velocity" #define AXIS_LABEL_PROP_ABS_FLING_STATE "Abs Fling State" #define AXIS_LABEL_PROP_ABS_FINGER_COUNT "Abs Finger Count" // Cros metrics gesture from touchpad #define AXIS_LABEL_PROP_ABS_METRICS_TYPE "Abs Metrics Type" #define AXIS_LABEL_PROP_ABS_DBL_METRICS_DATA1 "Abs Dbl Metrics Data 1" #define AXIS_LABEL_PROP_ABS_DBL_METRICS_DATA2 "Abs Dbl Metrics Data 2" // Touchscreen multi-touch #define AXIS_LABEL_ABS_MT_TOUCH_MAJOR "Abs MT Touch Major" #define AXIS_LABEL_ABS_MT_TOUCH_MINOR "Abs MT Touch Minor" #define AXIS_LABEL_ABS_MT_ORIENTATION "Abs MT Orientation" #define AXIS_LABEL_ABS_MT_PRESSURE "Abs MT Pressure" #define AXIS_LABEL_ABS_MT_TRACKING_ID "Abs MT Tracking ID" #define AXIS_LABEL_TOUCH_TIMESTAMP "Touch Timestamp" // When you add new data types, please make sure the order here is aligned // with the order in the DataType enum in the header file because we assume // they are in sync when updating the device list (see UpdateDeviceList). const char* kCachedAtoms[] = { AXIS_LABEL_PROP_REL_HWHEEL, AXIS_LABEL_PROP_REL_WHEEL, AXIS_LABEL_PROP_ABS_DBL_ORDINAL_X, AXIS_LABEL_PROP_ABS_DBL_ORDINAL_Y, AXIS_LABEL_PROP_ABS_DBL_START_TIME, AXIS_LABEL_PROP_ABS_DBL_END_TIME, AXIS_LABEL_PROP_ABS_DBL_FLING_VX, AXIS_LABEL_PROP_ABS_DBL_FLING_VY, AXIS_LABEL_PROP_ABS_FLING_STATE, AXIS_LABEL_PROP_ABS_METRICS_TYPE, AXIS_LABEL_PROP_ABS_DBL_METRICS_DATA1, AXIS_LABEL_PROP_ABS_DBL_METRICS_DATA2, AXIS_LABEL_PROP_ABS_FINGER_COUNT, AXIS_LABEL_ABS_MT_TOUCH_MAJOR, AXIS_LABEL_ABS_MT_TOUCH_MINOR, AXIS_LABEL_ABS_MT_ORIENTATION, AXIS_LABEL_ABS_MT_PRESSURE, AXIS_LABEL_ABS_MT_TRACKING_ID, AXIS_LABEL_TOUCH_TIMESTAMP, NULL }; // Constants for checking if a data type lies in the range of CMT/Touch data // types. const int kCMTDataTypeStart = ui::DeviceDataManager::DT_CMT_SCROLL_X; const int kCMTDataTypeEnd = ui::DeviceDataManager::DT_CMT_FINGER_COUNT; const int kTouchDataTypeStart = ui::DeviceDataManager::DT_TOUCH_MAJOR; const int kTouchDataTypeEnd = ui::DeviceDataManager::DT_TOUCH_RAW_TIMESTAMP; namespace ui { bool DeviceDataManager::IsCMTDataType(const int type) { return (type >= kCMTDataTypeStart) && (type <= kCMTDataTypeEnd); } bool DeviceDataManager::IsTouchDataType(const int type) { return (type >= kTouchDataTypeStart) && (type <= kTouchDataTypeEnd); } DeviceDataManager* DeviceDataManager::GetInstance() { return Singleton<DeviceDataManager>::get(); } DeviceDataManager::DeviceDataManager() : xi_opcode_(-1), atom_cache_(gfx::GetXDisplay(), kCachedAtoms), button_map_count_(0) { CHECK(gfx::GetXDisplay()); InitializeXInputInternal(); // Make sure the sizes of enum and kCachedAtoms are aligned. CHECK(arraysize(kCachedAtoms) == static_cast<size_t>(DT_LAST_ENTRY) + 1); UpdateDeviceList(gfx::GetXDisplay()); UpdateButtonMap(); for (int i = 0; i < kMaxDeviceNum; i++) touch_device_to_display_map_[i] = gfx::Display::kInvalidDisplayID; } DeviceDataManager::~DeviceDataManager() { } bool DeviceDataManager::InitializeXInputInternal() { // Check if XInput is available on the system. xi_opcode_ = -1; int opcode, event, error; if (!XQueryExtension( gfx::GetXDisplay(), "XInputExtension", &opcode, &event, &error)) { VLOG(1) << "X Input extension not available: error=" << error; return