/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAddIntersections.h" #include "SkOpEdgeBuilder.h" #include "SkPathOpsCommon.h" #include "SkPathWriter.h" #include "SkTSort.h" static void alignMultiples(SkTArray<SkOpContour*, true>* contourList, SkTDArray<SkOpSegment::AlignedSpan>* aligned) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; if (contour->hasMultiples()) { contour->alignMultiples(aligned); } } } static void alignCoincidence(SkTArray<SkOpContour*, true>* contourList, const SkTDArray<SkOpSegment::AlignedSpan>& aligned) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; int count = aligned.count(); for (int index = 0; index < count; ++index) { contour->alignCoincidence(aligned[index]); } } } static int contourRangeCheckY(const SkTArray<SkOpContour*, true>& contourList, SkOpSegment** currentPtr, int* indexPtr, int* endIndexPtr, double* bestHit, SkScalar* bestDx, bool* tryAgain, double* midPtr, bool opp) { const int index = *indexPtr; const int endIndex = *endIndexPtr; const double mid = *midPtr; const SkOpSegment* current = *currentPtr; double tAtMid = current->tAtMid(index, endIndex, mid); SkPoint basePt = current->ptAtT(tAtMid); int contourCount = contourList.count(); SkScalar bestY = SK_ScalarMin; SkOpSegment* bestSeg = NULL; int bestTIndex = 0; bool bestOpp; bool hitSomething = false; for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = contourList[cTest]; bool testOpp = contour->operand() ^ current->operand() ^ opp; if (basePt.fY < contour->bounds().fTop) { continue; } if (bestY > contour->bounds().fBottom) { continue; } int segmentCount = contour->segments().count(); for (int test = 0; test < segmentCount; ++test) { SkOpSegment* testSeg = &contour->segments()[test]; SkScalar testY = bestY; double testHit; int testTIndex = testSeg->crossedSpanY(basePt, &testY, &testHit, &hitSomething, tAtMid, testOpp, testSeg == current); if (testTIndex < 0) { if (testTIndex == SK_MinS32) { hitSomething = true; bestSeg = NULL; goto abortContours; // vertical encountered, return and try different point } continue; } if (testSeg == current && current->betweenTs(index, testHit, endIndex)) { double baseT = current->t(index); double endT = current->t(endIndex); double newMid = (testHit - baseT) / (endT - baseT); #if DEBUG_WINDING double midT = current->tAtMid(index, endIndex, mid); SkPoint midXY = current->xyAtT(midT); double newMidT = current->tAtMid(index, endIndex, newMid); SkPoint newXY = current->xyAtT(newMidT); SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)" " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, current->debugID(), mid, newMid, baseT, current->xAtT(index), current->yAtT(index), baseT + mid * (endT - baseT), midXY.fX, midXY.fY, baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, endT, current->xAtT(endIndex), current->yAtT(endIndex)); #endif *midPtr = newMid * 2; // calling loop with divide by 2 before continuing return SK_MinS32; } bestSeg = testSeg; *bestHit = testHit; bestOpp = testOpp; bestTIndex = testTIndex; bestY = testY; } } abortContours: int result; if (!bestSeg) { result = hitSomething ? SK_MinS32 : 0; } else { if (bestSeg->windSum(bestTIndex) == SK_MinS32) { *currentPtr = bestSeg; *indexPtr = bestTIndex; *endIndexPtr = bestSeg->nextSpan(bestTIndex, 1); SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0); *tryAgain = true; return 0; } result = bestSeg->windingAtT(*bestHit, bestTIndex, bestOpp, bestDx); SkASSERT(result == SK_MinS32 || *bestDx); } double baseT = current->t(index); double endT = current->t(endIndex); *bestHit = baseT + mid * (endT - baseT); return result; } SkOpSegment* FindUndone(SkTArray<SkOpContour*, true>& contourList, int* start, int* end) { int contourCount = contourList.count(); SkOpSegment* result; for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = contourList[cIndex]; result = contour->undoneSegment(start, end); if (result) { return result; } } return NULL; } SkOpSegment* FindChase(SkTDArray<SkOpSpan*>* chase, int* tIndex, int* endIndex) { while (chase->count()) { SkOpSpan* span; chase->pop(&span); const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex); SkOpSegment* segment = backPtr.fOther; *tIndex = backPtr.fOtherIndex; bool sortable = true; bool done = true; *endIndex = -1; if (const SkOpAngle* last = segment->activeAngle(*tIndex, tIndex, endIndex, &done, &sortable)) { *tIndex = last->start(); *endIndex = last->end(); #if TRY_ROTATE *chase->insert(0) = span; #else *chase->append() = span; #endif return last->segment(); } if (done) { continue; } if (!sortable) { continue; } // find first angle, initialize winding to computed fWindSum const SkOpAngle* angle = segment->spanToAngle(*tIndex, *endIndex); const SkOpAngle* firstAngle; SkDEBUGCODE(firstAngle = angle); SkDEBUGCODE(bool loop = false); int winding; do { angle = angle->next(); SkASSERT(angle != firstAngle || !loop); SkDEBUGCODE(loop |= angle == firstAngle); segment = angle->segment(); winding = segment->windSum(angle); } while (winding == SK_MinS32); int spanWinding = segment->spanSign(angle->start(), angle->end()); #if DEBUG_WINDING SkDebugf("%s winding=%d spanWinding=%d\n", __FUNCTION__, winding, spanWinding); #endif // turn span winding into contour winding if (spanWinding * winding < 0) { winding += spanWinding; } // we care about first sign and whether wind sum indicates this // edge is inside or outside. Maybe need to pass span winding // or first winding or something into this function? // advance to first undone angle, then return it and winding // (to set whether edges are active or not) firstAngle = angle; winding -= firstAngle->segment()->spanSign(firstAngle); while ((angle = angle->next()) != firstAngle) { segment = angle->segment(); int maxWinding = winding; winding -= segment->spanSign(angle); #if DEBUG_SORT SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__, segment->debugID(), maxWinding, winding, angle->sign()); #endif *tIndex = angle->start(); *endIndex = angle->end(); int lesser = SkMin32(*tIndex, *endIndex); const SkOpSpan& nextSpan = segment->span(lesser); if (!nextSpan.fDone) { // FIXME: this be wrong? assign startWinding if edge is in // same direction. If the direction is opposite, winding to // assign is flipped sign or +/- 1? if (SkOpSegment::UseInnerWinding(maxWinding, winding)) { maxWinding = winding; } (void) segment->markAndChaseWinding(angle, maxWinding, 0); break; } } *chase->insert(0) = span; return segment; } return NULL; } #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY void DebugShowActiveSpans(SkTArray<SkOpContour*, true>& contourList) { int index; for (index = 0; index < contourList.count(); ++ index) { contourList[index]->debugShowActiveSpans(); } } #endif static SkOpSegment* findTopSegment(const SkTArray<SkOpContour*, true>& contourList, int* index, int* endIndex, SkPoint* topLeft, bool* unsortable, bool* done, bool firstPass) { SkOpSegment* result; const SkOpSegment* lastTopStart = NULL; int lastIndex = -1, lastEndIndex = -1; do { SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; int contourCount = contourList.count(); SkOpSegment* topStart = NULL; *done = true; for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = contourList[cIndex]; if (contour->done()) { continue; } const SkPathOpsBounds& bounds = contour->bounds(); if (bounds.fBottom < topLeft->fY) { *done = false; continue; } if (bounds.fBottom == topLeft->fY && bounds.fRight < topLeft->fX) { *done = false; continue; } contour->topSortableSegment(*topLeft, &bestXY, &topStart); if (!contour->done()) { *done = false; } } if (!topStart) { return NULL; } *topLeft = bestXY; result = topStart->findTop(index, endIndex, unsortable, firstPass); if (!result) { if (lastTopStart == topStart && lastIndex == *index && lastEndIndex == *endIndex) { *done = true; return NULL; } lastTopStart = topStart; lastIndex = *index; lastEndIndex = *endIndex; } } while (!result); return result; } static int rightAngleWinding(const