// Copyright (c) 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Sanjay Ghemawat <opensource@google.com> // // A malloc that uses a per-thread cache to satisfy small malloc requests. // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) // // See doc/tcmalloc.html for a high-level // description of how this malloc works. // // SYNCHRONIZATION // 1. The thread-specific lists are accessed without acquiring any locks. // This is safe because each such list is only accessed by one thread. // 2. We have a lock per central free-list, and hold it while manipulating // the central free list for a particular size. // 3. The central page allocator is protected by "pageheap_lock". // 4. The pagemap (which maps from page-number to descriptor), // can be read without holding any locks, and written while holding // the "pageheap_lock". // 5. To improve performance, a subset of the information one can get // from the pagemap is cached in a data structure, pagemap_cache_, // that atomically reads and writes its entries. This cache can be // read and written without locking. // // This multi-threaded access to the pagemap is safe for fairly // subtle reasons. We basically assume that when an object X is // allocated by thread A and deallocated by thread B, there must // have been appropriate synchronization in the handoff of object // X from thread A to thread B. The same logic applies to pagemap_cache_. // // THE PAGEID-TO-SIZECLASS CACHE // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache // returns 0 for a particular PageID then that means "no information," not that // the sizeclass is 0. The cache may have stale information for pages that do // not hold the beginning of any free()'able object. Staleness is eliminated // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and // do_memalign() for all other relevant pages. // // PAGEMAP // ------- // Page map contains a mapping from page id to Span. // // If Span s occupies pages [p..q], // pagemap[p] == s // pagemap[q] == s // pagemap[p+1..q-1] are undefined // pagemap[p-1] and pagemap[q+1] are defined: // NULL if the corresponding page is not yet in the address space. // Otherwise it points to a Span. This span may be free // or allocated. If free, it is in one of pageheap's freelist. // // TODO: Bias reclamation to larger addresses // TODO: implement mallinfo/mallopt // TODO: Better testing // // 9/28/2003 (new page-level allocator replaces ptmalloc2): // * malloc/free of small objects goes from ~300 ns to ~50 ns. // * allocation of a reasonably complicated struct // goes from about 1100 ns to about 300 ns. #include "config.h" #include <gperftools/tcmalloc.h> #include <errno.h> // for ENOMEM, EINVAL, errno #ifdef HAVE_SYS_CDEFS_H #include <sys/cdefs.h> // for __THROW #endif #if defined HAVE_STDINT_H #include <stdint.h> #elif defined HAVE_INTTYPES_H #include <inttypes.h> #else #include <sys/types.h> #endif #include <stddef.h> // for size_t, NULL #include <stdlib.h> // for getenv #include <string.h> // for strcmp, memset, strlen, etc #ifdef HAVE_UNISTD_H #include <unistd.h> // for getpagesize, write, etc #endif #include <algorithm> // for max, min #include <limits> // for numeric_limits #include <new> // for nothrow_t (ptr only), etc #include <vector> // for vector #include <gperftools/malloc_extension.h> #include <gperftools/malloc_hook.h> // for MallocHook #include "base/basictypes.h" // for int64 #include "base/commandlineflags.h" // for RegisterFlagValidator, etc #include "base/dynamic_annotations.h" // for RunningOnValgrind #include "base/spinlock.h" // for SpinLockHolder #include "central_freelist.h" // for CentralFreeListPadded #include "common.h" // for StackTrace, kPageShift, etc #include "free_list.h" // for FL_Init #include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc #include "malloc_hook-inl.h" // for MallocHook::InvokeNewHook, etc #include "page_heap.h" // for PageHeap, PageHeap::Stats #include "page_heap_allocator.h" // for PageHeapAllocator #include "span.h" // for Span, DLL_Prepend, etc #include "stack_trace_table.h" // for StackTraceTable #include "static_vars.h" // for Static #include "system-alloc.h" // for DumpSystemAllocatorStats, etc #include "tcmalloc_guard.h" // for TCMallocGuard #include "thread_cache.h" // for ThreadCache #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS) # define WIN32_DO_PATCHING 1 #endif // Some windows file somewhere (at least on cygwin) #define's small (!) // For instance, <windows.h> appears to have "#define small char". #undef small using STL_NAMESPACE::max; using STL_NAMESPACE::min; using STL_NAMESPACE::numeric_limits; using STL_NAMESPACE::vector; #include "libc_override.h" // __THROW is defined in glibc (via <sys/cdefs.h>). It means, // counter-intuitively, "This function will never throw an exception." // It's an optional optimization tool, but we may need to use it to // match glibc prototypes. #ifndef __THROW // I guess we're not on a glibc system # define __THROW // __THROW is just an optimization, so ok to make it "" #endif using tcmalloc::AlignmentForSize; using tcmalloc::kLog; using tcmalloc::kCrash; using tcmalloc::kCrashWithStats; using tcmalloc::Log; using tcmalloc::PageHeap; using tcmalloc::PageHeapAllocator; using tcmalloc::SizeMap; using tcmalloc::Span; using tcmalloc::StackTrace; using tcmalloc::Static; using tcmalloc::ThreadCache; // ---- Functions doing validation with an extra mark. static size_t ExcludeSpaceForMark(size_t size); static void AddRoomForMark(size_t* size); static void ExcludeMarkFromSize(size_t* new_size); static void MarkAllocatedRegion(void* ptr); static void ValidateAllocatedRegion(void* ptr, size_t cl); // ---- End validation functions. DECLARE_int64(tcmalloc_sample_parameter); DECLARE_double(tcmalloc_release_rate); // For windows, the printf we use to report large allocs is // potentially dangerous: it could cause a malloc that would cause an // infinite loop. So by default we set the threshold to a huge number // on windows, so this bad situation will never trigger. You can // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you // want this functionality. #ifdef _WIN32 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62; #else const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30; #endif DEFINE_int64(tcmalloc_large_alloc_report_threshold, EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD", kDefaultLargeAllocReportThreshold), "Allocations larger than this value cause a stack " "trace to be dumped to stderr. The threshold for " "dumping stack traces is increased by a factor of 1.125 " "every time we print a message so that the threshold " "automatically goes up by a factor of ~1000 every 60 " "messages. This bounds the amount of extra logging " "generated by this flag. Default value of this flag " "is very large and therefore you should see no extra " "logging unless the flag is overridden. Set to 0 to " "disable reporting entirely."); // We already declared these functions in tcmalloc.h, but we have to // declare them again to give them an ATTRIBUTE_SECTION: we want to // put all callers of MallocHook::Invoke* in this module into // ATTRIBUTE_SECTION(google_malloc) section, so that // MallocHook::GetCallerStackTrace can function accurately. extern "C" { void* tc_malloc(size_t size) __THROW ATTRIBUTE_SECTION(google_malloc); void tc_free(void* ptr) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_realloc(void* ptr, size_t size) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_calloc(size_t nmemb, size_t size) __THROW ATTRIBUTE_SECTION(google_malloc); void tc_cfree(void* ptr) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_memalign(size_t __alignment, size_t __size) __THROW ATTRIBUTE_SECTION(google_malloc); int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_valloc(size_t __size) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_pvalloc(size_t __size) __THROW ATTRIBUTE_SECTION(google_malloc); void tc_malloc_stats(void) __THROW ATTRIBUTE_SECTION(google_malloc); int tc_mallopt(int cmd, int value) __THROW ATTRIBUTE_SECTION(google_malloc); #ifdef HAVE_STRUCT_MALLINFO struct mallinfo tc_mallinfo(void) __THROW ATTRIBUTE_SECTION(google_malloc); #endif void* tc_new(size_t size) ATTRIBUTE_SECTION(google_malloc); void tc_delete(void* p) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_newarray(size_t size) ATTRIBUTE_SECTION(google_malloc); void tc_deletearray(void* p) __THROW ATTRIBUTE_SECTION(google_malloc); // And the nothrow variants of these: void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW ATTRIBUTE_SECTION(google_malloc); // Surprisingly, standard C++ library implementations use a // nothrow-delete internally. See, eg: // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW ATTRIBUTE_SECTION(google_malloc); void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW ATTRIBUTE_SECTION(google_malloc); // Some non-standard extensions that we support. // This is equivalent to // OS X: malloc_size() // glibc: malloc_usable_size() // Windows: _msize() size_t tc_malloc_size(void* p) __THROW ATTRIBUTE_SECTION(google_malloc); void* tc_malloc_skip_new_handler(size_t size) ATTRIBUTE_SECTION(google_malloc); } // extern "C" // ----------------------- IMPLEMENTATION ------------------------------- static int tc_new_mode = 0; // See tc_set_new_mode(). // Routines such as free() and realloc() catch some erroneous pointers // passed to them, and invoke the below when they do. (An erroneous pointer // won't be caught if it's within a valid span or a stale span for which // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing // required) kind of exception handling for these routines. namespace { void InvalidFree(void* ptr) { Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr); } size_t InvalidGetSizeForRealloc(const void* old_ptr) { Log(kCrash, __FILE__, __LINE__, "Attempt to realloc invalid pointer", old_ptr); return 0; } size_t InvalidGetAllocatedSize(const void* ptr) { Log(kCrash, __FILE__, __LINE__, "Attempt to get the size of an invalid pointer", ptr); return 0; } // For security reasons, we want to limit the size of allocations. // See crbug.com/169327. inline bool IsAllocSizePermitted(size_t alloc_size) { // Never allow an allocation larger than what can be indexed via an int. // Remove kPageSize to account for various rounding, padding and to have a // small margin. return alloc_size <= ((std::numeric_limits<int>::max)() - kPageSize); } } // unnamed namespace // Extract interesting stats struct TCMallocStats { uint64_t thread_bytes; // Bytes in thread caches uint64_t central_bytes; // Bytes in central cache uint64_t transfer_bytes; // Bytes in central transfer cache uint64_t metadata_bytes; // Bytes alloced for metadata uint64_t metadata_unmapped_bytes; // Address space reserved for metadata // but is not committed. PageHeap::Stats pageheap; // Stats from page heap }; // Get stats into "r". Also get per-size-class counts if class_count != NULL static void ExtractStats(TCMallocStats* r, uint64_t* class_count, PageHeap::SmallSpanStats* small_spans, PageHeap::LargeSpanStats* large_spans) { r->central_bytes = 0; r->transfer_bytes = 0; for (int cl = 0; cl < kNumClasses; ++cl) { const int length = Static::central_cache()[cl].length(); const int tc_length = Static::central_cache()[cl].tc_length(); const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes(); const size_t size = static_cast<uint64_t>( Static::sizemap()->ByteSizeForClass(cl)); r->central_bytes += (size * length) + cache_overhead; r->transfer_bytes += (size * tc_length); if (class_count) class_count[cl] = length + tc_length; } // Add stats from per-thread heaps r->thread_bytes = 0; { // scope SpinLockHolder h(Static::pageheap_lock()); ThreadCache::GetThreadStats(&r->thread_bytes, class_count); r->metadata_bytes = tcmalloc::metadata_system_bytes(); r->metadata_unmapped_bytes = tcmalloc::metadata_unmapped_bytes(); r->pageheap = Static::pageheap()->stats(); if (small_spans != NULL) { Static::pageheap()->GetSmallSpanStats(small_spans); } if (large_spans != NULL) { Static::pageheap()->GetLargeSpanStats(large_spans); } } } static double PagesToMiB(uint64_t pages) { return (pages << kPageShift) / 1048576.0; } // WRITE stats to "out" static void DumpStats(TCMalloc_Printer* out, int level) { TCMallocStats stats; uint64_t class_count[kNumClasses]; PageHeap::SmallSpanStats small; PageHeap::LargeSpanStats large; if (level >= 2) { ExtractStats(&stats, class_count, &small, &large); } else { ExtractStats(&stats, NULL, NULL, NULL); } static const double MiB = 1048576.0; const uint64_t physical_memory_used_by_metadata = stats.metadata_bytes - stats.metadata_unmapped_bytes; const uint64_t unmapped_bytes = stats.pageheap.unmapped_bytes + stats.metadata_unmapped_bytes; const uint64_t virtual_memory_used = (stats.pageheap.system_bytes + stats.metadata_bytes); const uint64_t physical_memory_used = virtual_memory_used - unmapped_bytes; const uint64_t bytes_in_use_by_app = (physical_memory_used - physical_memory_used_by_metadata - stats.pageheap.free_bytes - stats.central_bytes - stats.transfer_bytes - stats.thread_bytes); out->printf( "WASTE: %7.1f MiB bytes in use\n" "WASTE: + %7.1f MiB committed but not used\n" "WASTE: ------------\n" "WASTE: = %7.1f MiB bytes committed\n" "WASTE: committed/used ratio of %f\n", bytes_in_use_by_app / MiB, (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB, stats.pageheap.committed_bytes / MiB, stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app) ); #ifdef TCMALLOC_SMALL_BUT_SLOW out->printf( "NOTE: SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n"); #endif out->printf( "------------------------------------------------\n" "MALLOC: %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n" "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n" "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n" "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n" "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n" "MALLOC: ------------\n" "MALLOC: = %12" PRIu64 " (%7.1f MiB) Bytes committed\n" "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n" "MALLOC: ------------\n" "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n" "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n" "MALLOC: ------------\n" "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n" "MALLOC:\n" "MALLOC: %12" PRIu64 " Spans in use\n" "MALLOC: %12" PRIu64 " Thread heaps in use\n" "MALLOC: %12" PRIu64 " Tcmalloc page size\n" "------------------------------------------------\n" "Call ReleaseFreeMemory() to release freelist memory to the OS" " (via madvise()).\n" "Bytes released to the OS take up virtual address space" " but no physical memory.