/* * Copyright 2011 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <algorithm> #include <set> #include <string> #include "webrtc/base/gunit.h" #include "webrtc/base/helpers.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/ssladapter.h" #include "webrtc/base/sslconfig.h" #include "webrtc/base/sslidentity.h" #include "webrtc/base/sslstreamadapter.h" #include "webrtc/base/stream.h" static const int kBlockSize = 4096; static const char kAES_CM_HMAC_SHA1_80[] = "AES_CM_128_HMAC_SHA1_80"; static const char kAES_CM_HMAC_SHA1_32[] = "AES_CM_128_HMAC_SHA1_32"; static const char kExporterLabel[] = "label"; static const unsigned char kExporterContext[] = "context"; static int kExporterContextLen = sizeof(kExporterContext); static const char kRSA_PRIVATE_KEY_PEM[] = "-----BEGIN RSA PRIVATE KEY-----\n" "MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBAMYRkbhmI7kVA/rM\n" "czsZ+6JDhDvnkF+vn6yCAGuRPV03zuRqZtDy4N4to7PZu9PjqrRl7nDMXrG3YG9y\n" "rlIAZ72KjcKKFAJxQyAKLCIdawKRyp8RdK3LEySWEZb0AV58IadqPZDTNHHRX8dz\n" "5aTSMsbbkZ+C/OzTnbiMqLL/vg6jAgMBAAECgYAvgOs4FJcgvp+TuREx7YtiYVsH\n" "mwQPTum2z/8VzWGwR8BBHBvIpVe1MbD/Y4seyI2aco/7UaisatSgJhsU46/9Y4fq\n" "2TwXH9QANf4at4d9n/R6rzwpAJOpgwZgKvdQjkfrKTtgLV+/dawvpxUYkRH4JZM1\n" "CVGukMfKNrSVH4Ap4QJBAOJmGV1ASPnB4r4nc99at7JuIJmd7fmuVUwUgYi4XgaR\n" "WhScBsgYwZ/JoywdyZJgnbcrTDuVcWG56B3vXbhdpMsCQQDf9zeJrjnPZ3Cqm79y\n" "kdqANep0uwZciiNiWxsQrCHztywOvbFhdp8iYVFG9EK8DMY41Y5TxUwsHD+67zao\n" "ZNqJAkEA1suLUP/GvL8IwuRneQd2tWDqqRQ/Td3qq03hP7e77XtF/buya3Ghclo5\n" "54czUR89QyVfJEC6278nzA7n2h1uVQJAcG6mztNL6ja/dKZjYZye2CY44QjSlLo0\n" "MTgTSjdfg/28fFn2Jjtqf9Pi/X+50LWI/RcYMC2no606wRk9kyOuIQJBAK6VSAim\n" "1pOEjsYQn0X5KEIrz1G3bfCbB848Ime3U2/FWlCHMr6ch8kCZ5d1WUeJD3LbwMNG\n" "UCXiYxSsu20QNVw=\n" "-----END RSA PRIVATE KEY-----\n"; static const char kCERT_PEM[] = "-----BEGIN CERTIFICATE-----\n" "MIIBmTCCAQKgAwIBAgIEbzBSAjANBgkqhkiG9w0BAQsFADARMQ8wDQYDVQQDEwZX\n" "ZWJSVEMwHhcNMTQwMTAyMTgyNDQ3WhcNMTQwMjAxMTgyNDQ3WjARMQ8wDQYDVQQD\n" "EwZXZWJSVEMwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMYRkbhmI7kVA/rM\n" "czsZ+6JDhDvnkF+vn6yCAGuRPV03zuRqZtDy4N4to7PZu9PjqrRl7nDMXrG3YG9y\n" "rlIAZ72KjcKKFAJxQyAKLCIdawKRyp8RdK3LEySWEZb0AV58IadqPZDTNHHRX8dz\n" "5aTSMsbbkZ+C/OzTnbiMqLL/vg6jAgMBAAEwDQYJKoZIhvcNAQELBQADgYEAUflI\n" "VUe5Krqf5RVa5C3u/UTAOAUJBiDS3VANTCLBxjuMsvqOG0WvaYWP3HYPgrz0jXK2\n" "LJE/mGw3MyFHEqi81jh95J+ypl6xKW6Rm8jKLR87gUvCaVYn/Z4/P3AqcQTB7wOv\n" "UD0A8qfhfDM+LK6rPAnCsVN0NRDY3jvd6rzix9M=\n" "-----END CERTIFICATE-----\n"; #define MAYBE_SKIP_TEST(feature) \ if (!(rtc::SSLStreamAdapter::feature())) { \ LOG(LS_INFO) << "Feature disabled... skipping"; \ return; \ } class SSLStreamAdapterTestBase; class SSLDummyStream : public rtc::StreamInterface, public sigslot::has_slots<> { public: explicit SSLDummyStream(SSLStreamAdapterTestBase *test, const std::string &side, rtc::FifoBuffer *in, rtc::FifoBuffer *out) : test_(test), side_(side), in_(in), out_(out), first_packet_(true) { in_->SignalEvent.connect(this, &SSLDummyStream::OnEventIn); out_->SignalEvent.connect(this, &SSLDummyStream::OnEventOut); } virtual rtc::StreamState GetState() const { return