/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdint.h> #if defined(WEBRTC_POSIX) #include <sys/time.h> #if defined(WEBRTC_MAC) #include <mach/mach_time.h> #endif #endif #if defined(WEBRTC_WIN) #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <mmsystem.h> #endif #include "webrtc/base/common.h" #include "webrtc/base/timeutils.h" #define EFFICIENT_IMPLEMENTATION 1 namespace rtc { const uint32 HALF = 0x80000000; uint64 TimeNanos() { int64 ticks = 0; #if defined(WEBRTC_MAC) static mach_timebase_info_data_t timebase; if (timebase.denom == 0) { // Get the timebase if this is the first time we run. // Recommended by Apple's QA1398. VERIFY(KERN_SUCCESS == mach_timebase_info(&timebase)); } // Use timebase to convert absolute time tick units into nanoseconds. ticks = mach_absolute_time() * timebase.numer / timebase.denom; #elif defined(WEBRTC_POSIX) struct timespec ts; // TODO: Do we need to handle the case when CLOCK_MONOTONIC // is not supported? clock_gettime(CLOCK_MONOTONIC, &ts); ticks = kNumNanosecsPerSec * static_cast<int64>(ts.tv_sec) + static_cast<int64>(ts.tv_nsec); #elif defined(WEBRTC_WIN) static volatile LONG last_timegettime = 0; static volatile int64 num_wrap_timegettime = 0; volatile LONG* last_timegettime_ptr = &last_timegettime; DWORD now = timeGetTime(); // Atomically update the last gotten time DWORD old = InterlockedExchange(last_timegettime_ptr, now); if (now < old) { // If now is earlier than old, there may have been a race between // threads. // 0x0fffffff ~3.1 days, the code will not take that long to execute // so it must have been a wrap around. if (old > 0xf0000000 && now < 0x0fffffff) { num_wrap_timegettime++; } } ticks = now + (num_wrap_timegettime << 32); // TODO: Calculate with nanosecond precision. Otherwise, we're just // wasting a multiply and divide when doing Time() on Windows. ticks = ticks * kNumNanosecsPerMillisec; #endif return ticks; } uint32 Time() { return static_cast<uint32>(TimeNanos() / kNumNanosecsPerMillisec); } uint64 TimeMicros() { return static_cast<uint64>(TimeNanos() / kNumNanosecsPerMicrosec); } #if defined(WEBRTC_WIN) static const uint64 kFileTimeToUnixTimeEpochOffset = 116444736000000000ULL; struct timeval { long tv_sec, tv_usec; // NOLINT }; // Emulate POSIX gettimeofday(). // Based on breakpad/src/third_party/glog/src/utilities.cc static int gettimeofday(struct timeval *tv, void *tz) { // FILETIME is measured in tens of microseconds since 1601-01-01 UTC. FILETIME ft; GetSystemTimeAsFileTime(&ft); LARGE_INTEGER li; li.LowPart = ft.dwLowDateTime; li.HighPart = ft.dwHighDateTime; // Convert to seconds and microseconds since Unix time Epoch. int64 micros = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) / 10; tv->tv_sec = static_cast<long>(micros / kNumMicrosecsPerSec); // NOLINT tv->tv_usec = static_cast<long>(micros % kNumMicrosecsPerSec); // NOLINT return 0; } // Emulate POSIX gmtime_r(). static struct tm *gmtime_r(const time_t *timep, struct tm *result) { // On Windows, gmtime is thread safe. struct tm *tm = gmtime(timep); // NOLINT if (tm == NULL) { return NULL; } *result = *tm; return result; } #endif // WEBRTC_WIN void CurrentTmTime(struct tm *tm, int *microseconds) { struct timeval timeval; if (gettimeofday(&timeval, NULL) < 0) { // Incredibly unlikely code path. timeval.tv_sec = timeval.tv_usec = 0; } time_t secs = timeval.tv_sec; gmtime_r(&secs, tm); *microseconds = timeval.tv_usec; } uint32 TimeAfter(int32 elapsed) { ASSERT(elapsed >= 0); ASSERT(static_cast<uint32>(elapsed) < HALF); return Time() + elapsed; } bool TimeIsBetween(uint32 earlier, uint32 middle, uint32 later) { if (earlier <= later) { return ((earlier <= middle) && (middle <= later)); } else { return !((later < middle) && (middle < earlier)); } } bool TimeIsLaterOrEqual(uint32 earlier, uint32 later) { #if EFFICIENT_IMPLEMENTATION int32 diff = later - earlier; return (diff >= 0 && static_cast<uint32>(diff) < HALF); #else const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF); return later_or_equal; #endif } bool TimeIsLater(uint32 earlier, uint32 later) { #if EFFICIENT_IMPLEMENTATION int32 diff = later - earlier; return (diff > 0 && static_cast<uint32>(diff) < HALF); #else const bool earlier_or_equal = TimeIsBetween(later, earlier, later + HALF); return !earlier_or_equal; #endif } int32 TimeDiff(uint32 later, uint32 earlier) { #if EFFICIENT_IMPLEMENTATION return later - earlier; #else const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF); if (later_or_equal) { if (earlier <= later) { return static_cast<long>(later - earlier); } else { return static_cast<long>(later + (UINT32_MAX - earlier) + 1); } } else { if (later <= earlier) { return -static_cast<long>(earlier - later); } else { return -static_cast<long>(earlier + (UINT32_MAX - later) + 1); } } #endif } TimestampWrapAroundHandler::TimestampWrapAroundHandler() : last_ts_(0), num_wrap_(0) {} int64 TimestampWrapAroundHandler::Unwrap(uint32 ts) { if (ts < last_ts_) { if (last_ts_ > 0xf0000000 && ts < 0x0fffffff) { ++num_wrap_; } } last_ts_ = ts; int64_t unwrapped_ts = ts + (num_wrap_ << 32); return unwrapped_ts; } } // namespace rtc