SkTArray<SkOpContour*, true>& contourList, SkOpSegment** currentPtr, int* indexPtr, int* endIndexPtr, double* tHit, SkScalar* hitDx, bool* tryAgain, bool* onlyVertical, bool opp) { double test = 0.9; int contourWinding; do { contourWinding = contourRangeCheckY(contourList, currentPtr, indexPtr, endIndexPtr, tHit, hitDx, tryAgain, &test, opp); if (contourWinding != SK_MinS32 || *tryAgain) { return contourWinding; } if (*currentPtr && (*currentPtr)->isVertical()) { *onlyVertical = true; return contourWinding; } test /= 2; } while (!approximately_negative(test)); SkASSERT(0); // FIXME: incomplete functionality return contourWinding; } static void skipVertical(const SkTArray<SkOpContour*, true>& contourList, SkOpSegment** current, int* index, int* endIndex) { if (!(*current)->isVertical(*index, *endIndex)) { return; } int contourCount = contourList.count(); for (int cIndex = 0; cIndex < contourCount; ++cIndex) { SkOpContour* contour = contourList[cIndex]; if (contour->done()) { continue; } SkOpSegment* nonVertical = contour->nonVerticalSegment(index, endIndex); if (nonVertical) { *current = nonVertical; return; } } return; } SkOpSegment* FindSortableTop(const SkTArray<SkOpContour*, true>& contourList, SkOpAngle::IncludeType angleIncludeType, bool* firstContour, int* indexPtr, int* endIndexPtr, SkPoint* topLeft, bool* unsortable, bool* done, bool* onlyVertical, bool firstPass) { SkOpSegment* current = findTopSegment(contourList, indexPtr, endIndexPtr, topLeft, unsortable, done, firstPass); if (!current) { return NULL; } const int startIndex = *indexPtr; const int endIndex = *endIndexPtr; if (*firstContour) { current->initWinding(startIndex, endIndex, angleIncludeType); *firstContour = false; return current; } int minIndex = SkMin32(startIndex, endIndex); int sumWinding = current->windSum(minIndex); if (sumWinding == SK_MinS32) { int index = endIndex; int oIndex = startIndex; do { const SkOpSpan& span = current->span(index); if ((oIndex < index ? span.fFromAngle : span.fToAngle) == NULL) { current->addSimpleAngle(index); } sumWinding = current->computeSum(oIndex, index, angleIncludeType); SkTSwap(index, oIndex); } while (sumWinding == SK_MinS32 && index == startIndex); } if (sumWinding != SK_MinS32 && sumWinding != SK_NaN32) { return current; } int contourWinding; int oppContourWinding = 0; // the simple upward projection of the unresolved points hit unsortable angles // shoot rays at right angles to the segment to find its winding, ignoring angle cases bool tryAgain; double tHit; SkScalar hitDx = 0; SkScalar hitOppDx = 0; do { // if current is vertical, find another candidate which is not // if only remaining candidates are vertical, then they can be marked done SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0); skipVertical(contourList, ¤t, indexPtr, endIndexPtr); SkASSERT(current); // FIXME: if null, all remaining are vertical SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0); tryAgain = false; contourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit, &hitDx, &tryAgain, onlyVertical, false); if (*onlyVertical) { return current; } if (tryAgain) { continue; } if (angleIncludeType < SkOpAngle::kBinarySingle) { break; } oppContourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit, &hitOppDx, &tryAgain, NULL, true); } while (tryAgain); current->initWinding(*indexPtr, *endIndexPtr, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx); if (current->done()) { return NULL; } return current; } static bool calcAngles(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; if (!contour->calcAngles()) { return false; } } return true; } static void checkDuplicates(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->checkDuplicates(); } } static void checkEnds(SkTArray<SkOpContour*, true>* contourList) { // it's hard to determine if the end of a cubic or conic nearly intersects another curve. // instead, look to see if the connecting curve intersected at that same