rtc::SS_OPEN; } virtual rtc::StreamResult Read(void* buffer, size_t buffer_len, size_t* read, int* error) { rtc::StreamResult r; r = in_->Read(buffer, buffer_len, read, error); if (r == rtc::SR_BLOCK) return rtc::SR_BLOCK; if (r == rtc::SR_EOS) return rtc::SR_EOS; if (r != rtc::SR_SUCCESS) { ADD_FAILURE(); return rtc::SR_ERROR; } return rtc::SR_SUCCESS; } // Catch readability events on in and pass them up. virtual void OnEventIn(rtc::StreamInterface *stream, int sig, int err) { int mask = (rtc::SE_READ | rtc::SE_CLOSE); if (sig & mask) { LOG(LS_INFO) << "SSLDummyStream::OnEvent side=" << side_ << " sig=" << sig << " forwarding upward"; PostEvent(sig & mask, 0); } } // Catch writeability events on out and pass them up. virtual void OnEventOut(rtc::StreamInterface *stream, int sig, int err) { if (sig & rtc::SE_WRITE) { LOG(LS_INFO) << "SSLDummyStream::OnEvent side=" << side_ << " sig=" << sig << " forwarding upward"; PostEvent(sig & rtc::SE_WRITE, 0); } } // Write to the outgoing FifoBuffer rtc::StreamResult WriteData(const void* data, size_t data_len, size_t* written, int* error) { return out_->Write(data, data_len, written, error); } // Defined later virtual rtc::StreamResult Write(const void* data, size_t data_len, size_t* written, int* error); virtual void Close() { LOG(LS_INFO) << "Closing outbound stream"; out_->Close(); } private: SSLStreamAdapterTestBase *test_; const std::string side_; rtc::FifoBuffer *in_; rtc::FifoBuffer *out_; bool first_packet_; }; static const int kFifoBufferSize = 4096; class SSLStreamAdapterTestBase : public testing::Test, public sigslot::has_slots<> { public: SSLStreamAdapterTestBase(const std::string& client_cert_pem, const std::string& client_private_key_pem, bool dtls) : client_buffer_(kFifoBufferSize), server_buffer_(kFifoBufferSize), client_stream_( new SSLDummyStream(this, "c2s", &client_buffer_, &server_buffer_)), server_stream_( new SSLDummyStream(this, "s2c", &server_buffer_, &client_buffer_)), client_ssl_(rtc::SSLStreamAdapter::Create(client_stream_)), server_ssl_(rtc::SSLStreamAdapter::Create(server_stream_)), client_identity_(NULL), server_identity_(NULL), delay_(0), mtu_(1460), loss_(0), lose_first_packet_(false), damage_(false), dtls_(dtls), handshake_wait_(5000), identities_set_(false) { // Set use of the test RNG to get predictable loss patterns. rtc::SetRandomTestMode(true); // Set up the slots client_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent); server_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent); if (!client_cert_pem.empty() && !client_private_key_pem.empty()) { client_identity_ = rtc::SSLIdentity::FromPEMStrings( client_private_key_pem, client_cert_pem); } else { client_identity_ = rtc::SSLIdentity::Generate("client"); } server_identity_ = rtc::SSLIdentity::Generate("server"); client_ssl_->SetIdentity(client_identity_); server_ssl_->SetIdentity(server_identity_); } ~SSLStreamAdapterTestBase() { // Put it back for the next test. rtc::SetRandomTestMode(false); } static void SetUpTestCase() { rtc::InitializeSSL(); } static void TearDownTestCase() { rtc::CleanupSSL(); } // Recreate the client/server