false; } // Check the XInput version. #if defined(USE_XI2_MT) int major = 2, minor = USE_XI2_MT; #else int major = 2, minor = 0; #endif if (XIQueryVersion(gfx::GetXDisplay(), &major, &minor) == BadRequest) { VLOG(1) << "XInput2 not supported in the server."; return false; } #if defined(USE_XI2_MT) if (major < 2 || (major == 2 && minor < USE_XI2_MT)) { DVLOG(1) << "XI version on server is " << major << "." << minor << ". " << "But 2." << USE_XI2_MT << " is required."; return false; } #endif xi_opcode_ = opcode; CHECK_NE(-1, xi_opcode_); // Possible XI event types for XIDeviceEvent. See the XI2 protocol // specification. xi_device_event_types_[XI_KeyPress] = true; xi_device_event_types_[XI_KeyRelease] = true; xi_device_event_types_[XI_ButtonPress] = true; xi_device_event_types_[XI_ButtonRelease] = true; xi_device_event_types_[XI_Motion] = true; // Multi-touch support was introduced in XI 2.2. if (minor >= 2) { xi_device_event_types_[XI_TouchBegin] = true; xi_device_event_types_[XI_TouchUpdate] = true; xi_device_event_types_[XI_TouchEnd] = true; } return true; } bool DeviceDataManager::IsXInput2Available() const { return xi_opcode_ != -1; } void DeviceDataManager::UpdateDeviceList(Display* display) { cmt_devices_.reset(); touchpads_.reset(); for (int i = 0; i < kMaxDeviceNum; ++i) { valuator_count_[i] = 0; valuator_lookup_[i].clear(); data_type_lookup_[i].clear(); valuator_min_[i].clear(); valuator_max_[i].clear(); for (int j = 0; j < kMaxSlotNum; j++) last_seen_valuator_[i][j].clear(); } // Find all the touchpad devices. XDeviceList dev_list = ui::DeviceListCacheX::GetInstance()->GetXDeviceList(display); Atom xi_touchpad = XInternAtom(display, XI_TOUCHPAD, false); for (int i = 0; i < dev_list.count; ++i) if (dev_list[i].type == xi_touchpad) touchpads_[dev_list[i].id] = true; if (!IsXInput2Available()) return; // Update the structs with new valuator information XIDeviceList info_list = ui::DeviceListCacheX::GetInstance()->GetXI2DeviceList(display); Atom atoms[DT_LAST_ENTRY]; for (int data_type = 0; data_type < DT_LAST_ENTRY; ++data_type) atoms[data_type] = atom_cache_.GetAtom(kCachedAtoms[data_type]); for (int i = 0; i < info_list.count; ++i) { XIDeviceInfo* info = info_list.devices + i; // We currently handle only slave, non-keyboard devices if (info->use != XISlavePointer && info->use != XIFloatingSlave) continue; bool possible_cmt = false; bool not_cmt = false; const int deviceid = info->deviceid; for (int j = 0; j < info->num_classes; ++j) { if (info->classes[j]->type == XIValuatorClass) ++valuator_count_[deviceid]; else if (info->classes[j]->type == XIScrollClass) not_cmt = true; } // Skip devices that don't use any valuator if (!valuator_count_[deviceid]) continue; valuator_lookup_[deviceid].resize(DT_LAST_ENTRY, -1); data_type_lookup_[deviceid].resize( valuator_count_[deviceid], DT_LAST_ENTRY); valuator_min_[deviceid].resize(DT_LAST_ENTRY, 0); valuator_max_[deviceid].resize(DT_LAST_ENTRY, 0); for (int j = 0; j < kMaxSlotNum; j++) last_seen_valuator_[deviceid][j].resize(DT_LAST_ENTRY, 0); for (int j = 0; j < info->num_classes; ++j) { if (info->classes[j]->type != XIValuatorClass) continue; XIValuatorClassInfo* v = reinterpret_cast<XIValuatorClassInfo*>(info->classes[j]); for (int data_type = 0; data_type < DT_LAST_ENTRY; ++data_type) { if (v->label == atoms[data_type]) { valuator_lookup_[deviceid][data_type] = v->number; data_type_lookup_[deviceid][v->number] = data_type; valuator_min_[deviceid][data_type] = v->min; valuator_max_[deviceid][data_type] = v->max; if (IsCMTDataType(data_type)) possible_cmt = true; break; } } } if (possible_cmt && !not_cmt) cmt_devices_[deviceid] = true; } } bool DeviceDataManager::GetSlotNumber(const XIDeviceEvent* xiev, int* slot) { #if defined(USE_XI2_MT) ui::TouchFactory* factory = ui::TouchFactory::GetInstance(); if (!factory->IsMultiTouchDevice(xiev->sourceid)) { *slot = 0; return true; } return factory->QuerySlotForTrackingID(xiev->detail, slot); #else *slot = 0; return true; #endif } void DeviceDataManager::GetEventRawData(const XEvent& xev, EventData* data) { if (xev.type != GenericEvent) return; XIDeviceEvent* xiev = static_cast<XIDeviceEvent*>(xev.xcookie.data); if (xiev->sourceid >= kMaxDeviceNum || xiev->deviceid >= kMaxDeviceNum) return; data->clear(); const int sourceid = xiev->sourceid; double* valuators = xiev->valuators.values; for (int i = 0; i <= valuator_count_[sourceid]; ++i) { if (XIMaskIsSet(xiev->valuators.mask, i)) { int type = data_type_lookup_[sourceid][i]; if (type != DT_LAST_ENTRY) { (*data)[type] = *valuators; if (IsTouchDataType(type)) { int slot = -1; if (GetSlotNumber(xiev, &slot) && slot >= 0 && slot < kMaxSlotNum) last_seen_valuator_[sourceid][slot][type] = *valuators; } } valuators++; } } } bool DeviceDataManager::GetEventData(const XEvent& xev, const DataType type, double* value) { if (xev.type != GenericEvent) return false; XIDeviceEvent* xiev = static_cast<XIDeviceEvent*>(xev.xcookie.data); if (xiev->sourceid >= kMaxDeviceNum || xiev->deviceid >= kMaxDeviceNum) return false; const int sourceid = xiev->sourceid; if (valuator_lookup_[sourceid].empty()) return false; if (type == DT_TOUCH_TRACKING_ID) { // With XInput2 MT, Tracking ID is provided in the detail field for touch // events. if (xiev->evtype == XI_TouchBegin || xiev->evtype == XI_TouchEnd || xiev->evtype == XI_TouchUpdate) { *value = xiev->detail; } else { *value = 0; } return true; } int val_index = valuator_lookup_[sourceid][type]; int slot = 0; if (val_index >= 0) { if (XIMaskIsSet(xiev->valuators.mask, val_index)) { double* valuators = xiev->valuators.values; while (val_index--) { if (XIMaskIsSet(xiev->valuators.mask, val_index)) ++valuators; } *value = *valuators; if (IsTouchDataType(type)) { if (GetSlotNumber(xiev, &slot) && slot >= 0 && slot < kMaxSlotNum) last_seen_valuator_[sourceid][slot][type] = *value; } return true; } else if (IsTouchDataType(type)) { if (GetSlotNumber(xiev, &slot) && slot >= 0 && slot < kMaxSlotNum) *value = last_seen_valuator_[sourceid][slot][type]; } } return false; } bool DeviceDataManager::IsXIDeviceEvent( const base::NativeEvent& native_event) const { if (native_event->type != GenericEvent || native_event->xcookie.extension != xi_opcode_) return false; return xi_device_event_types_[native_event->xcookie.evtype]; } bool DeviceDataManager::IsTouchpadXInputEvent( const