end. int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->checkEnds(); } } static bool checkMultiples(SkTArray<SkOpContour*, true>* contourList) { bool hasMultiples = false; int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->checkMultiples(); hasMultiples |= contour->hasMultiples(); } return hasMultiples; } // A small interval of a pair of curves may collapse to lines for each, triggering coincidence static void checkSmall(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->checkSmall(); } } // A tiny interval may indicate an undiscovered coincidence. Find and fix. static void checkTiny(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->checkTiny(); } } static void fixOtherTIndex(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->fixOtherTIndex(); } } static void joinCoincidence(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->joinCoincidence(); } } static void sortAngles(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->sortAngles(); } } static void sortSegments(SkTArray<SkOpContour*, true>* contourList) { int contourCount = (*contourList).count(); for (int cTest = 0; cTest < contourCount; ++cTest) { SkOpContour* contour = (*contourList)[cTest]; contour->sortSegments(); } } void MakeContourList(SkTArray<SkOpContour>& contours, SkTArray<SkOpContour*, true>& list, bool evenOdd, bool oppEvenOdd) { int count = contours.count(); if (count == 0) { return; } for (int index = 0; index < count; ++index) { SkOpContour& contour = contours[index]; contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); list.push_back(&contour); } SkTQSort<SkOpContour>(list.begin(), list.end() - 1); } class DistanceLessThan { public: DistanceLessThan(double* distances) : fDistances(distances) { } double* fDistances; bool operator()(const int one, const int two) { return fDistances[one] < fDistances[two]; } }; /* check start and end of each contour if not the same, record them match them up connect closest reassemble contour pieces into new path */ void Assemble(const SkPathWriter& path, SkPathWriter* simple) { #if DEBUG_PATH_CONSTRUCTION SkDebugf("%s\n", __FUNCTION__); #endif SkTArray<SkOpContour> contours; SkOpEdgeBuilder builder(path, contours); builder.finish(); int count = contours.count(); int outer; SkTArray<int, true> runs(count); // indices of partial contours for (outer = 0; outer < count; ++outer) { const SkOpContour& eContour = contours[outer]; const SkPoint& eStart = eContour.start(); const SkPoint& eEnd = eContour.end(); #if DEBUG_ASSEMBLE SkDebugf("%s contour", __FUNCTION__); if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) { SkDebugf("[%d]", runs.count()); } else { SkDebugf(" "); } SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); #endif if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) { eContour.toPath(simple); continue; } runs.push_back(outer); } count = runs.count(); if (count == 0) { return; } SkTArray<int, true> sLink, eLink; sLink.push_back_n(count); eLink.push_back_n(count); int rIndex, iIndex; for (rIndex = 0; rIndex < count; ++rIndex) { sLink[rIndex] = eLink[rIndex] = SK_MaxS32; } const int ends = count * 2; // all starts and ends const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 SkTArray<double, true> distances; distances.push_back_n(entries); for (rIndex = 0; rIndex < ends - 1; ++rIndex) { outer = runs[rIndex >> 1]; const SkOpContour& oContour = contours[outer]; const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) * ends - rIndex - 1; for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { int inner = runs[iIndex >> 1]; const SkOpContour& iContour = contours[inner]; const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); double dx = iPt.fX - oPt.fX; double dy = iPt.fY - oPt.fY; double dist = dx * dx + dy * dy; distances[row + iIndex] = dist; // oStart distance from iStart } } SkTArray<int, true> sortedDist; sortedDist.push_back_n(entries); for (rIndex = 0; rIndex < entries; ++rIndex) { sortedDist[rIndex] = rIndex; } SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin())); int