identities with the specified validity period. // |not_before| and |not_after| are offsets from the current time in number // of seconds. void ResetIdentitiesWithValidity(int not_before, int not_after) { client_stream_ = new SSLDummyStream(this, "c2s", &client_buffer_, &server_buffer_); server_stream_ = new SSLDummyStream(this, "s2c", &server_buffer_, &client_buffer_); client_ssl_.reset(rtc::SSLStreamAdapter::Create(client_stream_)); server_ssl_.reset(rtc::SSLStreamAdapter::Create(server_stream_)); client_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent); server_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent); rtc::SSLIdentityParams client_params; client_params.common_name = "client"; client_params.not_before = not_before; client_params.not_after = not_after; client_identity_ = rtc::SSLIdentity::GenerateForTest(client_params); rtc::SSLIdentityParams server_params; server_params.common_name = "server"; server_params.not_before = not_before; server_params.not_after = not_after; server_identity_ = rtc::SSLIdentity::GenerateForTest(server_params); client_ssl_->SetIdentity(client_identity_); server_ssl_->SetIdentity(server_identity_); } virtual void OnEvent(rtc::StreamInterface *stream, int sig, int err) { LOG(LS_INFO) << "SSLStreamAdapterTestBase::OnEvent sig=" << sig; if (sig & rtc::SE_READ) { ReadData(stream); } if ((stream == client_ssl_.get()) && (sig & rtc::SE_WRITE)) { WriteData(); } } void SetPeerIdentitiesByDigest(bool correct) { unsigned char digest[20]; size_t digest_len; bool rv; LOG(LS_INFO) << "Setting peer identities by digest"; rv = server_identity_->certificate().ComputeDigest(rtc::DIGEST_SHA_1, digest, 20, &digest_len); ASSERT_TRUE(rv); if (!correct) { LOG(LS_INFO) << "Setting bogus digest for server cert"; digest[0]++; } rv = client_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, digest, digest_len); ASSERT_TRUE(rv); rv = client_identity_->certificate().ComputeDigest(rtc::DIGEST_SHA_1, digest, 20, &digest_len); ASSERT_TRUE(rv); if (!correct) { LOG(LS_INFO) << "Setting bogus digest for client cert"; digest[0]++; } rv = server_ssl_->SetPeerCertificateDigest(rtc::DIGEST_SHA_1, digest, digest_len); ASSERT_TRUE(rv); identities_set_ = true; } void TestHandshake(bool expect_success = true) { server_ssl_->SetMode(dtls_ ? rtc::SSL_MODE_DTLS : rtc::SSL_MODE_TLS); client_ssl_->SetMode(dtls_ ? rtc::SSL_MODE_DTLS : rtc::SSL_MODE_TLS); if (!dtls_) { // Make sure we simulate a reliable network for TLS. // This is just a check to make sure that people don't write wrong // tests. ASSERT((mtu_ == 1460) && (loss_ == 0) && (lose_first_packet_ == 0)); } if (!identities_set_) SetPeerIdentitiesByDigest(true); // Start the handshake int rv; server_ssl_->SetServerRole(); rv = server_ssl_->StartSSLWithPeer(); ASSERT_EQ(0, rv); rv = client_ssl_->StartSSLWithPeer(); ASSERT_EQ(0, rv); // Now run the handshake if (expect_success) { EXPECT_TRUE_WAIT((client_ssl_->GetState() == rtc::SS_OPEN) && (server_ssl_->GetState() == rtc::SS_OPEN), handshake_wait_); } else { EXPECT_TRUE_WAIT(client_ssl_->GetState() == rtc::SS_CLOSED, handshake_wait_); } } rtc::StreamResult