\n", bytes_in_use_by_app, bytes_in_use_by_app / MiB, stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB, stats.central_bytes, stats.central_bytes / MiB, stats.transfer_bytes, stats.transfer_bytes / MiB, stats.thread_bytes, stats.thread_bytes / MiB, stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB, physical_memory_used_by_metadata , physical_memory_used_by_metadata / MiB, physical_memory_used, physical_memory_used / MiB, unmapped_bytes, unmapped_bytes / MiB, virtual_memory_used, virtual_memory_used / MiB, uint64_t(Static::span_allocator()->inuse()), uint64_t(ThreadCache::HeapsInUse()), uint64_t(kPageSize)); if (level >= 2) { out->printf("------------------------------------------------\n"); out->printf("Size class breakdown\n"); out->printf("------------------------------------------------\n"); uint64_t cumulative = 0; for (int cl = 0; cl < kNumClasses; ++cl) { if (class_count[cl] > 0) { uint64_t class_bytes = class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); cumulative += class_bytes; out->printf("class %3d [ %8" PRIuS " bytes ] : " "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n", cl, Static::sizemap()->ByteSizeForClass(cl), class_count[cl], class_bytes / MiB, cumulative / MiB); } } // append page heap info int nonempty_sizes = 0; for (int s = 0; s < kMaxPages; s++) { if (small.normal_length[s] + small.returned_length[s] > 0) { nonempty_sizes++; } } out->printf("------------------------------------------------\n"); out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n", nonempty_sizes, stats.pageheap.free_bytes / MiB, stats.pageheap.unmapped_bytes / MiB); out->printf("------------------------------------------------\n"); uint64_t total_normal = 0; uint64_t total_returned = 0; for (int s = 0; s < kMaxPages; s++) { const int n_length = small.normal_length[s]; const int r_length = small.returned_length[s]; if (n_length + r_length > 0) { uint64_t n_pages = s * n_length; uint64_t r_pages = s * r_length; total_normal += n_pages; total_returned += r_pages; out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum" "; unmapped: %6.1f MiB; %6.1f MiB cum\n", s, (n_length + r_length), PagesToMiB(n_pages + r_pages), PagesToMiB(total_normal + total_returned), PagesToMiB(r_pages), PagesToMiB(total_returned)); } } total_normal += large.normal_pages; total_returned += large.returned_pages; out->printf(">255 large * %6u spans ~ %6.1f MiB; %6.1f MiB cum" "; unmapped: %6.1f MiB; %6.1f MiB cum\n", static_cast<unsigned int>(large.spans), PagesToMiB(large.normal_pages + large.returned_pages), PagesToMiB(total_normal + total_returned), PagesToMiB(large.returned_pages), PagesToMiB(total_returned)); } } static void PrintStats(int level) { const int kBufferSize = 16 << 10; char* buffer = new char[kBufferSize]; TCMalloc_Printer printer(buffer, kBufferSize); DumpStats(&printer, level); write(STDERR_FILENO, buffer, strlen(buffer)); delete[] buffer; } static void** DumpHeapGrowthStackTraces() { // Count how much space we need int needed_slots = 0; { SpinLockHolder h(Static::pageheap_lock()); for (StackTrace* t = Static::growth_stacks(); t != NULL; t = reinterpret_cast<StackTrace*>( t->stack[tcmalloc::kMaxStackDepth-1])) { needed_slots += 3 + t->depth; } needed_slots += 100; // Slop in case list grows needed_slots += needed_slots/8; // An extra 12.5% slop } void** result = new void*[needed_slots]; if (result == NULL) { Log(kLog, __FILE__, __LINE__, "tcmalloc: allocation failed for stack trace slots", needed_slots * sizeof(*result)); return NULL; } SpinLockHolder h(Static::pageheap_lock()); int used_slots = 0; for (StackTrace* t = Static::growth_stacks(); t != NULL; t = reinterpret_cast<StackTrace*>( t->stack[tcmalloc::kMaxStackDepth-1])) { ASSERT(used_slots < needed_slots); // Need to leave room for terminator if (used_slots + 3 + t->depth >= needed_slots) { // No more room break; } result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); result[used_slots+1] = reinterpret_cast<void*>(t->size); result[used_slots+2] = reinterpret_cast<void*>(t->depth); for (int d = 0; d < t->depth; d++) { result[used_slots+3+d] = t->stack[d]; } used_slots += 3 + t->depth; } result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); return result; } static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) { PageID page = 1; // Some code may assume that page==0 is never used bool done = false; while (!done) { // Accumulate a small number of ranges in a local buffer static const int kNumRanges = 16; static base::MallocRange ranges[kNumRanges]; int n = 0; { SpinLockHolder h(Static::pageheap_lock()); while (n < kNumRanges) { if (!Static::pageheap()->GetNextRange(page, &ranges[n])) { done = true; break; } else { uintptr_t limit = ranges[n].address + ranges[n].length; page = (limit + kPageSize - 1) >> kPageShift; n++; } } } for (int i = 0; i < n; i++) { (*func)(arg, &ranges[i]); } } } // TCMalloc's support for extra malloc interfaces class TCMallocImplementation : public MallocExtension { private: // ReleaseToSystem() might release more than the requested bytes because // the page heap releases at the span granularity, and spans are of wildly // different sizes. This member keeps track of the extra bytes bytes // released so that the app can periodically call ReleaseToSystem() to // release memory at a constant rate. // NOTE: Protected by Static::pageheap_lock(). size_t extra_bytes_released_; public: TCMallocImplementation() : extra_bytes_released_(0) { } virtual void GetStats(char* buffer, int buffer_length) { ASSERT(buffer_length > 0); TCMalloc_Printer printer(buffer, buffer_length); // Print level one stats unless lots of space is available if (buffer_length < 10000) { DumpStats(&printer, 1); } else { DumpStats(&printer, 2); } } // We may print an extra, tcmalloc-specific warning message here. virtual void GetHeapSample(MallocExtensionWriter* writer) { if (FLAGS_tcmalloc_sample_parameter == 0) { const char* const kWarningMsg = "%warn\n" "%warn This heap profile does not have any data in it, because\n" "%warn the application was run with heap sampling turned off.\n" "%warn To get useful data from GetHeapSample(), you must\n" "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n" "%warn a positive sampling period, such as 524288.\n" "%warn\n"; writer->append(kWarningMsg, strlen(kWarningMsg)); } MallocExtension::GetHeapSample(writer); } virtual void** ReadStackTraces(int* sample_period) { tcmalloc::StackTraceTable table; { SpinLockHolder h(Static::pageheap_lock()); Span* sampled = Static::sampled_objects(); for (Span* s = sampled->next; s != sampled; s = s->next) { table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects)); } } *sample_period = ThreadCache::GetCache()->GetSamplePeriod(); return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock } virtual void** ReadHeapGrowthStackTraces() { return DumpHeapGrowthStackTraces(); } virtual void Ranges(void* arg, RangeFunction func) { IterateOverRanges(arg, func); } virtual bool GetNumericProperty(const char* name, size_t* value) { ASSERT(name != NULL); if (strcmp(name, "generic.current_allocated_bytes") == 0) { TCMallocStats stats; ExtractStats(&stats, NULL, NULL, NULL); *value = stats.pageheap.system_bytes - stats.thread_bytes - stats.central_bytes - stats.transfer_bytes - stats.pageheap.free_bytes - stats.pageheap.unmapped_bytes; return true; } if (strcmp(name, "generic.heap_size") == 0) { TCMallocStats stats; ExtractStats(&stats, NULL, NULL, NULL); *value = stats.pageheap.system_bytes; return true; } if (strcmp(name, "tcmalloc.slack_bytes") == 0) { // Kept for backwards compatibility. Now defined externally as: // pageheap_free_bytes + pageheap_unmapped_bytes. SpinLockHolder l(Static::pageheap_lock()); PageHeap::Stats stats = Static::pageheap()->stats(); *value = stats.free_bytes + stats.unmapped_bytes; return true; } if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) { SpinLockHolder l(Static::pageheap_lock()); *value = Static::pageheap()->stats().free_bytes; return true; } if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) { SpinLockHolder l(Static::pageheap_lock()); *value = Static::pageheap()->stats().unmapped_bytes; return true; } if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { SpinLockHolder l(Static::pageheap_lock()); *value = ThreadCache::overall_thread_cache_size(); return true; } if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) { TCMallocStats