/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkGpuDevice.h" #include "effects/GrBicubicEffect.h" #include "effects/GrDashingEffect.h" #include "effects/GrTextureDomain.h" #include "effects/GrSimpleTextureEffect.h" #include "GrContext.h" #include "GrBitmapTextContext.h" #include "GrDistanceFieldTextContext.h" #include "GrLayerCache.h" #include "GrPictureUtils.h" #include "GrStrokeInfo.h" #include "GrTracing.h" #include "SkGrTexturePixelRef.h" #include "SkDeviceImageFilterProxy.h" #include "SkDrawProcs.h" #include "SkGlyphCache.h" #include "SkImageFilter.h" #include "SkMaskFilter.h" #include "SkPathEffect.h" #include "SkPicture.h" #include "SkPicturePlayback.h" #include "SkRRect.h" #include "SkStroke.h" #include "SkSurface.h" #include "SkTLazy.h" #include "SkUtils.h" #include "SkVertState.h" #include "SkErrorInternals.h" #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 #if 0 extern bool (*gShouldDrawProc)(); #define CHECK_SHOULD_DRAW(draw, forceI) \ do { \ if (gShouldDrawProc && !gShouldDrawProc()) return; \ this->prepareDraw(draw, forceI); \ } while (0) #else #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) #endif // This constant represents the screen alignment criterion in texels for // requiring texture domain clamping to prevent color bleeding when drawing // a sub region of a larger source image. #define COLOR_BLEED_TOLERANCE 0.001f #define DO_DEFERRED_CLEAR() \ do { \ if (fNeedClear) { \ this->clear(SK_ColorTRANSPARENT); \ } \ } while (false) \ /////////////////////////////////////////////////////////////////////////////// #define CHECK_FOR_ANNOTATION(paint) \ do { if (paint.getAnnotation()) { return; } } while (0) /////////////////////////////////////////////////////////////////////////////// class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { public: SkAutoCachedTexture() : fDevice(NULL) , fTexture(NULL) { } SkAutoCachedTexture(SkGpuDevice* device, const SkBitmap& bitmap, const GrTextureParams* params, GrTexture** texture) : fDevice(NULL) , fTexture(NULL) { SkASSERT(NULL != texture); *texture = this->set(device, bitmap, params); } ~SkAutoCachedTexture() { if (NULL != fTexture) { GrUnlockAndUnrefCachedBitmapTexture(fTexture); } } GrTexture* set(SkGpuDevice* device, const SkBitmap& bitmap, const GrTextureParams* params) { if (NULL != fTexture) { GrUnlockAndUnrefCachedBitmapTexture(fTexture); fTexture = NULL; } fDevice = device; GrTexture* result = (GrTexture*)bitmap.getTexture(); if (NULL == result) { // Cannot return the native texture so look it up in our cache fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params); result = fTexture; } return result; } private: SkGpuDevice* fDevice; GrTexture* fTexture; }; /////////////////////////////////////////////////////////////////////////////// struct GrSkDrawProcs : public SkDrawProcs { public: GrContext* fContext; GrTextContext* fTextContext; GrFontScaler* fFontScaler; // cached in the skia glyphcache }; /////////////////////////////////////////////////////////////////////////////// /* * GrRenderTarget does not know its opaqueness, only its config, so we have * to make conservative guesses when we return an "equivalent" bitmap. */ static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { SkBitmap bitmap; bitmap.setInfo(renderTarget->info()); return bitmap; } SkGpuDevice* SkGpuDevice::Create(GrSurface* surface, unsigned flags) { SkASSERT(NULL != surface); if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) { return NULL; } if (surface->asTexture()) { return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture(), flags)); } else { return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget(), flags)); } } SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture, unsigned flags) : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) { this->initFromRenderTarget(context, texture->asRenderTarget(), flags); } SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget, unsigned flags) : SkBitmapDevice(make_bitmap(context, renderTarget)) { this->initFromRenderTarget(context, renderTarget, flags); } void SkGpuDevice::initFromRenderTarget(GrContext* context, GrRenderTarget* renderTarget, unsigned flags) { fDrawProcs = NULL; fContext = context; fContext->ref(); bool useDFFonts = !!(flags & kDFFonts_Flag); fMainTextContext = SkNEW_ARGS(GrDistanceFieldTextContext, (fContext, fLeakyProperties, useDFFonts)); fFallbackTextContext = SkNEW_ARGS(GrBitmapTextContext, (fContext, fLeakyProperties)); fRenderTarget = NULL; fNeedClear = flags & kNeedClear_Flag; SkASSERT(NULL != renderTarget); fRenderTarget = renderTarget; fRenderTarget->ref(); // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref // on the RT but not vice-versa. // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without // busting chrome (for a currently unknown reason). GrSurface* surface = fRenderTarget->asTexture(); if (NULL == surface) { surface = fRenderTarget; } SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (surface->info(), surface, SkToBool(flags & kCached_Flag))); this->setPixelRef(pr)->unref(); } SkGpuDevice* SkGpuDevice::Create(GrContext* context, const SkImageInfo& origInfo, int sampleCount) { if (kUnknown_SkColorType == origInfo.colorType() || origInfo.width() < 0 || origInfo.height() < 0) { return NULL; } SkImageInfo info = origInfo; // TODO: perhas we can loosen this check now that colortype is more detailed // e.g. can we support both RGBA and BGRA here? if (kRGB_565_SkColorType == info.colorType()) { info.fAlphaType = kOpaque_SkAlphaType; // force this setting } else { info.fColorType = kN32_SkColorType; if (kOpaque_SkAlphaType != info.alphaType()) { info.fAlphaType = kPremul_SkAlphaType; // force this setting } } GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = info.width(); desc.fHeight = info.height(); desc.fConfig = SkImageInfo2GrPixelConfig(info); desc.fSampleCnt = sampleCount; SkAutoTUnref<GrTexture> texture(context->createUncachedTexture(desc, NULL, 0)); if (!texture.get()) { return NULL; } return SkNEW_ARGS(SkGpuDevice, (context, texture.get())); } SkGpuDevice::~SkGpuDevice() { if (fDrawProcs) { delete fDrawProcs; } delete fMainTextContext; delete fFallbackTextContext; // The GrContext takes a ref on the target. We don't want to cause the render // target to be unnecessarily kept alive. if (fContext->getRenderTarget() == fRenderTarget) { fContext->setRenderTarget(NULL); } if (fContext->getClip() == &fClipData) { fContext->setClip(NULL); } SkSafeUnref(fRenderTarget); fContext->unref(); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::makeRenderTargetCurrent() { DO_DEFERRED_CLEAR(); fContext->setRenderTarget(fRenderTarget); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, int