DataWritten(SSLDummyStream *from, const void *data, size_t data_len, size_t *written, int *error) { // Randomly drop loss_ percent of packets if (rtc::CreateRandomId() % 100 < static_cast<uint32>(loss_)) { LOG(LS_INFO) << "Randomly dropping packet, size=" << data_len; *written = data_len; return rtc::SR_SUCCESS; } if (dtls_ && (data_len > mtu_)) { LOG(LS_INFO) << "Dropping packet > mtu, size=" << data_len; *written = data_len; return rtc::SR_SUCCESS; } // Optionally damage application data (type 23). Note that we don't damage // handshake packets and we damage the last byte to keep the header // intact but break the MAC. if (damage_ && (*static_cast<const unsigned char *>(data) == 23)) { std::vector<char> buf(data_len); LOG(LS_INFO) << "Damaging packet"; memcpy(&buf[0], data, data_len); buf[data_len - 1]++; return from->WriteData(&buf[0], data_len, written, error); } return from->WriteData(data, data_len, written, error); } void SetDelay(int delay) { delay_ = delay; } int GetDelay() { return delay_; } void SetLoseFirstPacket(bool lose) { lose_first_packet_ = lose; } bool GetLoseFirstPacket() { return lose_first_packet_; } void SetLoss(int percent) { loss_ = percent; } void SetDamage() { damage_ = true; } void SetMtu(size_t mtu) { mtu_ = mtu; } void SetHandshakeWait(int wait) { handshake_wait_ = wait; } void SetDtlsSrtpCiphers(const std::vector<std::string> &ciphers, bool client) { if (client) client_ssl_->SetDtlsSrtpCiphers(ciphers); else server_ssl_->SetDtlsSrtpCiphers(ciphers); } bool GetDtlsSrtpCipher(bool client, std::string *retval) { if (client) return client_ssl_->GetDtlsSrtpCipher(retval); else return server_ssl_->GetDtlsSrtpCipher(retval); } bool GetPeerCertificate(bool client, rtc::SSLCertificate** cert) { if (client) return client_ssl_->GetPeerCertificate(cert); else return server_ssl_->GetPeerCertificate(cert); } bool ExportKeyingMaterial(const char *label, const unsigned char *context, size_t context_len, bool use_context, bool client, unsigned char *result, size_t result_len) { if (client) return client_ssl_->ExportKeyingMaterial(label, context, context_len, use_context, result, result_len); else return server_ssl_->ExportKeyingMaterial(label, context, context_len, use_context, result, result_len); } // To be implemented by subclasses. virtual void WriteData() = 0; virtual void ReadData(rtc::StreamInterface *stream) = 0; virtual void TestTransfer(int size) = 0; protected: rtc::FifoBuffer client_buffer_; rtc::FifoBuffer server_buffer_; SSLDummyStream *client_stream_; // freed by client_ssl_ destructor SSLDummyStream *server_stream_; // freed by server_ssl_ destructor rtc::scoped_ptr<rtc::SSLStreamAdapter> client_ssl_; rtc::scoped_ptr<rtc::SSLStreamAdapter> server_ssl_; rtc::SSLIdentity *client_identity_; // freed by client_ssl_ destructor rtc::SSLIdentity *server_identity_; // freed by server_ssl_ destructor int delay_; size_t mtu_; int loss_; bool lose_first_packet_; bool damage_; bool dtls_; int handshake_wait_; bool identities_set_; }; class SSLStreamAdapterTestTLS : public SSLStreamAdapterTestBase { public: SSLStreamAdapterTestTLS() : SSLStreamAdapterTestBase("", "", false) { }; // Test