/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if HAVE_OPENSSL_SSL_H #include "webrtc/base/opensslidentity.h" // Must be included first before openssl headers. #include "webrtc/base/win32.h" // NOLINT #include <openssl/bio.h> #include <openssl/err.h> #include <openssl/pem.h> #include <openssl/bn.h> #include <openssl/rsa.h> #include <openssl/crypto.h> #include "webrtc/base/checks.h" #include "webrtc/base/helpers.h" #include "webrtc/base/logging.h" #include "webrtc/base/openssl.h" #include "webrtc/base/openssldigest.h" namespace rtc { // We could have exposed a myriad of parameters for the crypto stuff, // but keeping it simple seems best. // Strength of generated keys. Those are RSA. static const int KEY_LENGTH = 1024; // Random bits for certificate serial number static const int SERIAL_RAND_BITS = 64; // Certificate validity lifetime static const int CERTIFICATE_LIFETIME = 60*60*24*30; // 30 days, arbitrarily // Certificate validity window. // This is to compensate for slightly incorrect system clocks. static const int CERTIFICATE_WINDOW = -60*60*24; // Generate a key pair. Caller is responsible for freeing the returned object. static EVP_PKEY* MakeKey() { LOG(LS_INFO) << "Making key pair"; EVP_PKEY* pkey = EVP_PKEY_new(); // RSA_generate_key is deprecated. Use _ex version. BIGNUM* exponent = BN_new(); RSA* rsa = RSA_new(); if (!pkey || !exponent || !rsa || !BN_set_word(exponent, 0x10001) || // 65537 RSA exponent !RSA_generate_key_ex(rsa, KEY_LENGTH, exponent, NULL) || !EVP_PKEY_assign_RSA(pkey, rsa)) { EVP_PKEY_free(pkey); BN_free(exponent); RSA_free(rsa); return NULL; } // ownership of rsa struct was assigned, don't free it. BN_free(exponent); LOG(LS_INFO) << "Returning key pair"; return pkey; } // Generate a self-signed certificate, with the public key from the // given key pair. Caller is responsible for freeing the returned object. static X509* MakeCertificate(EVP_PKEY* pkey, const SSLIdentityParams& params) { LOG(LS_INFO) << "Making certificate for " << params.common_name; X509* x509 = NULL; BIGNUM* serial_number = NULL; X509_NAME* name = NULL; if ((x509=X509_new()) == NULL) goto error; if (!X509_set_pubkey(x509, pkey)) goto error; // serial number // temporary reference to serial number inside x509 struct ASN1_INTEGER* asn1_serial_number; if ((serial_number = BN_new()) == NULL || !BN_pseudo_rand(serial_number, SERIAL_RAND_BITS, 0, 0) || (asn1_serial_number = X509_get_serialNumber(x509)) == NULL || !BN_to_ASN1_INTEGER(serial_number, asn1_serial_number)) goto error; if (!X509_set_version(x509, 0L)) // version 1 goto error; // There are a lot of possible components for the name entries. In // our P2P SSL mode however, the certificates are pre-exchanged // (through the secure XMPP channel), and so the certificate // identification is arbitrary. It can't be empty, so we set some // arbitrary common_name. Note that this certificate goes out in // clear during SSL negotiation, so there may be a privacy issue in // putting anything recognizable here. if ((name = X509_NAME_new()) == NULL || !X509_NAME_add_entry_by_NID( name, NID_commonName, MBSTRING_UTF8, (unsigned char*)params.common_name.c_str(), -1, -1, 0) || !X509_set_subject_name(x509, name) || !X509_set_issuer_name(x509, name)) goto error; if (!X509_gmtime_adj(X509_get_notBefore(x509), params.not_before) || !X509_gmtime_adj(X509_get_notAfter(x509), params.not_after)) goto error; if (!X509_sign(x509, pkey, EVP_sha1())) goto error; BN_free(serial_number); X509_NAME_free(name); LOG(LS_INFO) << "Returning certificate"; return x509; error: BN_free(serial_number); X509_NAME_free(name); X509_free(x509); return NULL; } // This dumps the SSL error stack to the log. static void LogSSLErrors(const std::string& prefix) { char error_buf[200]; unsigned long err; while ((err = ERR_get_error()) != 0) { ERR_error_string_n(err, error_buf, sizeof(error_buf)); LOG(LS_ERROR) << prefix << ": " << error_buf << "\n"; } } OpenSSLKeyPair* OpenSSLKeyPair::Generate() { EVP_PKEY* pkey = MakeKey(); if (!pkey) { LogSSLErrors("Generating key pair"); return NULL; } return new OpenSSLKeyPair(pkey); } OpenSSLKeyPair::~OpenSSLKeyPair() { EVP_PKEY_free(pkey_); } void OpenSSLKeyPair::AddReference() { CRYPTO_add(&pkey_->references, 1, CRYPTO_LOCK_EVP_PKEY); } #ifdef _DEBUG // Print a certificate to the log, for debugging. static void PrintCert(X509* x509) { BIO* temp_memory_bio = BIO_new(BIO_s_mem()); if (!temp_memory_bio) { LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; return; } X509_print_ex(temp_memory_bio, x509, XN_FLAG_SEP_CPLUS_SPC, 0); BIO_write(temp_memory_bio, "\0", 1); char* buffer; BIO_get_mem_data(temp_memory_bio, &buffer); LOG(LS_VERBOSE) << buffer; BIO_free(temp_memory_bio); } #endif