x, int y) { DO_DEFERRED_CLEAR(); // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo); if (kUnknown_GrPixelConfig == config) { return false; } uint32_t flags = 0; if (kUnpremul_SkAlphaType == dstInfo.alphaType()) { flags = GrContext::kUnpremul_PixelOpsFlag; } return fContext->readRenderTargetPixels(fRenderTarget, x, y, dstInfo.width(), dstInfo.height(), config, dstPixels, dstRowBytes, flags); } bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, int x, int y) { // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels GrPixelConfig config = SkImageInfo2GrPixelConfig(info); if (kUnknown_GrPixelConfig == config) { return false; } uint32_t flags = 0; if (kUnpremul_SkAlphaType == info.alphaType()) { flags = GrContext::kUnpremul_PixelOpsFlag; } fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); // need to bump our genID for compatibility with clients that "know" we have a bitmap this->onAccessBitmap().notifyPixelsChanged(); return true; } const SkBitmap& SkGpuDevice::onAccessBitmap() { DO_DEFERRED_CLEAR(); return INHERITED::onAccessBitmap(); } void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { INHERITED::onAttachToCanvas(canvas); // Canvas promises that this ptr is valid until onDetachFromCanvas is called fClipData.fClipStack = canvas->getClipStack(); } void SkGpuDevice::onDetachFromCanvas() { INHERITED::onDetachFromCanvas(); fClipData.fClipStack = NULL; } // call this every draw call, to ensure that the context reflects our state, // and not the state from some other canvas/device void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { SkASSERT(NULL != fClipData.fClipStack); fContext->setRenderTarget(fRenderTarget); SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); if (forceIdentity) { fContext->setIdentityMatrix(); } else { fContext->setMatrix(*draw.fMatrix); } fClipData.fOrigin = this->getOrigin(); fContext->setClip(&fClipData); DO_DEFERRED_CLEAR(); } GrRenderTarget* SkGpuDevice::accessRenderTarget() { DO_DEFERRED_CLEAR(); return fRenderTarget; } /////////////////////////////////////////////////////////////////////////////// SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::clear(SkColor color) { SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget); fNeedClear = false; } void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); fContext->drawPaint(grPaint); } // must be in SkCanvas::PointMode order static const GrPrimitiveType gPointMode2PrimtiveType[] = { kPoints_GrPrimitiveType, kLines_GrPrimitiveType, kLineStrip_GrPrimitiveType }; void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); SkScalar width = paint.getStrokeWidth(); if (width < 0) { return; } if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style); GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); SkPath path; path.moveTo(pts[0]); path.lineTo(pts[1]); fContext->drawPath(grPaint, path, strokeInfo); return; } // we only handle hairlines and paints without path effects or mask filters, // else we let the SkDraw call our drawPath() if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { draw.drawPoints(mode, count, pts, paint, true); return; } GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); fContext->drawVertices(grPaint, gPointMode2PrimtiveType[mode], SkToS32(count), (SkPoint*)pts, NULL, NULL, NULL, 0); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext); CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); bool doStroke = paint.getStyle() != SkPaint::kFill_Style; SkScalar width = paint.getStrokeWidth(); /* We have special code for hairline strokes, miter-strokes, bevel-stroke and fills. Anything else we just call our path code. */ bool usePath = doStroke && width > 0 && (paint.getStrokeJoin() == SkPaint::kRound_Join || (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); // another two reasons we might need to call drawPath... if (paint.getMaskFilter()) { usePath = true; } if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) if (doStroke) { #endif usePath = true; #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) } else { usePath = !fContext->getMatrix().preservesRightAngles(); } #endif } // until we can both stroke and fill rectangles if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { usePath = true; } GrStrokeInfo strokeInfo(paint); const SkPathEffect* pe = paint.getPathEffect(); if (!usePath && NULL != pe && !strokeInfo.isDashed()) { usePath = true; } if (usePath) { SkPath path; path.addRect(rect); this->drawPath(draw, path, paint, NULL, true); return; } GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); fContext->drawRect(grPaint, rect, &strokeInfo); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); GrStrokeInfo strokeInfo(paint); if (paint.getMaskFilter()) { // try to hit the fast path for drawing filtered round rects SkRRect devRRect; if (rect.transform(fContext->getMatrix(), &devRRect)) { if (devRRect.allCornersCircular()) { SkRect maskRect; if (paint.getMaskFilter()->canFilterMaskGPU(devRRect.rect(), draw.fClip->getBounds(), fContext->getMatrix(), &maskRect)) { SkIRect finalIRect; maskRect.roundOut(&finalIRect); if (draw.fClip->quickReject(finalIRect)) { // clipped out return; } if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext, &grPaint, strokeInfo.getStrokeRec(), devRRect)) { return; } } } } } bool usePath = false; if (paint.getMaskFilter()) { usePath = true; } else { const SkPathEffect* pe = paint.getPathEffect(); if (NULL != pe && !strokeInfo.isDashed()) { usePath = true; } } if (usePath) { SkPath path; path.addRRect(rect); this->drawPath(draw, path, paint, NULL, true); return; } fContext->drawRRect(grPaint, rect, strokeInfo); } void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { SkStrokeRec stroke(paint); if (stroke.isFillStyle()) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); if (NULL == paint.getMaskFilter() && NULL == paint.getPathEffect()) { fContext->drawDRRect(grPaint, outer, inner); return; } } SkPath path; path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPath::kEvenOdd_FillType); this->drawPath(draw, path, paint, NULL, true); } ///////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); GrStrokeInfo strokeInfo(paint); bool usePath = false; // some basic reasons we might need to call drawPath... if (paint.getMaskFilter()) { usePath = true; } else { const SkPathEffect* pe = paint.getPathEffect(); if (NULL != pe && !strokeInfo.isDashed()) { usePath = true; } } if (usePath) { SkPath path; path.addOval(oval); this->drawPath(draw, path, paint, NULL, true); return; } GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); fContext->drawOval(grPaint, oval, strokeInfo); } #include "SkMaskFilter.h" /////////////////////////////////////////////////////////////////////////////// // helpers for applying mask filters namespace { // Draw a mask using the supplied paint. Since the coverage/geometry // is already burnt into the mask this boils down to a rect draw. // Return true if the mask was successfully drawn. bool draw_mask(GrContext* context, const SkRect& maskRect, GrPaint* grp, GrTexture* mask) { GrContext::AutoMatrix am; if (!am.setIdentity(context, grp)) { return false; } SkMatrix matrix; matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop); matrix.postIDiv(mask->width(), mask->height()); grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref(); context->drawRect(*grp, maskRect); return true; } bool draw_with_mask_filter(GrContext* context, const SkPath& devPath, SkMaskFilter* filter, const SkRegion& clip, GrPaint* grp, SkPaint::Style style) { SkMask srcM, dstM; if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { return false; } SkAutoMaskFreeImage autoSrc(srcM.fImage); if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { return false; } // this will free-up dstM when we're done (allocated in filterMask()) SkAutoMaskFreeImage autoDst(dstM.fImage); if (clip.quickReject(dstM.fBounds)) { return false; } // we now have a device-aligned 8bit mask in dstM, ready to be drawn using // the current clip (and identity matrix) and GrPaint settings GrTextureDesc desc; desc.fWidth = dstM.fBounds.width(); desc.fHeight = dstM.fBounds.height(); desc.fConfig = kAlpha_8_GrPixelConfig; GrAutoScratchTexture ast(context, desc); GrTexture* texture = ast.texture(); if (NULL == texture) { return false; } texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, dstM.fImage, dstM.fRowBytes); SkRect maskRect = SkRect::Make(dstM.fBounds); return draw_mask(context, maskRect, grp, texture); } // Create a mask of 'devPath' and place the result in 'mask'. Return true on // success; false otherwise. bool create_mask_GPU(GrContext* context, const SkRect& maskRect, const SkPath& devPath, const GrStrokeInfo& strokeInfo, bool doAA, GrAutoScratchTexture* mask) { GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = SkScalarCeilToInt(maskRect.width()); desc.fHeight = SkScalarCeilToInt(maskRect.height()); // We actually only need A8, but it often isn't supported as a // render target so default to RGBA_8888 desc.fConfig = kRGBA_8888_GrPixelConfig; if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { desc.fConfig = kAlpha_8_GrPixelConfig; } mask->set(context, desc); if (NULL == mask->texture()) { return false; } GrTexture* maskTexture = mask->texture(); SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height()); GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget()); GrContext::AutoClip ac(context, clipRect); context->clear(NULL, 0x0, true); GrPaint tempPaint; if (doAA) { tempPaint.setAntiAlias(true); // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst // blend coeff of zero requires dual source blending support in order // to properly blend partially covered pixels. This means the AA // code path may not be taken. So we use a dst blend coeff of ISA. We // could special case AA draws to a dst surface with known alpha=0 to // use a zero dst coeff when dual source blending isn't available. tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); } GrContext::AutoMatrix am; // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint. SkMatrix translate; translate.setTranslate(-maskRect.fLeft, -maskRect.fTop); am.set(context, translate); context->drawPath(tempPaint, devPath, strokeInfo); return true; } SkBitmap wrap_texture(GrTexture* texture) { SkBitmap result; result.setInfo(texture->info()); result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (result.info(), texture)))->unref(); return result; } }; void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, const SkPaint& paint, const SkMatrix* prePathMatrix, bool pathIsMutable) { CHECK_FOR_ANNOTATION(paint); CHECK_SHOULD_DRAW(draw, false); GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); // If we have a prematrix, apply it to the path, optimizing for the case // where the original path can in fact be modified in place (even though // its parameter type is const). SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); SkTLazy<SkPath> tmpPath; SkTLazy<SkPath> effectPath; if (prePathMatrix) { SkPath* result = pathPtr; if (!pathIsMutable) { result = tmpPath.init(); pathIsMutable = true; } // should I push prePathMatrix on our MV stack temporarily, instead // of applying it here? See SkDraw.cpp pathPtr->transform(*prePathMatrix, result); pathPtr = result; } // at this point we're done with prePathMatrix SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) GrStrokeInfo strokeInfo(paint); SkPathEffect* pathEffect = paint.getPathEffect(); const SkRect* cullRect = NULL; // TODO: what is our bounds? SkStrokeRec* strokePtr = strokeInfo.getStrokeRecPtr(); if (pathEffect && pathEffect->filterPath(effectPath.init(), *pathPtr, strokePtr, cullRect)) { pathPtr = effectPath.get(); pathIsMutable = true; strokeInfo.removeDash(); } const SkStrokeRec& stroke = strokeInfo.getStrokeRec(); if (paint.getMaskFilter()) { if (!stroke.isHairlineStyle()) { SkPath* strokedPath = pathIsMutable ? pathPtr : tmpPath.init(); if (stroke.applyToPath(strokedPath, *pathPtr)) { pathPtr = strokedPath; pathIsMutable = true; strokeInfo.setFillStyle(); } } // avoid possibly allocating a new path in transform if we can SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath.init(); // transform the path into device space pathPtr->transform(fContext->getMatrix(), devPathPtr); SkRect maskRect; if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(), draw.fClip->getBounds(), fContext->getMatrix(), &maskRect)) { // The context's matrix may change while creating the mask, so save the CTM here to // pass to filterMaskGPU. const SkMatrix ctm = fContext->getMatrix(); SkIRect finalIRect; maskRect.roundOut(&finalIRect); if (draw.fClip->quickReject(finalIRect)) { // clipped out return; } if (paint.getMaskFilter()->directFilterMaskGPU(fContext, &grPaint, stroke, *devPathPtr)) { // the mask filter was able to draw itself directly, so there's nothing // left to do. return; } GrAutoScratchTexture mask; if (create_mask_GPU(fContext, maskRect, *devPathPtr, strokeInfo, grPaint.isAntiAlias(), &mask)) { GrTexture* filtered; if (paint.getMaskFilter()->filterMaskGPU(mask.texture(), ctm, maskRect, &filtered, true)) { // filterMaskGPU gives us ownership of a ref to the result SkAutoTUnref<GrTexture> atu(filtered); // If the scratch texture that we used as the filter src also holds the filter // result then we