data transfer for TLS virtual void TestTransfer(int size) { LOG(LS_INFO) << "Starting transfer test with " << size << " bytes"; // Create some dummy data to send. size_t received; send_stream_.ReserveSize(size); for (int i = 0; i < size; ++i) { char ch = static_cast<char>(i); send_stream_.Write(&ch, 1, NULL, NULL); } send_stream_.Rewind(); // Prepare the receive stream. recv_stream_.ReserveSize(size); // Start sending WriteData(); // Wait for the client to close EXPECT_TRUE_WAIT(server_ssl_->GetState() == rtc::SS_CLOSED, 10000); // Now check the data recv_stream_.GetSize(&received); EXPECT_EQ(static_cast<size_t>(size), received); EXPECT_EQ(0, memcmp(send_stream_.GetBuffer(), recv_stream_.GetBuffer(), size)); } void WriteData() { size_t position, tosend, size; rtc::StreamResult rv; size_t sent; char block[kBlockSize]; send_stream_.GetSize(&size); if (!size) return; for (;;) { send_stream_.GetPosition(&position); if (send_stream_.Read(block, sizeof(block), &tosend, NULL) != rtc::SR_EOS) { rv = client_ssl_->Write(block, tosend, &sent, 0); if (rv == rtc::SR_SUCCESS) { send_stream_.SetPosition(position + sent); LOG(LS_VERBOSE) << "Sent: " << position + sent; } else if (rv == rtc::SR_BLOCK) { LOG(LS_VERBOSE) << "Blocked..."; send_stream_.SetPosition(position); break; } else { ADD_FAILURE(); break; } } else { // Now close LOG(LS_INFO) << "Wrote " << position << " bytes. Closing"; client_ssl_->Close(); break; } } }; virtual void ReadData(rtc::StreamInterface *stream) { char buffer[1600]; size_t bread; int err2; rtc::StreamResult r; for (;;) { r = stream->Read(buffer, sizeof(buffer), &bread, &err2); if (r == rtc::SR_ERROR || r == rtc::SR_EOS) { // Unfortunately, errors are the way that the stream adapter // signals close in OpenSSL stream->Close(); return; } if (r == rtc::SR_BLOCK) break; ASSERT_EQ(rtc::SR_SUCCESS, r); LOG(LS_INFO) << "Read " << bread; recv_stream_.Write(buffer, bread, NULL, NULL); } } private: rtc::MemoryStream send_stream_; rtc::MemoryStream recv_stream_; }; class SSLStreamAdapterTestDTLS : public SSLStreamAdapterTestBase { public: SSLStreamAdapterTestDTLS() : SSLStreamAdapterTestBase("", "", true), packet_size_(1000), count_(0), sent_(0) { } SSLStreamAdapterTestDTLS(const std::string& cert_pem, const std::string& private_key_pem) : SSLStreamAdapterTestBase(cert_pem, private_key_pem, true), packet_size_(1000), count_(0), sent_(0) { } virtual void WriteData() { unsigned char *packet = new unsigned char[1600]; do { memset(packet, sent_ & 0xff, packet_size_); *(reinterpret_cast<uint32_t *>(packet)) = sent_; size_t sent; int rv = client_ssl_->Write(packet, packet_size_, &sent, 0); if (rv == rtc::SR_SUCCESS) { LOG(LS_VERBOSE) << "Sent: " << sent_; sent_++; } else if (rv == rtc::SR_BLOCK) { LOG(LS_VERBOSE) << "Blocked..."; break; } else { ADD_FAILURE(); break; } } while (sent_ < count_); delete [] packet; } virtual void ReadData(rtc::StreamInterface *stream) { unsigned char buffer[2000]; size_t bread; int err2; rtc::StreamResult r; for (;;) { r = stream->Read(buffer, 2000, &bread, &err2); if (r == rtc::SR_ERROR) { // Unfortunately, errors