stats; ExtractStats(&stats, NULL, NULL, NULL); *value = stats.thread_bytes; return true; } return false; } virtual bool SetNumericProperty(const char* name, size_t value) { ASSERT(name != NULL); if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { SpinLockHolder l(Static::pageheap_lock()); ThreadCache::set_overall_thread_cache_size(value); return true; } return false; } virtual void MarkThreadIdle() { ThreadCache::BecomeIdle(); } virtual void MarkThreadBusy(); // Implemented below virtual SysAllocator* GetSystemAllocator() { SpinLockHolder h(Static::pageheap_lock()); return sys_alloc; } virtual void SetSystemAllocator(SysAllocator* alloc) { SpinLockHolder h(Static::pageheap_lock()); sys_alloc = alloc; } virtual void ReleaseToSystem(size_t num_bytes) { SpinLockHolder h(Static::pageheap_lock()); if (num_bytes <= extra_bytes_released_) { // We released too much on a prior call, so don't release any // more this time. extra_bytes_released_ = extra_bytes_released_ - num_bytes; return; } num_bytes = num_bytes - extra_bytes_released_; // num_bytes might be less than one page. If we pass zero to // ReleaseAtLeastNPages, it won't do anything, so we release a whole // page now and let extra_bytes_released_ smooth it out over time. Length num_pages = max<Length>(num_bytes >> kPageShift, 1); size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages( num_pages) << kPageShift; if (bytes_released > num_bytes) { extra_bytes_released_ = bytes_released - num_bytes; } else { // The PageHeap wasn't able to release num_bytes. Don't try to // compensate with a big release next time. Specifically, // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX). extra_bytes_released_ = 0; } } virtual void SetMemoryReleaseRate(double rate) { FLAGS_tcmalloc_release_rate = rate; } virtual double GetMemoryReleaseRate() { return FLAGS_tcmalloc_release_rate; } virtual size_t GetEstimatedAllocatedSize(size_t size) { if (size <= kMaxSize) { const size_t cl = Static::sizemap()->SizeClass(size); const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl); return alloc_size; } else { return tcmalloc::pages(size) << kPageShift; } } // This just calls GetSizeWithCallback, but because that's in an // unnamed namespace, we need to move the definition below it in the // file. virtual size_t GetAllocatedSize(const void* ptr); // This duplicates some of the logic in GetSizeWithCallback, but is // faster. This is important on OS X, where this function is called // on every allocation operation. virtual Ownership GetOwnership(const void* ptr) { const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; // The rest of tcmalloc assumes that all allocated pointers use at // most kAddressBits bits. If ptr doesn't, then it definitely // wasn't alloacted by tcmalloc. if ((p >> (kAddressBits - kPageShift)) > 0) { return kNotOwned; } size_t cl = Static::pageheap()->GetSizeClassIfCached(p); if (cl != 0) { return kOwned; } const Span *span = Static::pageheap()->GetDescriptor(p); return span ? kOwned : kNotOwned; } virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) { static const char* kCentralCacheType = "tcmalloc.central"; static const char* kTransferCacheType = "tcmalloc.transfer"; static const char* kThreadCacheType = "tcmalloc.thread"; static const char* kPageHeapType = "tcmalloc.page"; static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped"; static const char* kLargeSpanType = "tcmalloc.large"; static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped"; v->clear(); // central class information int64 prev_class_size = 0; for (int cl = 1; cl < kNumClasses; ++cl) { size_t class_size = Static::sizemap()->ByteSizeForClass(cl); MallocExtension::FreeListInfo i; i.min_object_size = prev_class_size + 1; i.max_object_size = class_size; i.total_bytes_free = Static::central_cache()[cl].length() * class_size; i.type = kCentralCacheType; v->push_back(i); // transfer cache i.total_bytes_free = Static::central_cache()[cl].tc_length() * class_size; i.type = kTransferCacheType; v->push_back(i); prev_class_size = Static::sizemap()->ByteSizeForClass(cl); } // Add stats from per-thread heaps uint64_t class_count[kNumClasses]; memset(class_count, 0, sizeof(class_count)); { SpinLockHolder h(Static::pageheap_lock()); uint64_t thread_bytes = 0; ThreadCache::GetThreadStats(&thread_bytes, class_count); } prev_class_size = 0; for (int cl = 1; cl < kNumClasses; ++cl) { MallocExtension::FreeListInfo i; i.min_object_size = prev_class_size + 1; i.max_object_size = Static::sizemap()->ByteSizeForClass(cl); i.total_bytes_free = class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); i.type = kThreadCacheType; v->push_back(i); } // append page heap info PageHeap::SmallSpanStats small; PageHeap::LargeSpanStats large; { SpinLockHolder h(Static::pageheap_lock()); Static::pageheap()->GetSmallSpanStats(&small); Static::pageheap()->GetLargeSpanStats(&large); } // large spans: mapped MallocExtension::FreeListInfo span_info; span_info.type = kLargeSpanType; span_info.max_object_size = (numeric_limits<size_t>::max)(); span_info.min_object_size = kMaxPages << kPageShift; span_info.total_bytes_free = large.normal_pages << kPageShift; v->push_back(span_info); // large spans: unmapped span_info.type = kLargeUnmappedSpanType; span_info.total_bytes_free = large.returned_pages << kPageShift; v->push_back(span_info); // small spans for (int s = 1; s < kMaxPages; s++) { MallocExtension::FreeListInfo i; i.max_object_size = (s << kPageShift); i.min_object_size = ((s - 1) << kPageShift); i.type = kPageHeapType; i.total_bytes_free = (s << kPageShift) * small.normal_length[s]; v->push_back(i); i.type = kPageHeapUnmappedType; i.total_bytes_free = (s << kPageShift) * small.returned_length[s]; v->push_back(i); } } }; // The constructor allocates an object to ensure that initialization // runs before main(), and therefore we do not have a chance to become // multi-threaded before initialization. We also create the TSD key // here. Presumably by the time this constructor runs, glibc is in // good enough shape to handle pthread_key_create(). // // The constructor also takes the opportunity to tell STL to use // tcmalloc. We want to do this early, before construct time, so // all user STL allocations go through tcmalloc (which works really // well for STL). // // The destructor prints stats when the program exits. static int tcmallocguard_refcount = 0; // no lock needed: runs before main() TCMallocGuard::TCMallocGuard() { if (tcmallocguard_refcount++ == 0) { #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS // Check whether the kernel also supports TLS (needs to happen at runtime) tcmalloc::CheckIfKernelSupportsTLS(); #endif ReplaceSystemAlloc(); // defined in libc_override_*.h tc_free(tc_malloc(1)); ThreadCache::InitTSD(); tc_free(tc_malloc(1)); // Either we, or debugallocation.cc, or valgrind will control memory // management. We register our extension if we're the winner. #ifdef TCMALLOC_USING_DEBUGALLOCATION // Let debugallocation register its extension. #else if (RunningOnValgrind()) { // Let Valgrind uses its own malloc (so don't register our extension). } else { MallocExtension::Register(new TCMallocImplementation); } #endif } } TCMallocGuard::~TCMallocGuard() { if (--tcmallocguard_refcount == 0) { const char* env = getenv("MALLOCSTATS"); if (env != NULL) { int level = atoi(env); if (level < 1) level = 1; PrintStats(level); } } } #ifndef WIN32_OVERRIDE_ALLOCATORS static TCMallocGuard module_enter_exit_hook; #endif //------------------------------------------------------------------- // Helpers for the exported routines below //------------------------------------------------------------------- static