must detach so that this texture isn't recycled for a later // draw. if (filtered == mask.texture()) { mask.detach(); filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us. } if (draw_mask(fContext, maskRect, &grPaint, filtered)) { // This path is completely drawn return; } } } } // draw the mask on the CPU - this is a fallthrough path in case the // GPU path fails SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : SkPaint::kFill_Style; draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(), *draw.fClip, &grPaint, style); return; } fContext->drawPath(grPaint, *pathPtr, strokeInfo); } static const int kBmpSmallTileSize = 1 << 10; static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; return tilesX * tilesY; } static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) { if (maxTileSize <= kBmpSmallTileSize) { return maxTileSize; } size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); maxTileTotalTileSize *= maxTileSize * maxTileSize; smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; if (maxTileTotalTileSize > 2 * smallTotalTileSize) { return kBmpSmallTileSize; } else { return maxTileSize; } } // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what // pixels from the bitmap are necessary. static void determine_clipped_src_rect(const GrContext* context, const SkBitmap& bitmap, const SkRect* srcRectPtr, SkIRect* clippedSrcIRect) { const GrClipData* clip = context->getClip(); clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL); SkMatrix inv; if (!context->getMatrix().invert(&inv)) { clippedSrcIRect->setEmpty(); return; } SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); inv.mapRect(&clippedSrcRect); if (NULL != srcRectPtr) { // we've setup src space 0,0 to map to the top left of the src rect. clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); if (!clippedSrcRect.intersect(*srcRectPtr)) { clippedSrcIRect->setEmpty(); return; } } clippedSrcRect.roundOut(clippedSrcIRect); SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); if (!clippedSrcIRect->intersect(bmpBounds)) { clippedSrcIRect->setEmpty(); } } bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, const GrTextureParams& params, const SkRect* srcRectPtr, int maxTileSize, int* tileSize, SkIRect* clippedSrcRect) const { // if bitmap is explictly texture backed then just use the texture if (NULL != bitmap.getTexture()) { return false; } // if it's larger than the max tile size, then we have no choice but tiling. if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) { determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize); return true; } if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { return false; } // if the entire texture is already in our cache then no reason to tile it if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { return false; } // At this point we know we could do the draw by uploading the entire bitmap // as a texture. However, if the texture would be large compared to the // cache size and we don't require most of it for this draw then tile to // reduce the amount of upload and cache spill. // assumption here is that sw bitmap size is a good proxy for its size as // a texture size_t bmpSize = bitmap.getSize(); size_t cacheSize; fContext->getResourceCacheLimits(NULL, &cacheSize); if (bmpSize < cacheSize / 2) { return false; } // Figure out how much of the src we will need based on the src rect and clipping. determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect); *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) * kBmpSmallTileSize * kBmpSmallTileSize; return usedTileBytes < 2 * bmpSize; } void SkGpuDevice::drawBitmap(const SkDraw& origDraw, const SkBitmap& bitmap, const SkMatrix& m, const SkPaint& paint) { SkMatrix concat; SkTCopyOnFirstWrite<SkDraw> draw(origDraw); if (!m.isIdentity()) { concat.setConcat(*draw->fMatrix, m); draw.writable()->fMatrix = &concat; } this->drawBitmapCommon(*draw, bitmap, NULL, NULL, paint, SkCanvas::kNone_DrawBitmapRectFlag); } // This method outsets 'iRect' by 'outset' all around and then clamps its extents to // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner // of 'iRect' for all possible outsets/clamps. static inline void clamped_outset_with_offset(SkIRect* iRect, int outset, SkPoint* offset, const SkIRect& clamp) { iRect->outset(outset, outset); int leftClampDelta = clamp.fLeft - iRect->fLeft; if (leftClampDelta > 0) { offset->fX -= outset - leftClampDelta; iRect->fLeft = clamp.fLeft; } else { offset->fX -= outset; } int topClampDelta = clamp.fTop - iRect->fTop; if (topClampDelta > 0) { offset->fY -= outset - topClampDelta; iRect->fTop = clamp.fTop; } else { offset->fY -= outset; } if (iRect->fRight > clamp.fRight) { iRect->fRight = clamp.fRight; } if (iRect->fBottom > clamp.fBottom) { iRect->fBottom = clamp.fBottom; } } static bool has_aligned_samples(const SkRect& srcRect, const SkRect& transformedRect) { // detect pixel disalignment if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - transformedRect.left()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - transformedRect.top()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(transformedRect.width() - srcRect.width()) < COLOR_BLEED_TOLERANCE && SkScalarAbs(transformedRect.height() - srcRect.height()) < COLOR_BLEED_TOLERANCE) { return true; } return false; } static bool may_color_bleed(const SkRect& srcRect, const SkRect& transformedRect, const SkMatrix& m) { // Only gets called if has_aligned_samples returned false. // So we can assume that sampling is axis aligned but not texel aligned. SkASSERT(!has_aligned_samples(srcRect, transformedRect)); SkRect innerSrcRect(srcRect), innerTransformedRect, outerTransformedRect(transformedRect); innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); m.mapRect(&innerTransformedRect, innerSrcRect); // The gap between outerTransformedRect and innerTransformedRect // represents the projection of the source border area, which is // problematic for color bleeding. We must check whether any // destination pixels sample the border area. outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); SkIRect outer, inner; outerTransformedRect.round(&outer); innerTransformedRect.round(&inner); // If the inner and outer rects round to the same result, it means the // border does not overlap any pixel centers. Yay! return inner != outer; } static bool needs_texture_domain(const SkBitmap& bitmap, const SkRect& srcRect, GrTextureParams ¶ms, const SkMatrix& contextMatrix, bool bicubic) { bool needsTextureDomain = false; if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) { // Need texture domain if drawing a sub rect needsTextureDomain = srcRect.width() < bitmap.width() || srcRect.height() < bitmap.height(); if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) { // sampling is axis-aligned SkRect transformedRect; contextMatrix.mapRect(&transformedRect, srcRect); if (has_aligned_samples(srcRect, transformedRect)) { params.setFilterMode(GrTextureParams::kNone_FilterMode); needsTextureDomain = false; } else { needsTextureDomain = may_color_bleed(srcRect, transformedRect, contextMatrix); } } } return needsTextureDomain; } void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, const SkBitmap& bitmap, const SkRect* srcRectPtr, const SkSize* dstSizePtr, const SkPaint& paint, SkCanvas::DrawBitmapRectFlags flags) { CHECK_SHOULD_DRAW(draw, false); SkRect srcRect; SkSize dstSize; // If there is no src rect, or the src rect contains the entire bitmap then we're effectively // in the (easier) bleed case, so update flags. if (NULL == srcRectPtr) { SkScalar w = SkIntToScalar(bitmap.width()); SkScalar h = SkIntToScalar(bitmap.height()); dstSize.fWidth = w; dstSize.fHeight = h; srcRect.set(0, 0, w, h); flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); } else { SkASSERT(NULL != dstSizePtr); srcRect = *srcRectPtr; dstSize = *dstSizePtr; if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 && srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) { flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag); } } if (paint.getMaskFilter()){ // Convert the bitmap to a shader so that the rect can be drawn // through drawRect, which supports mask filters. SkBitmap tmp; // subset of bitmap, if necessary const SkBitmap* bitmapPtr = &bitmap; SkMatrix localM; if (NULL != srcRectPtr) { localM.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); localM.postScale(dstSize.fWidth / srcRectPtr->width(), dstSize.fHeight / srcRectPtr->height()); // In bleed mode we position and trim the bitmap based on the src rect which is // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out // the desired portion of the bitmap and then update 'm' and 'srcRect' to // compensate. if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) { SkIRect iSrc; srcRect.roundOut(&iSrc); SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), SkIntToScalar(iSrc.fTop)); if (!bitmap.extractSubset(&tmp, iSrc)) { return; // extraction failed } bitmapPtr = &tmp; srcRect.offset(-offset.fX, -offset.fY); // The source rect has changed so update the matrix localM.preTranslate(offset.fX, offset.fY); } } else { localM.reset(); } SkPaint paintWithShader(paint); paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &localM))->unref(); SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; this->drawRect(draw, dstRect, paintWithShader); return; } // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using // the view matrix rather than a local matrix. SkMatrix m; m.setScale(dstSize.fWidth / srcRect.width(), dstSize.fHeight / srcRect.height()); fContext->concatMatrix(m); GrTextureParams params; SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel(); GrTextureParams::FilterMode textureFilterMode; bool doBicubic = false; switch(paintFilterLevel) { case SkPaint::kNone_FilterLevel: textureFilterMode = GrTextureParams::kNone_FilterMode; break; case SkPaint::kLow_FilterLevel: textureFilterMode = GrTextureParams::kBilerp_FilterMode; break; case SkPaint::kMedium_FilterLevel: if (fContext->getMatrix().getMinScale() < SK_Scalar1) { textureFilterMode = GrTextureParams::kMipMap_FilterMode; } else { // Don't trigger MIP level generation unnecessarily. textureFilterMode = GrTextureParams::kBilerp_FilterMode; } break; case SkPaint::kHigh_FilterLevel: // Minification can look bad with the bicubic effect. doBicubic = GrBicubicEffect::ShouldUseBicubic(fContext->getMatrix(), &textureFilterMode); break; default: SkErrorInternals::SetError( kInvalidPaint_SkError, "Sorry, I don't understand the filtering " "mode you asked for. Falling back to " "MIPMaps."); textureFilterMode = GrTextureParams::kMipMap_FilterMode; break; } int tileFilterPad; if (doBicubic) { tileFilterPad = GrBicubicEffect::kFilterTexelPad; } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { tileFilterPad = 0; } else { tileFilterPad = 1; } params.setFilterMode(textureFilterMode); int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad; int tileSize; SkIRect clippedSrcRect; if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize, &clippedSrcRect)) { this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize, doBicubic); } else { // take the simple case bool needsTextureDomain = needs_texture_domain(bitmap, srcRect, params, fContext->getMatrix(), doBicubic); this->internalDrawBitmap(bitmap, srcRect, params, paint, flags, doBicubic, needsTextureDomain); } } // Break 'bitmap' into several tiles to draw it since it has already // been determined to be too large to fit in VRAM void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, const SkRect& srcRect, const SkIRect& clippedSrcIRect, const GrTextureParams& params, const SkPaint& paint, SkCanvas::DrawBitmapRectFlags flags, int tileSize, bool bicubic) { // The following pixel lock is technically redundant, but it is desirable // to lock outside of the tile loop to prevent redecoding the whole image // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that // is larger than the limit of the discardable memory pool. SkAutoLockPixels alp(bitmap); SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); int nx = bitmap.width() / tileSize; int ny = bitmap.height() / tileSize; for (int x = 0; x <= nx; x++) { for (int y = 0; y <= ny; y++) { SkRect tileR; tileR.set(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize), SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize)); if (!SkRect::Intersects(tileR, clippedSrcRect)) { continue; } if (!tileR.intersect(srcRect)) { continue; } SkBitmap tmpB; SkIRect iTileR; tileR.roundOut(&iTileR); SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), SkIntToScalar(iTileR.fTop)); // Adjust the context matrix to draw at the right x,y in device space SkMatrix tmpM; GrContext::AutoMatrix am; tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); am.setPreConcat(fContext, tmpM); if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) { SkIRect iClampRect; if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) { // In bleed mode we want to always expand the tile on all edges // but stay within the bitmap bounds iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); } else { // In texture-domain/clamp mode we only want to expand the // tile on edges interior to "srcRect" (i.e., we want to // not bleed across the original clamped