remaining = count; // number of start/end pairs for (rIndex = 0; rIndex < entries; ++rIndex) { int pair = sortedDist[rIndex]; int row = pair / ends; int col = pair - row * ends; int thingOne = row < col ? row : ends - row - 2; int ndxOne = thingOne >> 1; bool endOne = thingOne & 1; int* linkOne = endOne ? eLink.begin() : sLink.begin(); if (linkOne[ndxOne] != SK_MaxS32) { continue; } int thingTwo = row < col ? col : ends - row + col - 1; int ndxTwo = thingTwo >> 1; bool endTwo = thingTwo & 1; int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); if (linkTwo[ndxTwo] != SK_MaxS32) { continue; } SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); bool flip = endOne == endTwo; linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; if (!--remaining) { break; } } SkASSERT(!remaining); #if DEBUG_ASSEMBLE for (rIndex = 0; rIndex < count; ++rIndex) { int s = sLink[rIndex]; int e = eLink[rIndex]; SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); } #endif rIndex = 0; do { bool forward = true; bool first = true; int sIndex = sLink[rIndex]; SkASSERT(sIndex != SK_MaxS32); sLink[rIndex] = SK_MaxS32; int eIndex; if (sIndex < 0) { eIndex = sLink[~sIndex]; sLink[~sIndex] = SK_MaxS32; } else { eIndex = eLink[sIndex]; eLink[sIndex] = SK_MaxS32; } SkASSERT(eIndex != SK_MaxS32); #if DEBUG_ASSEMBLE SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', eIndex < 0 ? ~eIndex : eIndex); #endif do { outer = runs[rIndex]; const SkOpContour& contour = contours[outer]; if (first) { first = false; const SkPoint* startPtr = &contour.start(); simple->deferredMove(startPtr[0]); } if (forward) { contour.toPartialForward(simple); } else { contour.toPartialBackward(simple); } #if DEBUG_ASSEMBLE SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); #endif if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { simple->close(); break; } if (forward) { eIndex = eLink[rIndex]; SkASSERT(eIndex != SK_MaxS32); eLink[rIndex] = SK_MaxS32; if (eIndex >= 0) { SkASSERT(sLink[eIndex] == rIndex); sLink[eIndex] = SK_MaxS32; } else { SkASSERT(eLink[~eIndex] == ~rIndex); eLink[~eIndex] = SK_MaxS32; } } else { eIndex = sLink[rIndex]; SkASSERT(eIndex != SK_MaxS32); sLink[rIndex] = SK_MaxS32; if (eIndex >= 0) { SkASSERT(eLink[eIndex] == rIndex); eLink[eIndex] = SK_MaxS32; } else { SkASSERT(sLink[~eIndex] == ~rIndex); sLink[~eIndex] = SK_MaxS32; } } rIndex = eIndex; if (rIndex < 0) { forward ^= 1; rIndex = ~rIndex; } } while (true); for (rIndex = 0; rIndex < count; ++rIndex) { if (sLink[rIndex] != SK_MaxS32) { break; } } } while (rIndex < count); #if DEBUG_ASSEMBLE for (rIndex = 0; rIndex < count; ++rIndex) { SkASSERT(sLink[rIndex] == SK_MaxS32); SkASSERT(eLink[rIndex] == SK_MaxS32); } #endif } bool HandleCoincidence(SkTArray<SkOpContour*, true>* contourList, int total) { #if DEBUG_SHOW_WINDING SkOpContour::debugShowWindingValues(contourList); #endif CoincidenceCheck(contourList, total); #if DEBUG_SHOW_WINDING SkOpContour::debugShowWindingValues(contourList); #endif fixOtherTIndex(contourList); checkEnds(contourList); // check if connecting curve intersected at the same end bool hasM = checkMultiples(contourList); // check if intersections agree on t and point values SkTDArray<SkOpSegment::AlignedSpan> aligned; if (hasM) { alignMultiples(contourList, &aligned); // align pairs of identical points alignCoincidence(contourList, aligned); } checkDuplicates(contourList); // check if spans have the same number on the other end checkTiny(contourList); // if pair have the same end points, mark them as parallel checkSmall(contourList); // a pair of curves with a small span may turn into coincident lines joinCoincidence(contourList); // join curves that connect to a coincident pair sortSegments(contourList); if (!calcAngles(contourList)) { return false; } sortAngles(contourList); #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY DebugShowActiveSpans(*contourList); #endif return true; }