inline bool CheckCachedSizeClass(void *ptr) { PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p); return cached_value == 0 || cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass; } static inline void* CheckMallocResult(void *result) { ASSERT(result == NULL || CheckCachedSizeClass(result)); MarkAllocatedRegion(result); return result; } static inline void* SpanToMallocResult(Span *span) { Static::pageheap()->CacheSizeClass(span->start, 0); return CheckMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); } static void* DoSampledAllocation(size_t size) { // Grab the stack trace outside the heap lock StackTrace tmp; tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1); tmp.size = size; SpinLockHolder h(Static::pageheap_lock()); // Allocate span Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size)); if (span == NULL) { return NULL; } // Allocate stack trace StackTrace *stack = Static::stacktrace_allocator()->New(); if (stack == NULL) { // Sampling failed because of lack of memory return span; } *stack = tmp; span->sample = 1; span->objects = stack; tcmalloc::DLL_Prepend(Static::sampled_objects(), span); return SpanToMallocResult(span); } namespace { // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with // automatic increases factored in. static int64_t large_alloc_threshold = (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold); static void ReportLargeAlloc(Length num_pages, void* result) { StackTrace stack; stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1); static const int N = 1000; char buffer[N]; TCMalloc_Printer printer(buffer, N); printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ", static_cast<uint64>(num_pages) << kPageShift, result); for (int i = 0; i < stack.depth; i++) { printer.printf(" %p", stack.stack[i]); } printer.printf("\n"); write(STDERR_FILENO, buffer, strlen(buffer)); } inline void* cpp_alloc(size_t size, bool nothrow); inline void* do_malloc(size_t size); // TODO(willchan): Investigate whether or not inlining this much is harmful to // performance. // This is equivalent to do_malloc() except when tc_new_mode is set to true. // Otherwise, it will run the std::new_handler if set. inline void* do_malloc_or_cpp_alloc(size_t size) { return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size); } void* cpp_memalign(size_t align, size_t size); void* do_memalign(size_t align, size_t size); inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) { return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size); } // Must be called with the page lock held. inline bool should_report_large(Length num_pages) { const int64 threshold = large_alloc_threshold; if (threshold > 0 && num_pages >= (threshold >> kPageShift)) { // Increase the threshold by 1/8 every time we generate a report. // We cap the threshold at 8GiB to avoid overflow problems. large_alloc_threshold = (threshold + threshold/8 < 8ll<<30 ? threshold + threshold/8 : 8ll<<30); return true; } return false; } // Helper for do_malloc(). inline void* do_malloc_pages(ThreadCache* heap, size_t size) { void* result; bool report_large; Length num_pages = tcmalloc::pages(size); size = num_pages << kPageShift; // Chromium profiling. Measurements in March 2013 suggest this // imposes a small enough runtime cost that there's no reason to // try to optimize it. heap->AddToByteAllocatedTotal(size); if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { result = DoSampledAllocation(size); SpinLockHolder h(Static::pageheap_lock()); report_large = should_report_large(num_pages); } else { SpinLockHolder h(Static::pageheap_lock()); Span* span = Static::pageheap()->New(num_pages); result = (span == NULL ? NULL : SpanToMallocResult(span)); report_large = should_report_large(num_pages); } if (report_large) { ReportLargeAlloc(num_pages, result); } return result; } inline void* do_malloc(size_t size) { AddRoomForMark(&size); void* ret = NULL; // The following call forces module initialization ThreadCache* heap = ThreadCache::GetCache(); if (size <= kMaxSize && IsAllocSizePermitted(size)) { size_t cl = Static::sizemap()->SizeClass(size); size = Static::sizemap()->class_to_size(cl); // Chromium profiling. Measurements in March 2013 suggest this // imposes a small enough runtime cost that there's no reason to // try to optimize it. heap->AddToByteAllocatedTotal(size); if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { ret = DoSampledAllocation(size); MarkAllocatedRegion(ret); } else { // The common case, and also the simplest. This just pops the // size-appropriate freelist, after replenishing it if it's empty. ret = CheckMallocResult(heap->Allocate(size, cl)); } } else if (IsAllocSizePermitted(size)) { ret = do_malloc_pages(heap, size); MarkAllocatedRegion(ret); } if (ret == NULL) errno = ENOMEM; ASSERT(IsAllocSizePermitted(size) || ret == NULL); return ret; } inline void* do_calloc(size_t n, size_t elem_size) { // Overflow check const size_t size = n * elem_size; if (elem_size != 0 && size / elem_size != n) return NULL; void* result = do_malloc_or_cpp_alloc(size); if (result != NULL) { memset(result, 0, size); } return result; } static inline ThreadCache* GetCacheIfPresent() { void* const p = ThreadCache::GetCacheIfPresent(); return reinterpret_cast<ThreadCache*>(p); } // This lets you call back to a given function pointer if ptr is invalid. // It is used primarily by windows code which wants a specialized callback. inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) { if (ptr == NULL) return; if (Static::pageheap() == NULL) { // We called free() before malloc(). This can occur if the // (system) malloc() is called before tcmalloc is loaded, and then // free() is called after tcmalloc is loaded (and tc_free has // replaced free), but before the global constructor has run that // sets up the tcmalloc data structures. (*invalid_free_fn)(ptr); // Decide how to handle the bad free request return; } const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; Span* span = NULL; size_t cl = Static::pageheap()->GetSizeClassIfCached(p); if (cl == 0) { span = Static::pageheap()->GetDescriptor(p); if (!span) { // span can be NULL because the pointer passed in is invalid // (not something returned by malloc or friends), or because the // pointer was allocated with some other allocator besides // tcmalloc. The latter can happen if tcmalloc is linked in via // a dynamic library, but is not listed last on the link line. // In that case, libraries after it on the link line will // allocate with libc malloc, but free with tcmalloc's free. (*invalid_free_fn)(ptr); // Decide how to handle the bad free request return; } cl = span->sizeclass; Static::pageheap()->CacheSizeClass(p, cl); } if (cl == 0) { // Check to see if the object is in use. CHECK_CONDITION_PRINT(span->location == Span::IN_USE, "Object was not in-use"); CHECK_CONDITION_PRINT( span->start << kPageShift == reinterpret_cast<uintptr_t>(ptr), "Pointer is not pointing to the start of a span"); } ValidateAllocatedRegion(ptr, cl); if (cl != 0) { ASSERT(!Static::pageheap()->GetDescriptor(p)->sample); ThreadCache* heap = GetCacheIfPresent(); if (heap != NULL) { heap->Deallocate(ptr, cl); } else { // Delete directly into central cache tcmalloc::FL_Init(ptr); Static::central_cache()[cl].InsertRange(ptr, ptr, 1); } } else { SpinLockHolder h(Static::pageheap_lock()); ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); ASSERT(span != NULL && span->start == p); if (span->sample) { StackTrace* st = reinterpret_cast<StackTrace*>(span->objects); tcmalloc::DLL_Remove(span); Static::stacktrace_allocator()->Delete(st); span->objects = NULL; } Static::pageheap()->Delete(span); } } // The