/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_BASE_MESSAGEQUEUE_H_ #define WEBRTC_BASE_MESSAGEQUEUE_H_ #include <string.h> #include <algorithm> #include <list> #include <queue> #include <vector> #include "webrtc/base/basictypes.h" #include "webrtc/base/constructormagic.h" #include "webrtc/base/criticalsection.h" #include "webrtc/base/messagehandler.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/scoped_ref_ptr.h" #include "webrtc/base/sigslot.h" #include "webrtc/base/socketserver.h" #include "webrtc/base/timeutils.h" namespace rtc { struct Message; class MessageQueue; // MessageQueueManager does cleanup of of message queues class MessageQueueManager { public: static void Add(MessageQueue *message_queue); static void Remove(MessageQueue *message_queue); static void Clear(MessageHandler *handler); // For testing purposes, we expose whether or not the MessageQueueManager // instance has been initialized. It has no other use relative to the rest of // the functions of this class, which auto-initialize the underlying // MessageQueueManager instance when necessary. static bool IsInitialized(); private: static MessageQueueManager* Instance(); MessageQueueManager(); ~MessageQueueManager(); void AddInternal(MessageQueue *message_queue); void RemoveInternal(MessageQueue *message_queue); void ClearInternal(MessageHandler *handler); static MessageQueueManager* instance_; // This list contains all live MessageQueues. std::vector<MessageQueue *> message_queues_; CriticalSection crit_; }; // Derive from this for specialized data // App manages lifetime, except when messages are purged class MessageData { public: MessageData() {} virtual ~MessageData() {} }; template <class T> class TypedMessageData : public MessageData { public: explicit TypedMessageData(const T& data) : data_(data) { } const T& data() const { return data_; } T& data() { return data_; } private: T data_; }; // Like TypedMessageData, but for pointers that require a delete. template <class T> class ScopedMessageData : public MessageData { public: explicit ScopedMessageData(T* data) : data_(data) { } const scoped_ptr<T>& data() const { return data_; } scoped_ptr<T>& data() { return data_; } private: scoped_ptr<T> data_; }; // Like ScopedMessageData, but for reference counted pointers. template <class T> class ScopedRefMessageData : public MessageData { public: explicit ScopedRefMessageData(T* data) : data_(data) { } const scoped_refptr<T>& data() const { return data_; } scoped_refptr<T>& data() { return data_; } private: scoped_refptr<T> data_; }; template<class T> inline MessageData* WrapMessageData(const T& data) { return new TypedMessageData<T>(data); } template<class T> inline const T& UseMessageData(MessageData* data) { return static_cast< TypedMessageData<T>* >(data)->data(); } template<class T> class DisposeData : public MessageData { public: explicit DisposeData(T* data) : data_(data) { } virtual ~DisposeData() { delete data_; } private: T* data_; }; const uint32 MQID_ANY = static_cast<uint32>(-1); const uint32 MQID_DISPOSE = static_cast<uint32>(-2); // No destructor struct Message { Message() { memset(this, 0, sizeof(*this)); } inline bool Match(MessageHandler* handler, uint32 id) const { return (handler == NULL || handler == phandler) && (id == MQID_ANY || id == message_id); } MessageHandler *phandler; uint32 message_id; MessageData *pdata; uint32 ts_sensitive; }; typedef std::list<Message> MessageList; // DelayedMessage goes into a priority queue, sorted by trigger time. Messages // with the same trigger time are processed in num_ (FIFO) order. class DelayedMessage { public: DelayedMessage(int delay, uint32 trigger, uint32 num, const Message& msg) : cmsDelay_(delay), msTrigger_(trigger), num_(num), msg_(msg) { } bool operator< (const DelayedMessage& dmsg) const { return (dmsg.msTrigger_ < msTrigger_) || ((dmsg.msTrigger_ == msTrigger_) && (dmsg.num_ < num_)); } int cmsDelay_; // for debugging uint32 msTrigger_; uint32 num_; Message msg_; }; class MessageQueue { public: explicit MessageQueue(SocketServer* ss = NULL); virtual ~MessageQueue(); SocketServer* socketserver() { return ss_; } void set_socketserver(SocketServer* ss); // Note: The behavior of MessageQueue has changed. When a MQ is stopped, // futher Posts and Sends will fail. However, any pending Sends and *ready* // Posts (as opposed to unexpired delayed Posts) will be delivered before // Get (or Peek) returns false. By guaranteeing delivery of those messages, // we eliminate the race condition when an MessageHandler and MessageQueue // may be destroyed independently of each other. virtual void Quit(); virtual bool IsQuitting(); virtual void Restart(); // Get() will process I/O until: // 1) A message is available (returns true) // 2) cmsWait seconds have elapsed (returns false) // 3) Stop() is called (returns false) virtual bool Get(Message *pmsg, int cmsWait = kForever, bool process_io = true); virtual bool Peek(Message *pmsg, int cmsWait = 0); virtual void Post(MessageHandler *phandler, uint32 id = 0, MessageData *pdata = NULL, bool time_sensitive = false); virtual void PostDelayed(int cmsDelay, MessageHandler *phandler, uint32 id = 0, MessageData *pdata = NULL) { return DoDelayPost(cmsDelay, TimeAfter(cmsDelay), phandler, id, pdata); } virtual void PostAt(uint32 tstamp, MessageHandler *phandler, uint32 id = 0, MessageData *pdata = NULL) { return DoDelayPost(TimeUntil(tstamp), tstamp, phandler, id, pdata); } virtual void Clear(MessageHandler *phandler, uint32 id = MQID_ANY, MessageList* removed = NULL); virtual void Dispatch(Message *pmsg); virtual void ReceiveSends(); // Amount of time until the next message can be retrieved virtual int GetDelay(); bool empty() const { return size() == 0u; } size_t size() const { CritScope cs(&crit_); // msgq_.size() is not thread safe. return msgq_.size() + dmsgq_.size() + (fPeekKeep_ ? 1u : 0u); } // Internally posts a message which causes the doomed object to be deleted template<class T> void Dispose(T* doomed) { if (doomed) { Post(NULL, MQID_DISPOSE, new DisposeData<T>(doomed)); } } // When this signal is sent out, any references to this queue should // no longer be used. sigslot::signal0<> SignalQueueDestroyed; protected: class PriorityQueue : public std::priority_queue<DelayedMessage> { public: container_type& container() { return c; } void reheap() { make_heap(c.begin(), c.end(), comp); } }; void DoDelayPost(int cmsDelay, uint32 tstamp, MessageHandler *phandler, uint32 id, MessageData* pdata); // The SocketServer is not owned by MessageQueue. SocketServer* ss_; // If a server isn't supplied in the constructor, use this one. scoped_ptr<SocketServer> default_ss_; bool fStop_; bool fPeekKeep_; Message msgPeek_; MessageList msgq_; PriorityQueue dmsgq_; uint32 dmsgq_next_num_; mutable CriticalSection crit_; private: DISALLOW_COPY_AND_ASSIGN(MessageQueue); }; } // namespace rtc #endif // WEBRTC_BASE_MESSAGEQUEUE_H_