// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c /* * Roots3And4.c * * Utility functions to find cubic and quartic roots, * coefficients are passed like this: * * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 * * The functions return the number of non-complex roots and * put the values into the s array. * * Author: Jochen Schwarze (schwarze@isa.de) * * Jan 26, 1990 Version for Graphics Gems * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic * (reported by Mark Podlipec), * Old-style function definitions, * IsZero() as a macro * Nov 23, 1990 Some systems do not declare acos() and cbrt() in * <math.h>, though the functions exist in the library. * If large coefficients are used, EQN_EPS should be * reduced considerably (e.g. to 1E-30), results will be * correct but multiple roots might be reported more * than once. */ #include "SkPathOpsCubic.h" #include "SkPathOpsQuad.h" #include "SkQuarticRoot.h" int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1, const double t0, const bool oneHint, double roots[4]) { #ifdef SK_DEBUG // create a string mathematica understands // GDB set print repe 15 # if repeated digits is a bother // set print elements 400 # if line doesn't fit char str[1024]; sk_bzero(str, sizeof(str)); SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", t4, t3, t2, t1, t0); SkPathOpsDebug::MathematicaIze(str, sizeof(str)); #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA SkDebugf("%s\n", str); #endif #endif if (approximately_zero_when_compared_to(t4, t0) // 0 is one root && approximately_zero_when_compared_to(t4, t1) && approximately_zero_when_compared_to(t4, t2)) { if (approximately_zero_when_compared_to(t3, t0) && approximately_zero_when_compared_to(t3, t1) && approximately_zero_when_compared_to(t3, t2)) { return SkDQuad::RootsReal(t2, t1, t0, roots); } if (approximately_zero_when_compared_to(t4, t3)) { return SkDCubic::RootsReal(t3, t2, t1, t0, roots); } } if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1)) // 0 is one root // && approximately_zero_when_compared_to(t0, t2) && approximately_zero_when_compared_to(t0, t3) && approximately_zero_when_compared_to(t0, t4)) { int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); for (int i = 0; i < num; ++i) { if (approximately_zero(roots[i])) { return num; } } roots[num++] = 0; return num; } if (oneHint) { SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) || approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0, // 1 is one root SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t1), fabs(t0))))))); // note that -C == A + B + D + E int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); for (int i = 0; i < num; ++i) { if (approximately_equal(roots[i], 1)) { return num; } } roots[num++] = 1; return num; } return -1; } int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C, const double D, const double E, double s[4]) { double u, v; /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ const double invA = 1 / A; const double a = B * invA; const double b = C * invA; const double c = D * invA; const double d = E * invA; /* substitute x = y - a/4 to eliminate cubic term: x^4 + px^2 + qx + r = 0 */ const double a2 = a * a; const double p = -3 * a2 / 8 + b; const double q = a2 * a / 8 - a * b / 2 + c; const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; int num; double largest = SkTMax(fabs(p), fabs(q)); if (approximately_zero_when_compared_to(r, largest)) { /* no absolute term: y(y^3 + py + q) = 0 */ num = SkDCubic::RootsReal(1, 0, p, q, s); s[num++] = 0; } else { /* solve the resolvent cubic ... */ double cubicRoots[3]; int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots); int index; /* ... and take one real solution ... */ double z; num = 0; int num2 = 0; for (index = firstCubicRoot; index < roots; ++index) { z = cubicRoots[index]; /* ... to build two quadric equations */ u = z * z - r; v = 2 * z - p; if (approximately_zero_squared(u)) { u = 0; } else if (u > 0) { u = sqrt(u); } else { continue; } if (approximately_zero_squared(v)) { v = 0; } else if (v > 0) { v = sqrt(v); } else { continue; } num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); if (!((num | num2) & 1)) { break; // prefer solutions without single quad roots } } num += num2; if (!num) { return 0; // no valid cubic root } } /* resubstitute */ const double sub = a / 4; for (int i = 0; i < num; ++i) { s[i] -= sub; } // eliminate duplicates for (int i = 0; i < num - 1; ++i) { for (int j = i + 1; j < num; ) { if (AlmostDequalUlps(s[i], s[j])) { if (j < --num) { s[j] = s[num]; } } else { ++j; } } } return num; }