edges) srcRect.roundOut(&iClampRect); } int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); } if (bitmap.extractSubset(&tmpB, iTileR)) { // now offset it to make it "local" to our tmp bitmap tileR.offset(-offset.fX, -offset.fY); GrTextureParams paramsTemp = params; bool needsTextureDomain = needs_texture_domain(bitmap, srcRect, paramsTemp, fContext->getMatrix(), bicubic); this->internalDrawBitmap(tmpB, tileR, paramsTemp, paint, flags, bicubic, needsTextureDomain); } } } } /* * This is called by drawBitmap(), which has to handle images that may be too * large to be represented by a single texture. * * internalDrawBitmap assumes that the specified bitmap will fit in a texture * and that non-texture portion of the GrPaint has already been setup. */ void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, const SkRect& srcRect, const GrTextureParams& params, const SkPaint& paint, SkCanvas::DrawBitmapRectFlags flags, bool bicubic, bool needsTextureDomain) { SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && bitmap.height() <= fContext->getMaxTextureSize()); GrTexture* texture; SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); if (NULL == texture) { return; } SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; SkRect paintRect; SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), SkScalarMul(srcRect.fTop, hInv), SkScalarMul(srcRect.fRight, wInv), SkScalarMul(srcRect.fBottom, hInv)); SkRect textureDomain = SkRect::MakeEmpty(); SkAutoTUnref<GrEffectRef> effect; if (needsTextureDomain && !(flags & SkCanvas::kBleed_DrawBitmapRectFlag)) { // Use a constrained texture domain to avoid color bleeding SkScalar left, top, right, bottom; if (srcRect.width() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / texture->width(); left = paintRect.left() + border; right = paintRect.right() - border; } else { left = right = SkScalarHalf(paintRect.left() + paintRect.right()); } if (srcRect.height() > SK_Scalar1) { SkScalar border = SK_ScalarHalf / texture->height(); top = paintRect.top() + border; bottom = paintRect.bottom() - border; } else { top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); } textureDomain.setLTRB(left, top, right, bottom); if (bicubic) { effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), textureDomain)); } else { effect.reset(GrTextureDomainEffect::Create(texture, SkMatrix::I(), textureDomain, GrTextureDomain::kClamp_Mode, params.filterMode())); } } else if (bicubic) { SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes)); } else { effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); } // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring // the rest from the SkPaint. GrPaint grPaint; grPaint.addColorEffect(effect); bool alphaOnly = !(kAlpha_8_SkColorType == bitmap.colorType()); GrColor grColor = (alphaOnly) ? SkColor2GrColorJustAlpha(paint.getColor()) : SkColor2GrColor(paint.getColor()); SkPaint2GrPaintNoShader(this->context(), paint, grColor, false, &grPaint); fContext->drawRectToRect(grPaint, dstRect, paintRect, NULL); } static bool filter_texture(SkBaseDevice* device, GrContext* context, GrTexture* texture, const SkImageFilter* filter, int w, int h, const SkImageFilter::Context& ctx, SkBitmap* result, SkIPoint* offset) { SkASSERT(filter); SkDeviceImageFilterProxy proxy(device); if (filter->canFilterImageGPU()) { // Save the render target and set it to NULL, so we don't accidentally draw to it in the // filter. Also set the clip wide open and the matrix to identity. GrContext::AutoWideOpenIdentityDraw awo(context, NULL); return filter->filterImageGPU(&proxy, wrap_texture(texture), ctx, result, offset); } else { return false; } } void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, int left, int top, const SkPaint& paint) { // drawSprite is defined to be in device coords. CHECK_SHOULD_DRAW(draw, true); SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); if (!bitmap.getTexture() && !bitmap.readyToDraw()) { return; } int w = bitmap.width(); int h = bitmap.height(); GrTexture* texture; // draw sprite uses the default texture params SkAutoCachedTexture act(this, bitmap, NULL, &texture); SkImageFilter* filter = paint.getImageFilter(); // This bitmap will own the filtered result as a texture. SkBitmap filteredBitmap; if (NULL != filter) { SkIPoint offset = SkIPoint::Make(0, 0); SkMatrix matrix(*draw.fMatrix); matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); SkImageFilter::Cache* cache = SkImageFilter::Cache::Create(); SkAutoUnref aur(cache); SkImageFilter::Context ctx(matrix, clipBounds, cache); if (filter_texture(this, fContext, texture, filter, w, h, ctx, &filteredBitmap, &offset)) { texture = (GrTexture*) filteredBitmap.getTexture(); w = filteredBitmap.width(); h = filteredBitmap.height(); left += offset.x(); top += offset.y(); } else { return; } } GrPaint grPaint; grPaint.addColorTextureEffect(texture, SkMatrix::I()); SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()), false, &grPaint); fContext->drawRectToRect(grPaint, SkRect::MakeXYWH(SkIntToScalar(left), SkIntToScalar(top), SkIntToScalar(w), SkIntToScalar(h)), SkRect::MakeXYWH(0, 0, SK_Scalar1 * w / texture->width(), SK_Scalar1 * h / texture->height())); } void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::DrawBitmapRectFlags flags) { SkMatrix matrix; SkRect bitmapBounds, tmpSrc; bitmapBounds.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); // Compute matrix from the two rectangles if (NULL != src) { tmpSrc = *src; } else { tmpSrc = bitmapBounds; } matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. if (NULL != src) { if (!bitmapBounds.contains(tmpSrc)) { if (!tmpSrc.intersect(bitmapBounds)) { return; // nothing to draw } } } SkRect tmpDst; matrix.mapRect(&tmpDst, tmpSrc); SkTCopyOnFirstWrite<SkDraw> draw(origDraw); if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { // Translate so that tempDst's top left is at the origin. matrix = *origDraw.fMatrix; matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); draw.writable()->fMatrix = &matrix; } SkSize dstSize; dstSize.fWidth = tmpDst.width(); dstSize.fHeight = tmpDst.height(); this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, flags); } void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, int x, int y, const SkPaint& paint) { // clear of the source device must occur before CHECK_SHOULD_DRAW SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); if (dev->fNeedClear) { // TODO: could check here whether we really need to draw at all dev->clear(0x0); } // drawDevice is defined to be in device coords. CHECK_SHOULD_DRAW(draw, true); GrRenderTarget* devRT = dev->accessRenderTarget(); GrTexture* devTex; if (NULL == (devTex = devRT->asTexture())) { return; } const