default "do_free" that uses the default callback. inline void do_free(void* ptr) { return do_free_with_callback(ptr, &InvalidFree); } // NOTE: some logic here is duplicated in GetOwnership (above), for // speed. If you change this function, look at that one too. inline size_t GetSizeWithCallback(const void* ptr, size_t (*invalid_getsize_fn)(const void*)) { if (ptr == NULL) return 0; const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; size_t cl = Static::pageheap()->GetSizeClassIfCached(p); if (cl != 0) { return Static::sizemap()->ByteSizeForClass(cl); } else { const Span *span = Static::pageheap()->GetDescriptor(p); if (span == NULL) { // means we do not own this memory return (*invalid_getsize_fn)(ptr); } else if (span->sizeclass != 0) { Static::pageheap()->CacheSizeClass(p, span->sizeclass); return Static::sizemap()->ByteSizeForClass(span->sizeclass); } else { return span->length << kPageShift; } } } // This lets you call back to a given function pointer if ptr is invalid. // It is used primarily by windows code which wants a specialized callback. inline void* do_realloc_with_callback( void* old_ptr, size_t new_size, void (*invalid_free_fn)(void*), size_t (*invalid_get_size_fn)(const void*)) { AddRoomForMark(&new_size); // Get the size of the old entry const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn); // Reallocate if the new size is larger than the old size, // or if the new size is significantly smaller than the old size. // We do hysteresis to avoid resizing ping-pongs: // . If we need to grow, grow to max(new_size, old_size * 1.X) // . Don't shrink unless new_size < old_size * 0.Y // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5. const size_t min_growth = min(old_size / 4, (std::numeric_limits<size_t>::max)() - old_size); // Avoid overflow. const size_t lower_bound_to_grow = old_size + min_growth; const size_t upper_bound_to_shrink = old_size / 2; if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) { // Need to reallocate. void* new_ptr = NULL; if (new_size > old_size && new_size < lower_bound_to_grow) { new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow); } ExcludeMarkFromSize(&new_size); // do_malloc will add space if needed. if (new_ptr == NULL) { // Either new_size is not a tiny increment, or last do_malloc failed. new_ptr = do_malloc_or_cpp_alloc(new_size); } if (new_ptr == NULL) { return NULL; } MallocHook::InvokeNewHook(new_ptr, new_size); memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); MallocHook::InvokeDeleteHook(old_ptr); // We could use a variant of do_free() that leverages the fact // that we already know the sizeclass of old_ptr. The benefit // would be small, so don't bother. do_free_with_callback(old_ptr, invalid_free_fn); return new_ptr; } else { // We still need to call hooks to report the updated size: MallocHook::InvokeDeleteHook(old_ptr); ExcludeMarkFromSize(&new_size); MallocHook::InvokeNewHook(old_ptr, new_size); return old_ptr; } } inline void* do_realloc(void* old_ptr, size_t new_size) { return do_realloc_with_callback(old_ptr, new_size, &InvalidFree, &InvalidGetSizeForRealloc); } // For use by exported routines below that want specific alignments // // Note: this code can be slow for alignments > 16, and can // significantly fragment memory. The expectation is that // memalign/posix_memalign/valloc/pvalloc will not be invoked very // often. This requirement simplifies our implementation and allows // us to tune for expected allocation patterns. void* do_memalign(size_t align, size_t size) { ASSERT((align & (align - 1)) == 0); ASSERT(align > 0); // Marked in CheckMallocResult(), which is also inside SpanToMallocResult(). AddRoomForMark(&size); if (size + align < size) return NULL; // Overflow // Fall back to malloc if we would already align this memory access properly. if (align <= AlignmentForSize(size)) { void* p = do_malloc(size); ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0); return p; } if (Static::pageheap() == NULL) ThreadCache::InitModule(); // Allocate at least one byte to avoid boundary conditions below if (size == 0) size = 1; if (size <= kMaxSize && align < kPageSize) { // Search through acceptable size classes looking for one with // enough alignment. This depends on the fact that // InitSizeClasses() currently produces several size classes that // are aligned at powers of two. We will waste time and space if // we miss in the size class array, but that is deemed acceptable // since memalign() should be used rarely. int cl = Static::sizemap()->SizeClass(size); while (cl < kNumClasses && ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) { cl++; } if (cl < kNumClasses) { ThreadCache* heap = ThreadCache::GetCache(); size = Static::sizemap()->class_to_size(cl); return CheckMallocResult(heap->Allocate(size, cl)); } } // We will allocate directly from the page heap SpinLockHolder h(Static::pageheap_lock()); if (align <= kPageSize) { // Any page-level allocation will be fine // TODO: We could put the rest of this page in the appropriate // TODO: cache but it does not seem worth it. Span* span = Static::pageheap()->New(tcmalloc::pages(size)); return span == NULL ? NULL : SpanToMallocResult(span); } // Allocate extra pages and carve off an aligned portion const Length alloc = tcmalloc::pages(size + align); Span* span = Static::pageheap()->New(alloc); if (span == NULL) return NULL; // Skip starting portion so that we end up aligned Length skip = 0; while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { skip++; } ASSERT(skip < alloc); if (skip > 0) { Span* rest = Static::pageheap()->Split(span, skip); Static::pageheap()->Delete(span); span = rest; } // Skip trailing portion that we do not need to return const Length needed = tcmalloc::pages(size); ASSERT(span->length >= needed); if (span->length > needed) { Span* trailer = Static::pageheap()->Split(span, needed); Static::pageheap()->Delete(trailer); } return SpanToMallocResult(span); } // Helpers for use by exported routines below: inline void do_malloc_stats() { PrintStats(1); } inline int do_mallopt(int cmd, int value) { return 1; // Indicates error } #ifdef HAVE_STRUCT_MALLINFO inline struct mallinfo do_mallinfo() { TCMallocStats stats; ExtractStats(&stats, NULL, NULL, NULL); // Just some of the fields are filled in. struct mallinfo info; memset(&info, 0, sizeof(info)); // Unfortunately, the struct contains "int" field, so some of the // size values will be truncated. info.arena = static_cast<int>(stats.pageheap.system_bytes); info.fsmblks = static_cast<int>(stats.thread_bytes + stats.central_bytes + stats.transfer_bytes); info.fordblks = static_cast<int>(stats.pageheap.free_bytes + stats.pageheap.unmapped_bytes); info.uordblks = static_cast<int>(stats.pageheap.system_bytes - stats.thread_bytes - stats.central_bytes - stats.transfer_bytes - stats.pageheap.free_bytes - stats.pageheap.unmapped_bytes); return info; } #endif // HAVE_STRUCT_MALLINFO static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED); inline void* cpp_alloc(size_t size, bool nothrow) { for (;;) { void* p = do_malloc(size); #ifdef PREANSINEW return p; #else if (p == NULL) { // allocation failed // Get the current new handler. NB: this function is not // thread-safe. We make a feeble stab at making it so here, but // this lock only protects against tcmalloc interfering with // itself, not with other libraries calling set_new_handler. std::new_handler nh; { SpinLockHolder h(&set_new_handler_lock); nh = std::set_new_handler(0); (void) std::set_new_handler(nh); } #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) if (nh) { // Since exceptions are disabled, we don't really know if new_handler // failed. Assume it will abort if it fails. (*nh)(); continue; } return 0; #else // If no new_handler is established, the allocation failed. if (!nh) { if (nothrow) return 0; throw std::bad_alloc(); } // Otherwise, try the new_handler. If it returns, retry the // allocation. If it throws std::bad_alloc, fail the allocation. // if it throws something else, don't interfere. try { (*nh)(); } catch (const std::bad_alloc&) { if (!nothrow) throw; return p; } #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) } else { // allocation success return p; } #endif // PREANSINEW } } void* cpp_memalign(size_t align, size_t size) { for (;;) { void* p = do_memalign(align, size); #ifdef PREANSINEW return p; #else if (p == NULL) { // allocation failed // Get the current new handler. NB: this function is not // thread-safe. We make a feeble stab at making it so here, but // this lock only protects against tcmalloc interfering with // itself, not with other libraries calling set_new_handler. std::new_handler nh; { SpinLockHolder h(&set_new_handler_lock); nh = std::set_new_handler(0); (void) std::set_new_handler(nh); } #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) if (nh) { // Since exceptions are disabled, we don't really know if new_handler // failed. Assume it will abort if it fails. (*nh)(); continue; } return 0; #else // If no new_handler is established, the allocation failed. if (!nh) return 0; // Otherwise, try the new_handler. If it returns, retry the // allocation. If it throws std::bad_alloc, fail the allocation. // if it throws something else, don't interfere. try { (*nh)(); } catch (const std::bad_alloc&) { return p; } #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) } else { // allocation success return p; } #endif // PREANSINEW } } } // end unnamed namespace // As promised, the definition of this function, declared above. size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) { // Chromium workaround for third-party code calling tc_malloc_size(NULL), see // http://code.google.com/p/chromium/issues/detail?id=118087 // Note: this is consistent with GLIBC's implementation of // malloc_usable_size(NULL). if (ptr == NULL) return 0; ASSERT(TCMallocImplementation::GetOwnership(ptr) != TCMallocImplementation::kNotOwned); return ExcludeSpaceForMark( GetSizeWithCallback(ptr, &InvalidGetAllocatedSize)); } void TCMallocImplementation::MarkThreadBusy() { // Allocate to force the creation of a thread cache, but avoid // invoking any hooks. do_free(do_malloc(0)); } //------------------------------------------------------------------- // Exported routines //------------------------------------------------------------------- extern "C" PERFTOOLS_DLL_DECL const char* tc_version( int* major, int* minor, const char** patch) __THROW { if (major) *major = TC_VERSION_MAJOR; if (minor) *minor = TC_VERSION_MINOR; if (patch) *patch = TC_VERSION_PATCH; return TC_VERSION_STRING; } // This function behaves similarly to MSVC's _set_new_mode. // If flag is 0 (default), calls to malloc will behave normally. // If flag is 1, calls to malloc will behave like calls to new, // and the std_new_handler will be invoked on failure. // Returns the previous mode. extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW { int old_mode = tc_new_mode; tc_new_mode = flag; return old_mode; } #ifndef TCMALLOC_USING_DEBUGALLOCATION // debugallocation.cc defines its own // CAVEAT: The code structure below ensures that MallocHook methods are always // called from the stack frame of the invoked allocation function. // heap-checker.cc depends on this to start a stack trace from // the call to the (de)allocation function. extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW { void* result = do_malloc_or_cpp_alloc(size); MallocHook::InvokeNewHook(result, size); return result; } extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW { MallocHook::InvokeDeleteHook(ptr); do_free(ptr); } extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n, size_t elem_size) __THROW { void* result = do_calloc(n, elem_size); MallocHook::InvokeNewHook(result, n * elem_size); return result; } extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW { MallocHook::InvokeDeleteHook(ptr); do_free(ptr); } extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr, size_t new_size) __THROW { if (old_ptr == NULL) { void* result = do_malloc_or_cpp_alloc(new_size); MallocHook::InvokeNewHook(result, new_size); return result; } if (new_size == 0) { MallocHook::InvokeDeleteHook(old_ptr); do_free(old_ptr); return NULL; } return do_realloc(old_ptr, new_size); } extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) { void* p = cpp_alloc(size, false); // We keep this next instruction out of cpp_alloc for a reason: when // it's in, and new just calls cpp_alloc, the optimizer may fold the // new call into cpp_alloc, which messes up our whole section-based // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc // isn't the last thing this fn calls, and prevents the folding. MallocHook::InvokeNewHook(p, size); return p; } extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW { void* p = cpp_alloc(size, true); MallocHook::InvokeNewHook(p, size); return p; } extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW { MallocHook::InvokeDeleteHook(p); do_free(p); } // Standard C++ library implementations define and use this // (via ::operator delete(ptr, nothrow)). // But it's really the same as normal delete, so we just do the same thing. extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW { MallocHook::InvokeDeleteHook(p); do_free(p); } extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) { void* p = cpp_alloc(size, false); // We keep this next instruction out of cpp_alloc for a reason: when // it's in, and new just calls cpp_alloc, the optimizer may fold the // new call into cpp_alloc, which messes up our whole section-based // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc // isn't the last thing this fn calls, and prevents the folding. MallocHook::InvokeNewHook(p, size); return p; } extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW { void* p = cpp_alloc(size, true); MallocHook::InvokeNewHook(p, size); return p; } extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW { MallocHook::InvokeDeleteHook(p); do_free(p); } extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW { MallocHook::InvokeDeleteHook(p); do_free(p); } extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) __THROW { void* result = do_memalign_or_cpp_memalign(align, size); MallocHook::InvokeNewHook(result, size); return result; } extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign( void** result_ptr, size_t align, size_t size) __THROW { if (((align % sizeof(void*)) != 0) || ((align & (align - 1)) != 0) || (align == 0)) { return EINVAL; } void* result = do_memalign_or_cpp_memalign(align, size); MallocHook::InvokeNewHook(result, size); if (result == NULL) { return ENOMEM; } else { *result_ptr = result; return 0; } } static size_t pagesize = 0; extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW { // Allocate page-aligned object of length >= size bytes if (pagesize == 0) pagesize = getpagesize(); void* result = do_memalign_or_cpp_memalign(pagesize, size); MallocHook::InvokeNewHook(result, size); return result; } extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW { // Round up size to a multiple of pagesize if (pagesize == 0) pagesize = getpagesize(); if (size == 0) { // pvalloc(0) should allocate one page, according to size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html } size = (size + pagesize - 1) & ~(pagesize - 1); void* result = do_memalign_or_cpp_memalign(pagesize, size); MallocHook::InvokeNewHook(result, size); return result; } extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW { do_malloc_stats(); } extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW { return do_mallopt(cmd, value); } #ifdef HAVE_STRUCT_MALLINFO extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW { return do_mallinfo(); } #endif extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW { return MallocExtension::instance()->GetAllocatedSize(ptr); } #if defined(OS_LINUX) extern "C" void* PERFTOOLS_DLL_DECL tc_malloc_skip_new_handler(size_t size) { void* result = do_malloc(size); MallocHook::InvokeNewHook(result, size); return result; } #endif #endif // TCMALLOC_USING_DEBUGALLOCATION #if defined(OS_LINUX) // Alias the weak symbol in chromium to our implementation. extern "C" __attribute__((visibility("default"), alias("tc_malloc_skip_new_handler"))) void* tc_malloc_skip_new_handler_weak(size_t size); #endif // --- Validation implementation with an extra mark ---------------------------- // We will put a mark at the extreme end of each allocation block. We make // sure that we always allocate enough "extra memory" that we can fit in the // mark, and still provide the requested usable region. If ever that mark is // not as expected, then we know that the user is corrupting memory beyond their // request size, or that they have called free a second time without having // the memory allocated (again). This allows us to spot most double free()s, // but some can "slip by" or confuse our logic if the caller reallocates memory // (for a second use) before performing an evil double-free of a first // allocation // This code can be optimized, but for now, it is written to be most easily // understood, and flexible (since it is evolving a bit). Potential // optimizations include using other calculated data, such as class size, or // allocation size, which is known in the code above, but then is recalculated // below. Another potential optimization would be careful manual inlining of // code, but I *think* that the compile will probably do this for me, and I've // been careful to avoid aliasing issues that might make a compiler back-off. // Evolution includes experimenting with different marks, to minimize the chance // that a mark would be misunderstood (missed corruption). The marks are meant // to be hashed encoding of the location, so that they can't be copied over a // different region (by accident) without being detected (most of the time). // Enable the following define to turn on all the TCMalloc checking. // It will cost about 2% in performance, but it will catch double frees (most of // the time), and will often catch allocated-buffer overrun errors. This // validation is only active when TCMalloc is used as the allocator. #ifndef NDEBUG #define TCMALLOC_VALIDATION #endif #if !defined(TCMALLOC_VALIDATION) static size_t ExcludeSpaceForMark(size_t size) { return size; } static void AddRoomForMark(size_t* size) {} static void ExcludeMarkFromSize(size_t* new_size) {} static void MarkAllocatedRegion(void* ptr) {} static void ValidateAllocatedRegion(void* ptr, size_t cl) {} #else // TCMALLOC_VALIDATION static void DieFromDoubleFree() { Log(kCrash, __FILE__, __LINE__, "Attempt to double free"); } static void DieFromMemoryCorruption() { Log(kCrash, __FILE__, __LINE__, "Memory corrupted"); } // We can either do byte marking, or whole word marking based on the following // define. char is as small as we can get, and word marking probably provides // more than enough bits that we won't miss a corruption. Any sized integral // type can be used, but we just define two examples. // #define TCMALLOC_SMALL_VALIDATION #if defined (TCMALLOC_SMALL_VALIDATION) typedef char MarkType; // char saves memory... int is more complete. static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36); #else typedef int MarkType; // char saves memory... int is more complete. static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536); #endif // TODO(jar): See if use of reference rather than pointer gets better inlining, // or if macro is needed. My fear is that taking address map preclude register // allocation :-(. inline static void AddRoomForMark(size_t* size) { *size += sizeof(kAllocationMarkMask); } inline static void ExcludeMarkFromSize(size_t* new_size) { *new_size -= sizeof(kAllocationMarkMask); } inline static size_t ExcludeSpaceForMark(size_t size) { return size - sizeof(kAllocationMarkMask); // Lie about size when asked. } inline static MarkType* GetMarkLocation(void* ptr) { size_t size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize); ASSERT(size % sizeof(kAllocationMarkMask) == 0); size_t last_index = (size / sizeof(kAllocationMarkMask)) - 1; return static_cast<MarkType*>(ptr) + last_index; } // We hash in the mark location plus the pointer so that we effectively mix in // the size of the block. This means that if a span is used for different sizes // that the mark will be different. It would be good to hash in the size (which // we effectively get by using both mark location and pointer), but even better // would be to also include the class, as it concisely contains the entropy // found in the size (when we don't have large allocation), and there is less // risk of losing those bits to truncation. It would probably be good to combine // the high bits of size (capturing info about large blocks) with the class // (which is a 6 bit number). inline static MarkType GetMarkValue(void* ptr, MarkType* mark) { void* ptr2 = static_cast<void*>(mark); size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL); size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL); static const int kInvariantBits = 2; ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1); // Note: low bits of both offsets are invariants due to alignment. High bits // of both offsets are the same (unless we have a large allocation). Avoid // XORing high bits together, as they will cancel for most small allocations. MarkType ret = kAllocationMarkMask; // Using a little shift, we can safely XOR together both offsets. ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^ static_cast<MarkType>(offset2); if (sizeof(ret) == 1) { // Try to bring some high level bits into the mix. ret += static_cast<MarkType>(offset1 >> 8) ^ static_cast<MarkType>(offset1 >> 16) ^ static_cast<MarkType>(offset1 >> 24) ; } // Hash in high bits on a 64 bit architecture. if (sizeof(size_t) == 8 && sizeof(ret) == 4) ret += offset1 >> 16; if (ret == 0) ret = kAllocationMarkMask; // Avoid common pattern of all zeros. return ret; } // TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location // faster. The current implementation calls general functions, which have to // recalculate this in order to get the Class Size. This is a slow and wasteful // recomputation... but it is much more readable this way (for now). static void ValidateAllocatedRegion(void* ptr, size_t cl) { if (ptr == NULL) return; MarkType* mark = GetMarkLocation(ptr); MarkType allocated_mark = GetMarkValue(ptr, mark); MarkType current_mark = *mark; if (current_mark == ~allocated_mark) DieFromDoubleFree(); if (current_mark != allocated_mark) DieFromMemoryCorruption(); #ifndef NDEBUG // In debug mode, copy the mark into all the free'd region. size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) - reinterpret_cast<char*>(ptr)); memset(ptr, static_cast<char>(0x36), class_size); #endif *mark = ~allocated_mark; // Distinctively not allocated. } static void MarkAllocatedRegion(void* ptr) { if (ptr == NULL) return; MarkType* mark = GetMarkLocation(ptr); *mark = GetMarkValue(ptr, mark); } #endif // TCMALLOC_VALIDATION