base::NativeEvent& native_event) const { if (native_event->type != GenericEvent) return false; XIDeviceEvent* xievent = static_cast<XIDeviceEvent*>(native_event->xcookie.data); if (xievent->sourceid >= kMaxDeviceNum) return false; return touchpads_[xievent->sourceid]; } bool DeviceDataManager::IsCMTDeviceEvent( const base::NativeEvent& native_event) const { if (native_event->type != GenericEvent) return false; XIDeviceEvent* xievent = static_cast<XIDeviceEvent*>(native_event->xcookie.data); if (xievent->sourceid >= kMaxDeviceNum) return false; return cmt_devices_[xievent->sourceid]; } bool DeviceDataManager::IsCMTGestureEvent( const base::NativeEvent& native_event) const { return (IsScrollEvent(native_event) || IsFlingEvent(native_event) || IsCMTMetricsEvent(native_event)); } bool DeviceDataManager::HasEventData( const XIDeviceEvent* xiev, const DataType type) const { const int idx = valuator_lookup_[xiev->sourceid][type]; return (idx >= 0) && XIMaskIsSet(xiev->valuators.mask, idx); } bool DeviceDataManager::IsScrollEvent( const base::NativeEvent& native_event) const { if (!IsCMTDeviceEvent(native_event)) return false; XIDeviceEvent* xiev = static_cast<XIDeviceEvent*>(native_event->xcookie.data); return (HasEventData(xiev, DT_CMT_SCROLL_X) || HasEventData(xiev, DT_CMT_SCROLL_Y)); } bool DeviceDataManager::IsFlingEvent( const base::NativeEvent& native_event) const { if (!IsCMTDeviceEvent(native_event)) return false; XIDeviceEvent* xiev = static_cast<XIDeviceEvent*>(native_event->xcookie.data); return (HasEventData(xiev, DT_CMT_FLING_X) && HasEventData(xiev, DT_CMT_FLING_Y) && HasEventData(xiev, DT_CMT_FLING_STATE)); } bool DeviceDataManager::IsCMTMetricsEvent( const base::NativeEvent& native_event) const { if (!IsCMTDeviceEvent(native_event)) return false; XIDeviceEvent* xiev = static_cast<XIDeviceEvent*>(native_event->xcookie.data); return (HasEventData(xiev, DT_CMT_METRICS_TYPE) && HasEventData(xiev, DT_CMT_METRICS_DATA1) && HasEventData(xiev, DT_CMT_METRICS_DATA2)); } bool DeviceDataManager::HasGestureTimes( const base::NativeEvent& native_event) const { if (!IsCMTDeviceEvent(native_event)) return false; XIDeviceEvent* xiev = static_cast<XIDeviceEvent*>(native_event->xcookie.data); return (HasEventData(xiev, DT_CMT_START_TIME) && HasEventData(xiev, DT_CMT_END_TIME)); } void DeviceDataManager::GetScrollOffsets(const base::NativeEvent& native_event, float* x_offset, float* y_offset, float* x_offset_ordinal, float* y_offset_ordinal, int* finger_count) { *x_offset = 0; *y_offset = 0; *x_offset_ordinal = 0; *y_offset_ordinal = 0; *finger_count = 2; EventData data; GetEventRawData(*native_event, &data); if (data.find(DT_CMT_SCROLL_X) != data.end()) *x_offset = data[DT_CMT_SCROLL_X]; if (data.find(DT_CMT_SCROLL_Y) != data.end()) *y_offset = data[DT_CMT_SCROLL_Y]; if (data.find(DT_CMT_ORDINAL_X) != data.end()) *x_offset_ordinal = data[DT_CMT_ORDINAL_X]; if (data.find(DT_CMT_ORDINAL_Y) != data.end()) *y_offset_ordinal = data[DT_CMT_ORDINAL_Y]; if (data.find(DT_CMT_FINGER_COUNT) != data.end()) *finger_count = static_cast<int>(data[DT_CMT_FINGER_COUNT]); } void DeviceDataManager::GetFlingData(const