OpenSSLCertificate* OpenSSLCertificate::Generate( OpenSSLKeyPair* key_pair, const SSLIdentityParams& params) { SSLIdentityParams actual_params(params); if (actual_params.common_name.empty()) { // Use a random string, arbitrarily 8chars long. actual_params.common_name = CreateRandomString(8); } X509* x509 = MakeCertificate(key_pair->pkey(), actual_params); if (!x509) { LogSSLErrors("Generating certificate"); return NULL; } #ifdef _DEBUG PrintCert(x509); #endif OpenSSLCertificate* ret = new OpenSSLCertificate(x509); X509_free(x509); return ret; } OpenSSLCertificate* OpenSSLCertificate::FromPEMString( const std::string& pem_string) { BIO* bio = BIO_new_mem_buf(const_cast<char*>(pem_string.c_str()), -1); if (!bio) return NULL; BIO_set_mem_eof_return(bio, 0); X509 *x509 = PEM_read_bio_X509(bio, NULL, NULL, const_cast<char*>("\0")); BIO_free(bio); // Frees the BIO, but not the pointed-to string. if (!x509) return NULL; OpenSSLCertificate* ret = new OpenSSLCertificate(x509); X509_free(x509); return ret; } // NOTE: This implementation only functions correctly after InitializeSSL // and before CleanupSSL. bool OpenSSLCertificate::GetSignatureDigestAlgorithm( std::string* algorithm) const { return OpenSSLDigest::GetDigestName( EVP_get_digestbyobj(x509_->sig_alg->algorithm), algorithm); } bool OpenSSLCertificate::ComputeDigest(const std::string& algorithm, unsigned char* digest, size_t size, size_t* length) const { return ComputeDigest(x509_, algorithm, digest, size, length); } bool OpenSSLCertificate::ComputeDigest(const X509* x509, const std::string& algorithm, unsigned char* digest, size_t size, size_t* length) { const EVP_MD *md; unsigned int n; if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) return false; if (size < static_cast<size_t>(EVP_MD_size(md))) return false; X509_digest(x509, md, digest, &n); *length = n; return true; } OpenSSLCertificate::~OpenSSLCertificate() { X509_free(x509_); } std::string OpenSSLCertificate::ToPEMString() const { BIO* bio = BIO_new(BIO_s_mem()); if (!bio) { UNREACHABLE(); return std::string(); } if (!PEM_write_bio_X509(bio, x509_)) { BIO_free(bio); UNREACHABLE(); return std::string(); } BIO_write(bio, "\0", 1); char* buffer; BIO_get_mem_data(bio, &buffer); std::string ret(buffer); BIO_free(bio); return ret; } void OpenSSLCertificate::ToDER(Buffer* der_buffer) const { // In case of failure, make sure to leave the buffer empty. der_buffer->SetData(NULL, 0); // Calculates the DER representation of the certificate, from scratch. BIO* bio = BIO_new(BIO_s_mem()); if (!bio) { UNREACHABLE(); return; } if (!i2d_X509_bio(bio, x509_)) { BIO_free(bio); UNREACHABLE(); return; } char* data; size_t length = BIO_get_mem_data(bio, &data); der_buffer->SetData(data, length); BIO_free(bio); } void OpenSSLCertificate::AddReference() const { ASSERT(x509_ != NULL); CRYPTO_add(&x509_->references, 1, CRYPTO_LOCK_X509); } OpenSSLIdentity* OpenSSLIdentity::GenerateInternal( const SSLIdentityParams& params) { OpenSSLKeyPair *key_pair = OpenSSLKeyPair::Generate(); if (key_pair) { OpenSSLCertificate *certificate = OpenSSLCertificate::Generate( key_pair, params); if (certificate) return new OpenSSLIdentity(key_pair, certificate); delete key_pair; } LOG(LS_INFO) << "Identity generation failed"; return NULL; } OpenSSLIdentity* OpenSSLIdentity::Generate(const std::string& common_name) { SSLIdentityParams params; params.common_name = common_name; params.not_before = CERTIFICATE_WINDOW; params.not_after = CERTIFICATE_LIFETIME; return GenerateInternal(params); } OpenSSLIdentity* OpenSSLIdentity::GenerateForTest( const SSLIdentityParams& params) { return GenerateInternal(params); } SSLIdentity* OpenSSLIdentity::FromPEMStrings( const std::string& private_key, const std::string& certificate) { scoped_ptr<OpenSSLCertificate> cert( OpenSSLCertificate::FromPEMString(certificate)); if (!cert) { LOG(LS_ERROR) << "Failed to create OpenSSLCertificate from PEM string."; return NULL; } BIO* bio = BIO_new_mem_buf(const_cast<char*>(private_key.c_str()), -1); if (!bio) { LOG(LS_ERROR) << "Failed to create a new BIO buffer."; return NULL; } BIO_set_mem_eof_return(bio, 0); EVP_PKEY *pkey = PEM_read_bio_PrivateKey(bio, NULL, NULL, const_cast<char*>("\0")); BIO_free(bio); // Frees the BIO, but not the pointed-to string. if (!pkey) { LOG(LS_ERROR) << "Failed to create the private key from PEM string."; return NULL; } return new OpenSSLIdentity(new OpenSSLKeyPair(pkey), cert.release()); } bool OpenSSLIdentity::ConfigureIdentity(SSL_CTX* ctx) { // 1 is the documented success return code. if (SSL_CTX_use_certificate(ctx, certificate_->x509()) != 1 || SSL_CTX_use_PrivateKey(ctx, key_pair_->pkey()) != 1) { LogSSLErrors("Configuring key and certificate"); return false; } return true; } } // namespace rtc #endif // HAVE_OPENSSL_SSL_H