SkBitmap& bm = dev->accessBitmap(false); int w = bm.width(); int h = bm.height(); SkImageFilter* filter = paint.getImageFilter(); // This bitmap will own the filtered result as a texture. SkBitmap filteredBitmap; if (NULL != filter) { SkIPoint offset = SkIPoint::Make(0, 0); SkMatrix matrix(*draw.fMatrix); matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height()); SkImageFilter::Cache* cache = SkImageFilter::Cache::Create(); SkAutoUnref aur(cache); SkImageFilter::Context ctx(matrix, clipBounds, cache); if (filter_texture(this, fContext, devTex, filter, w, h, ctx, &filteredBitmap, &offset)) { devTex = filteredBitmap.getTexture(); w = filteredBitmap.width(); h = filteredBitmap.height(); x += offset.fX; y += offset.fY; } else { return; } } GrPaint grPaint; grPaint.addColorTextureEffect(devTex, SkMatrix::I()); SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColorJustAlpha(paint.getColor()), false, &grPaint); SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y), SkIntToScalar(w), SkIntToScalar(h)); // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate // scratch texture). SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), SK_Scalar1 * h / devTex->height()); fContext->drawRectToRect(grPaint, dstRect, srcRect); } bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) { return filter->canFilterImageGPU(); } bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, const SkImageFilter::Context& ctx, SkBitmap* result, SkIPoint* offset) { // want explicitly our impl, so guard against a subclass of us overriding it if (!this->SkGpuDevice::canHandleImageFilter(filter)) { return false; } SkAutoLockPixels alp(src, !src.getTexture()); if (!src.getTexture() && !src.readyToDraw()) { return false; } GrTexture* texture; // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup // must be pushed upstack. SkAutoCachedTexture act(this, src, NULL, &texture); return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctx, result, offset); } /////////////////////////////////////////////////////////////////////////////// // must be in SkCanvas::VertexMode order static const GrPrimitiveType gVertexMode2PrimitiveType[] = { kTriangles_GrPrimitiveType, kTriangleStrip_GrPrimitiveType, kTriangleFan_GrPrimitiveType, }; void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); // If both textures and vertex-colors are NULL, strokes hairlines with the paint's color. if ((NULL == texs || NULL == paint.getShader()) && NULL == colors) { texs = NULL; SkPaint copy(paint); copy.setStyle(SkPaint::kStroke_Style); copy.setStrokeWidth(0); VertState state(vertexCount, indices, indexCount); VertState::Proc vertProc = state.chooseProc(vmode); SkPoint* pts = new SkPoint[vertexCount * 6]; int i = 0; while (vertProc(&state)) { pts[i] = vertices[state.f0]; pts[i + 1] = vertices[state.f1]; pts[i + 2] = vertices[state.f1]; pts[i + 3] = vertices[state.f2]; pts[i + 4] = vertices[state.f2]; pts[i + 5] = vertices[state.f0]; i += 6; } draw.drawPoints(SkCanvas::kLines_PointMode, i, pts, copy, true); return; } GrPaint grPaint; // we ignore the shader if texs is null. if (NULL == texs) { SkPaint2GrPaintNoShader(this->context(), paint, SkColor2GrColor(paint.getColor()), NULL == colors, &grPaint); } else { SkPaint2GrPaintShader(this->context(), paint, NULL == colors, &grPaint); } #if 0 if (NULL != xmode && NULL != texs && NULL != colors) { if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) { SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); return; } } #endif SkAutoSTMalloc<128, GrColor> convertedColors(0); if (NULL != colors) { // need to convert byte order and from non-PM to PM convertedColors.reset(vertexCount); SkColor color; for (int i = 0; i < vertexCount; ++i) { color = colors[i]; if (paint.getAlpha() != 255) { color = SkColorSetA(color, SkMulDiv255Round(SkColorGetA(color), paint.getAlpha())); } convertedColors[i] = SkColor2GrColor(color); } colors = convertedColors.get(); } fContext->drawVertices(grPaint, gVertexMode2PrimitiveType[vmode], vertexCount, vertices, texs, colors, indices, indexCount); } /////////////////////////////////////////////////////////////////////////////// void SkGpuDevice::drawText(const SkDraw& draw, const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); if (fMainTextContext->canDraw(paint)) { GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); SkDEBUGCODE(this->validate();) fMainTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); SkDEBUGCODE(this->validate();) fFallbackTextContext->drawText(grPaint, paint, (const char *)text, byteLength, x, y); } else { // this guy will just call our drawPath() draw.drawText_asPaths((const char*)text, byteLength, x, y, paint); } } void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength, const SkScalar pos[], SkScalar constY, int scalarsPerPos, const SkPaint& paint) { GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext); CHECK_SHOULD_DRAW(draw, false); if (fMainTextContext->canDraw(paint)) { GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); SkDEBUGCODE(this->validate();) fMainTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, constY, scalarsPerPos); } else if (fFallbackTextContext && fFallbackTextContext->canDraw(paint)) { GrPaint grPaint; SkPaint2GrPaintShader(this->context(), paint, true, &grPaint); SkDEBUGCODE(this->validate();) fFallbackTextContext->drawPosText(grPaint, paint, (const char *)text, byteLength, pos, constY, scalarsPerPos); } else { draw.drawPosText_asPaths((const char*)text, byteLength, pos, constY, scalarsPerPos, paint); } } void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, size_t len, const SkPath& path, const SkMatrix* m, const SkPaint& paint) { CHECK_SHOULD_DRAW(draw, false); SkASSERT(draw.fDevice == this); draw.drawTextOnPath((const char*)text, len, path, m, paint); } /////////////////////////////////////////////////////////////////////////////// bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { if (!paint.isLCDRenderText()) { // we're cool with the paint as is return false; } if (paint.getShader() || paint.getXfermode() || // unless its srcover paint.getMaskFilter() || paint.getRasterizer() || paint.getColorFilter() || paint.getPathEffect() || paint.isFakeBoldText() || paint.getStyle() != SkPaint::kFill_Style) { // turn off lcd flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; flags->fHinting = paint.getHinting(); return true; } // we're cool with the paint as is return false; } void SkGpuDevice::flush() { DO_DEFERRED_CLEAR(); fContext->resolveRenderTarget(fRenderTarget); } /////////////////////////////////////////////////////////////////////////////// SkBaseDevice* SkGpuDevice::onCreateDevice(const SkImageInfo& info, Usage usage) { GrTextureDesc desc; desc.fConfig = fRenderTarget->config(); desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = info.width(); desc.fHeight = info.height(); desc.fSampleCnt = fRenderTarget->numSamples(); SkAutoTUnref<GrTexture> texture; // Skia's convention is to only clear a device if it is non-opaque. unsigned flags = info.isOpaque() ? 