are the way that the stream adapter // signals close right now stream->Close(); return; } if (r == rtc::SR_BLOCK) break; ASSERT_EQ(rtc::SR_SUCCESS, r); LOG(LS_INFO) << "Read " << bread; // Now parse the datagram ASSERT_EQ(packet_size_, bread); unsigned char* ptr_to_buffer = buffer; uint32_t packet_num = *(reinterpret_cast<uint32_t *>(ptr_to_buffer)); for (size_t i = 4; i < packet_size_; i++) { ASSERT_EQ((packet_num & 0xff), buffer[i]); } received_.insert(packet_num); } } virtual void TestTransfer(int count) { count_ = count; WriteData(); EXPECT_TRUE_WAIT(sent_ == count_, 10000); LOG(LS_INFO) << "sent_ == " << sent_; if (damage_) { WAIT(false, 2000); EXPECT_EQ(0U, received_.size()); } else if (loss_ == 0) { EXPECT_EQ_WAIT(static_cast<size_t>(sent_), received_.size(), 1000); } else { LOG(LS_INFO) << "Sent " << sent_ << " packets; received " << received_.size(); } }; private: size_t packet_size_; int count_; int sent_; std::set<int> received_; }; rtc::StreamResult SSLDummyStream::Write(const void* data, size_t data_len, size_t* written, int* error) { *written = data_len; LOG(LS_INFO) << "Writing to loopback " << data_len; if (first_packet_) { first_packet_ = false; if (test_->GetLoseFirstPacket()) { LOG(LS_INFO) << "Losing initial packet of length " << data_len; return rtc::SR_SUCCESS; } } return test_->DataWritten(this, data, data_len, written, error); return rtc::SR_SUCCESS; }; class SSLStreamAdapterTestDTLSFromPEMStrings : public SSLStreamAdapterTestDTLS { public: SSLStreamAdapterTestDTLSFromPEMStrings() : SSLStreamAdapterTestDTLS(kCERT_PEM, kRSA_PRIVATE_KEY_PEM) { } }; // Basic tests: TLS // Test that we cannot read/write if we have not yet handshaked. // This test only applies to NSS because OpenSSL has passthrough // semantics for I/O before the handshake is started. #if SSL_USE_NSS TEST_F(SSLStreamAdapterTestTLS, TestNoReadWriteBeforeConnect) { rtc::StreamResult rv; char block[kBlockSize]; size_t dummy; rv = client_ssl_->Write(block, sizeof(block), &dummy, NULL); ASSERT_EQ(rtc::SR_BLOCK, rv); rv = client_ssl_->Read(block, sizeof(block), &dummy, NULL); ASSERT_EQ(rtc::SR_BLOCK, rv); } #endif // Test that we can make a handshake work TEST_F(SSLStreamAdapterTestTLS, TestTLSConnect) { TestHandshake(); }; // Test transfer -- trivial TEST_F(SSLStreamAdapterTestTLS, TestTLSTransfer) { TestHandshake(); TestTransfer(100000); }; // Test read-write after close. TEST_F(SSLStreamAdapterTestTLS, ReadWriteAfterClose) { TestHandshake(); TestTransfer(100000); client_ssl_->Close(); rtc::StreamResult rv; char block[kBlockSize]; size_t dummy; // It's an error to write after closed. rv = client_ssl_->Write(block, sizeof(block), &dummy, NULL); ASSERT_EQ(rtc::SR_ERROR, rv); // But after closed read gives you EOS. rv = client_ssl_->Read(block, sizeof(block), &dummy, NULL); ASSERT_EQ(rtc::SR_EOS, rv); }; // Test a handshake with a bogus peer digest TEST_F(SSLStreamAdapterTestTLS, TestTLSBogusDigest) { SetPeerIdentitiesByDigest(false); TestHandshake(false); }; // Test moving a bunch of data // Basic tests: DTLS // Test that we can make a handshake work