base::NativeEvent& native_event, float* vx, float* vy, float* vx_ordinal, float* vy_ordinal, bool* is_cancel) { *vx = 0; *vy = 0; *vx_ordinal = 0; *vy_ordinal = 0; *is_cancel = false; EventData data; GetEventRawData(*native_event, &data); if (data.find(DT_CMT_FLING_X) != data.end()) *vx = data[DT_CMT_FLING_X]; if (data.find(DT_CMT_FLING_Y) != data.end()) *vy = data[DT_CMT_FLING_Y]; if (data.find(DT_CMT_FLING_STATE) != data.end()) *is_cancel = !!static_cast<unsigned int>(data[DT_CMT_FLING_STATE]); if (data.find(DT_CMT_ORDINAL_X) != data.end()) *vx_ordinal = data[DT_CMT_ORDINAL_X]; if (data.find(DT_CMT_ORDINAL_Y) != data.end()) *vy_ordinal = data[DT_CMT_ORDINAL_Y]; } void DeviceDataManager::GetMetricsData(const base::NativeEvent& native_event, GestureMetricsType* type, float* data1, float* data2) { *type = kGestureMetricsTypeUnknown; *data1 = 0; *data2 = 0; EventData data; GetEventRawData(*native_event, &data); if (data.find(DT_CMT_METRICS_TYPE) != data.end()) { int val = static_cast<int>(data[DT_CMT_METRICS_TYPE]); if (val == 0) *type = kGestureMetricsTypeNoisyGround; else *type = kGestureMetricsTypeUnknown; } if (data.find(DT_CMT_METRICS_DATA1) != data.end()) *data1 = data[DT_CMT_METRICS_DATA1]; if (data.find(DT_CMT_METRICS_DATA2) != data.end()) *data2 = data[DT_CMT_METRICS_DATA2]; } int DeviceDataManager::GetMappedButton(int button) { return button > 0 && button <= button_map_count_ ? button_map_[button - 1] : button; } void DeviceDataManager::UpdateButtonMap() { button_map_count_ = XGetPointerMapping(gfx::GetXDisplay(), button_map_, arraysize(button_map_)); } void DeviceDataManager::GetGestureTimes(const base::NativeEvent& native_event, double* start_time, double* end_time) { *start_time = 0; *end_time = 0; EventData data; GetEventRawData(*native_event, &data); if (data.find(DT_CMT_START_TIME) != data.end()) *start_time = data[DT_CMT_START_TIME]; if (data.find(DT_CMT_END_TIME) != data.end()) *end_time = data[DT_CMT_END_TIME]; } bool DeviceDataManager::NormalizeData(unsigned int deviceid, const DataType type, double* value) { double max_value; double min_value; if (GetDataRange(deviceid, type, &min_value, &max_value)) { *value = (*value - min_value) / (max_value - min_value); DCHECK(*value >= 0.0 && *value <= 1.0); return true; } return false; } bool DeviceDataManager::GetDataRange(unsigned int deviceid, const DataType type, double* min, double* max) { if (deviceid >= static_cast<unsigned int>(kMaxDeviceNum)) return false; if (valuator_lookup_[deviceid][type] >= 0) { *min = valuator_min_[deviceid][type]; *max = valuator_max_[deviceid][type]; return true; } return false; } void DeviceDataManager::SetDeviceListForTest( const std::vector<unsigned int>& touchscreen, const std::vector<unsigned int>& cmt_devices) { for (int i = 0; i < kMaxDeviceNum; ++i) { valuator_count_[i] = 0; valuator_lookup_[i].clear(); data_type_lookup_[i].clear(); valuator_min_[i].clear(); valuator_max_[i].clear(); for (int j = 0; j < kMaxSlotNum; j++) last_seen_valuator_[i][j].clear(); } for (size_t i = 0; i < touchscreen.size(); i++) { unsigned int deviceid = touchscreen[i]; InitializeValuatorsForTest(deviceid, kTouchDataTypeStart, kTouchDataTypeEnd, 0, 1000); } cmt_devices_.reset(); for (size_t i = 0; i < cmt_devices.size(); ++i) { unsigned int deviceid = cmt_devices[i]; cmt_devices_[deviceid] = true; touchpads_[deviceid] = true; InitializeValuatorsForTest(deviceid, kCMTDataTypeStart, kCMTDataTypeEnd, -1000, 1000); } } void DeviceDataManager::SetValuatorDataForTest(XIDeviceEvent* xievent, DataType type, double value) { int index = valuator_lookup_[xievent->deviceid][type]; CHECK(!XIMaskIsSet(xievent->valuators.mask, index)); CHECK(index >= 0 && index < valuator_count_[xievent->deviceid]); XISetMask(xievent->valuators.mask, index); double* valuators = xievent->valuators.values; for (int i = 0; i < index; ++i) { if (XIMaskIsSet(xievent->valuators.mask, i)) valuators++; } for (int i = DT_LAST_ENTRY - 1; i > valuators - xievent->valuators.values; --i) xievent->valuators.values[i] = xievent->valuators.values[i - 1]; *valuators = value; } void DeviceDataManager::InitializeValuatorsForTest(int deviceid, int start_valuator, int end_valuator, double min_value, double max_value) { valuator_lookup_[deviceid].resize(DT_LAST_ENTRY, -1); data_type_lookup_[deviceid].resize(DT_LAST_ENTRY, DT_LAST_ENTRY); valuator_min_[deviceid].resize(DT_LAST_ENTRY, 0); valuator_max_[deviceid].resize(DT_LAST_ENTRY, 0); for (int j = 0; j < kMaxSlotNum; j++) last_seen_valuator_[deviceid][j].resize(DT_LAST_ENTRY, 0); for (int j = start_valuator; j <= end_valuator; ++j) { valuator_lookup_[deviceid][j] = valuator_count_[deviceid]; data_type_lookup_[deviceid][valuator_count_[deviceid]] = j; valuator_min_[deviceid][j] = min_value; valuator_max_[deviceid][j] = max_value; valuator_count_[deviceid]++; } } bool DeviceDataManager::TouchEventNeedsCalibrate(int touch_device_id) const { #if defined(OS_CHROMEOS) && defined(USE_XI2_MT) int64 touch_display_id = GetDisplayForTouchDevice(touch_device_id); if (base::SysInfo::IsRunningOnChromeOS() && touch_display_id == gfx::Display::InternalDisplayId()) { return true; } #endif // defined(OS_CHROMEOS) && defined(USE_XI2_MT) return false; } void DeviceDataManager::ClearTouchTransformerRecord() { for (int i = 0; i < kMaxDeviceNum; i++) { touch_device_transformer_map_[i] = gfx::Transform(); touch_device_to_display_map_[i] = gfx::Display::kInvalidDisplayID; } } bool DeviceDataManager::IsTouchDeviceIdValid(int touch_device_id) const { return (touch_device_id > 0 && touch_device_id < kMaxDeviceNum); } void DeviceDataManager::UpdateTouchInfoForDisplay( int64 display_id, int touch_device_id, const gfx::Transform& touch_transformer) { if (IsTouchDeviceIdValid(touch_device_id)) { touch_device_to_display_map_[touch_device_id] = display_id; touch_device_transformer_map_[touch_device_id] = touch_transformer; } } void DeviceDataManager::ApplyTouchTransformer(int touch_device_id, float* x, float* y) { if (IsTouchDeviceIdValid(touch_device_id)) { gfx::Point3F point(*x, *y, 0.0); const gfx::Transform& trans = touch_device_transformer_map_[touch_device_id]; trans.TransformPoint(&point); *x = point.x(); *y = point.y(); } } int64 DeviceDataManager::GetDisplayForTouchDevice(int touch_device_id) const { if (IsTouchDeviceIdValid(touch_device_id)) return touch_device_to_display_map_[touch_device_id]; return gfx::Display::kInvalidDisplayID; } } // namespace ui