0 : kNeedClear_Flag; #if CACHE_COMPATIBLE_DEVICE_TEXTURES // layers are never draw in repeat modes, so we can request an approx // match and ignore any padding. flags |= kCached_Flag; const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? GrContext::kApprox_ScratchTexMatch : GrContext::kExact_ScratchTexMatch; texture.reset(fContext->lockAndRefScratchTexture(desc, match)); #else texture.reset(fContext->createUncachedTexture(desc, NULL, 0)); #endif if (NULL != texture.get()) { return SkGpuDevice::Create(texture, flags); } else { GrPrintf("---- failed to create compatible device texture [%d %d]\n", info.width(), info.height()); return NULL; } } SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info) { return SkSurface::NewRenderTarget(fContext, info, fRenderTarget->numSamples()); } void SkGpuDevice::EXPERIMENTAL_optimize(const SkPicture* picture) { SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey(); const SkPicture::AccelData* existing = picture->EXPERIMENTAL_getAccelData(key); if (NULL != existing) { return; } SkAutoTUnref<GPUAccelData> data(SkNEW_ARGS(GPUAccelData, (key))); picture->EXPERIMENTAL_addAccelData(data); GatherGPUInfo(picture, data); } static void wrap_texture(GrTexture* texture, int width, int height, SkBitmap* result) { SkImageInfo info = SkImageInfo::MakeN32Premul(width, height); result->setInfo(info); result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref(); } void SkGpuDevice::EXPERIMENTAL_purge(const SkPicture* picture) { } bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* picture) { SkPicture::AccelData::Key key = GPUAccelData::ComputeAccelDataKey(); const SkPicture::AccelData* data = picture->EXPERIMENTAL_getAccelData(key); if (NULL == data) { return false; } const GPUAccelData *gpuData = static_cast<const GPUAccelData*>(data); if (0 == gpuData->numSaveLayers()) { return false; } SkAutoTArray<bool> pullForward(gpuData->numSaveLayers()); for (int i = 0; i < gpuData->numSaveLayers(); ++i) { pullForward[i] = false; } SkRect clipBounds; if (!canvas->getClipBounds(&clipBounds)) { return true; } SkIRect query; clipBounds.roundOut(&query); const SkPicture::OperationList& ops = picture->EXPERIMENTAL_getActiveOps(query); // This code pre-renders the entire layer since it will be cached and potentially // reused with different clips (e.g., in different tiles). Because of this the // clip will not be limiting the size of the pre-rendered layer. kSaveLayerMaxSize // is used to limit which clips are pre-rendered. static const int kSaveLayerMaxSize = 256; if (ops.valid()) { // In this case the picture has been generated with a BBH so we use // the BBH to limit the pre-rendering to just the layers needed to cover // the region being drawn for (int i = 0; i < ops.numOps(); ++i) { uint32_t offset = ops.offset(i); // For now we're saving all the layers in the GPUAccelData so they // can be nested. Additionally, the nested layers appear before // their parent in the list. for (int j = 0 ; j < gpuData->numSaveLayers(); ++j) { const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j); if (pullForward[j]) { continue; // already pulling forward } if (offset < info.fSaveLayerOpID || offset > info.fRestoreOpID) { continue; // the op isn't in this range } // TODO: once this code is more stable unsuitable layers can // just be omitted during the optimization stage if (!info.fValid || kSaveLayerMaxSize < info.fSize.fWidth || kSaveLayerMaxSize < info.fSize.fHeight || info.fIsNested) { continue; // this layer is unsuitable } pullForward[j] = true; } } } else { // In this case there is no BBH associated with the picture. Pre-render // all the layers that intersect the drawn region for (int j = 0; j < gpuData->numSaveLayers(); ++j) { const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(j); SkIRect layerRect = SkIRect::MakeXYWH(info.fOffset.fX, info.fOffset.fY, info.fSize.fWidth, info.fSize.fHeight); if (!SkIRect::Intersects(query, layerRect)) { continue; } // TODO: once this code is more stable unsuitable layers can // just be omitted during the optimization stage if (!info.fValid || kSaveLayerMaxSize < info.fSize.fWidth || kSaveLayerMaxSize < info.fSize.fHeight || info.fIsNested) { continue; } pullForward[j] = true; } } SkPicturePlayback::PlaybackReplacements replacements; for (int i = 0; i < gpuData->numSaveLayers(); ++i) { if (pullForward[i]) { GrCachedLayer* layer = fContext->getLayerCache()->findLayerOrCreate(picture, i); const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(i); if (NULL != picture->fPlayback) { SkPicturePlayback::PlaybackReplacements::ReplacementInfo* layerInfo = replacements.push(); layerInfo->fStart = info.fSaveLayerOpID; layerInfo->fStop = info.fRestoreOpID; layerInfo->fPos = info.fOffset; GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = info.fSize.fWidth; desc.fHeight = info.fSize.fHeight; desc.fConfig = kSkia8888_GrPixelConfig; // TODO: need to deal with sample count bool bNeedsRendering = true; // This just uses scratch textures and doesn't cache the texture. // This can yield a lot of re-rendering if (NULL == layer->getTexture()) { layer->setTexture(fContext->lockAndRefScratchTexture(desc, GrContext::kApprox_ScratchTexMatch)); if (NULL == layer->getTexture()) { continue; } } else { bNeedsRendering = false; } layerInfo->fBM = SkNEW(SkBitmap); wrap_texture(layer->getTexture(), desc.fWidth, desc.fHeight, layerInfo->fBM); SkASSERT(info.fPaint); layerInfo->fPaint = info.fPaint; if (bNeedsRendering) { SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTargetDirect( layer->getTexture()->asRenderTarget())); SkCanvas* canvas = surface->getCanvas(); canvas->setMatrix(info.fCTM); canvas->clear(SK_ColorTRANSPARENT); picture->fPlayback->setDrawLimits(info.fSaveLayerOpID, info.fRestoreOpID); picture->fPlayback->draw(*canvas, NULL); picture->fPlayback->setDrawLimits(0, 0); canvas->flush(); } } } } // Playback using new layers picture->fPlayback->setReplacements(&replacements); picture->fPlayback->draw(*canvas, NULL); picture->fPlayback->setReplacements(NULL); for (int i = 0; i < gpuData->numSaveLayers(); ++i) { GrCachedLayer* layer = fContext->getLayerCache()->findLayerOrCreate(picture, i); if (NULL != layer->getTexture()) { fContext->unlockScratchTexture(layer->getTexture()); layer->setTexture(NULL); } } return true; }