TEST_F(SSLStreamAdapterTestDTLS, TestDTLSConnect) { MAYBE_SKIP_TEST(HaveDtls); TestHandshake(); }; // Test that we can make a handshake work if the first packet in // each direction is lost. This gives us predictable loss // rather than having to tune random TEST_F(SSLStreamAdapterTestDTLS, TestDTLSConnectWithLostFirstPacket) { MAYBE_SKIP_TEST(HaveDtls); SetLoseFirstPacket(true); TestHandshake(); }; // Test a handshake with loss and delay TEST_F(SSLStreamAdapterTestDTLS, TestDTLSConnectWithLostFirstPacketDelay2s) { MAYBE_SKIP_TEST(HaveDtls); SetLoseFirstPacket(true); SetDelay(2000); SetHandshakeWait(20000); TestHandshake(); }; // Test a handshake with small MTU TEST_F(SSLStreamAdapterTestDTLS, TestDTLSConnectWithSmallMtu) { MAYBE_SKIP_TEST(HaveDtls); SetMtu(700); SetHandshakeWait(20000); TestHandshake(); }; // Test transfer -- trivial TEST_F(SSLStreamAdapterTestDTLS, TestDTLSTransfer) { MAYBE_SKIP_TEST(HaveDtls); TestHandshake(); TestTransfer(100); }; TEST_F(SSLStreamAdapterTestDTLS, TestDTLSTransferWithLoss) { MAYBE_SKIP_TEST(HaveDtls); TestHandshake(); SetLoss(10); TestTransfer(100); }; TEST_F(SSLStreamAdapterTestDTLS, TestDTLSTransferWithDamage) { MAYBE_SKIP_TEST(HaveDtls); SetDamage(); // Must be called first because first packet // write happens at end of handshake. TestHandshake(); TestTransfer(100); }; // Test DTLS-SRTP with all high ciphers TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpHigh) { MAYBE_SKIP_TEST(HaveDtlsSrtp); std::vector<std::string> high; high.push_back(kAES_CM_HMAC_SHA1_80); SetDtlsSrtpCiphers(high, true); SetDtlsSrtpCiphers(high, false); TestHandshake(); std::string client_cipher; ASSERT_TRUE(GetDtlsSrtpCipher(true, &client_cipher)); std::string server_cipher; ASSERT_TRUE(GetDtlsSrtpCipher(false, &server_cipher)); ASSERT_EQ(client_cipher, server_cipher); ASSERT_EQ(client_cipher, kAES_CM_HMAC_SHA1_80); }; // Test DTLS-SRTP with all low ciphers TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpLow) { MAYBE_SKIP_TEST(HaveDtlsSrtp); std::vector<std::string> low; low.push_back(kAES_CM_HMAC_SHA1_32); SetDtlsSrtpCiphers(low, true); SetDtlsSrtpCiphers(low, false); TestHandshake(); std::string client_cipher; ASSERT_TRUE(GetDtlsSrtpCipher(true, &client_cipher)); std::string server_cipher; ASSERT_TRUE(GetDtlsSrtpCipher(false, &server_cipher)); ASSERT_EQ(client_cipher, server_cipher); ASSERT_EQ(client_cipher, kAES_CM_HMAC_SHA1_32); }; // Test DTLS-SRTP with a mismatch -- should not converge TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpHighLow) { MAYBE_SKIP_TEST(HaveDtlsSrtp); std::vector<std::string> high; high.push_back(kAES_CM_HMAC_SHA1_80); std::vector<std::string> low; low.push_back(kAES_CM_HMAC_SHA1_32); SetDtlsSrtpCiphers(high, true); SetDtlsSrtpCiphers(low, false); TestHandshake(); std::string client_cipher; ASSERT_FALSE(GetDtlsSrtpCipher(true, &client_cipher)); std::string server_cipher; ASSERT_FALSE(GetDtlsSrtpCipher(false, &server_cipher)); }; // Test DTLS-SRTP with each side being mixed -- should select high TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpMixed) { MAYBE_SKIP_TEST(HaveDtlsSrtp); std::vector<std::string> mixed; mixed.push_back(kAES_CM_HMAC_SHA1_80); mixed.push_back(kAES_CM_HMAC_SHA1_32); SetDtlsSrtpCiphers(mixed, true); SetDtlsSrtpCiphers(mixed, false); TestHandshake(); std::string client_cipher; ASSERT_TRUE(GetDtlsSrtpCipher(true, &client_cipher)); std::string server_cipher; ASSERT_TRUE(GetDtlsSrtpCipher(false, &server_cipher)); ASSERT_EQ(client_cipher, server_cipher); ASSERT_EQ(client_cipher, kAES_CM_HMAC_SHA1_80); }; // Test an exporter TEST_F(SSLStreamAdapterTestDTLS, TestDTLSExporter) { MAYBE_SKIP_TEST(HaveExporter); TestHandshake(); unsigned char client_out[20]; unsigned char server_out[20]; bool result; result = ExportKeyingMaterial(kExporterLabel, kExporterContext, kExporterContextLen, true, true, client_out, sizeof(client_out)); ASSERT_TRUE(result); result = ExportKeyingMaterial(kExporterLabel, kExporterContext, kExporterContextLen, true, false, server_out, sizeof(server_out)); ASSERT_TRUE(result); ASSERT_TRUE(!memcmp(client_out, server_out, sizeof(client_out))); } // Test not yet valid certificates are not rejected. TEST_F(SSLStreamAdapterTestDTLS, TestCertNotYetValid) { MAYBE_SKIP_TEST(HaveDtls); long one_day = 60 * 60 * 24; // Make the certificates not valid until one day later. ResetIdentitiesWithValidity(one_day, one_day); TestHandshake(); } // Test expired certificates are not rejected. TEST_F(SSLStreamAdapterTestDTLS, TestCertExpired) { MAYBE_SKIP_TEST(HaveDtls); long one_day = 60 * 60 * 24; // Make the certificates already expired. ResetIdentitiesWithValidity(-one_day, -one_day); TestHandshake(); } // Test data transfer using certs created from strings. TEST_F(SSLStreamAdapterTestDTLSFromPEMStrings, TestTransfer) { MAYBE_SKIP_TEST(HaveDtls); TestHandshake(); TestTransfer(100); } // Test getting the remote certificate. TEST_F(SSLStreamAdapterTestDTLSFromPEMStrings, TestDTLSGetPeerCertificate) { MAYBE_SKIP_TEST(HaveDtls); // Peer certificates haven't been received yet. rtc::scoped_ptr<rtc::SSLCertificate> client_peer_cert; ASSERT_FALSE(GetPeerCertificate(true, client_peer_cert.accept())); ASSERT_FALSE(client_peer_cert != NULL); rtc::scoped_ptr<rtc::SSLCertificate> server_peer_cert; ASSERT_FALSE(GetPeerCertificate(false, server_peer_cert.accept())); ASSERT_FALSE(server_peer_cert != NULL); TestHandshake(); // The client should have a peer certificate after the handshake. ASSERT_TRUE(GetPeerCertificate(true, client_peer_cert.accept())); ASSERT_TRUE(client_peer_cert != NULL); // It's not kCERT_PEM. std::string client_peer_string = client_peer_cert->ToPEMString(); ASSERT_NE(kCERT_PEM, client_peer_string); // It must not have a chain, because the test certs are self-signed. rtc::SSLCertChain* client_peer_chain; ASSERT_FALSE(client_peer_cert->GetChain(&client_peer_chain)); // The server should have a peer certificate after the handshake. ASSERT_TRUE(GetPeerCertificate(false, server_peer_cert.accept())); ASSERT_TRUE(server_peer_cert != NULL); // It's kCERT_PEM ASSERT_EQ(kCERT_PEM, server_peer_cert->ToPEMString()); // It must not have a chain, because the test certs are self-signed. rtc::SSLCertChain* server_peer_chain; ASSERT_FALSE(server_peer_cert->GetChain(&server_peer_chain)); }