/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrDrawState_DEFINED #define GrDrawState_DEFINED #include "GrBackendEffectFactory.h" #include "GrBlend.h" #include "GrColor.h" #include "GrEffectStage.h" #include "GrPaint.h" #include "GrRenderTarget.h" #include "GrStencil.h" #include "GrTemplates.h" #include "GrTexture.h" #include "GrTypesPriv.h" #include "effects/GrSimpleTextureEffect.h" #include "SkMatrix.h" #include "SkTypes.h" #include "SkXfermode.h" class GrDrawState : public SkRefCnt { public: SK_DECLARE_INST_COUNT(GrDrawState) GrDrawState() { SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) this->reset(); } GrDrawState(const SkMatrix& initialViewMatrix) { SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) this->reset(initialViewMatrix); } /** * Copies another draw state. **/ GrDrawState(const GrDrawState& state) : INHERITED() { SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) *this = state; } /** * Copies another draw state with a preconcat to the view matrix. **/ GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix) { SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) *this = state; if (!preConcatMatrix.isIdentity()) { for (int i = 0; i < fColorStages.count(); ++i) { fColorStages[i].localCoordChange(preConcatMatrix); } for (int i = 0; i < fCoverageStages.count(); ++i) { fCoverageStages[i].localCoordChange(preConcatMatrix); } } } virtual ~GrDrawState() { SkASSERT(0 == fBlockEffectRemovalCnt); } /** * Resets to the default state. GrEffects will be removed from all stages. */ void reset() { this->onReset(NULL); } void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); } /** * Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that * GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint * equivalents are set to default values. Clipping will be enabled. */ void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*); /////////////////////////////////////////////////////////////////////////// /// @name Vertex Attributes //// enum { kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4, }; /** * The format of vertices is represented as an array of GrVertexAttribs, with each representing * the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in * GrTypesPriv.h). * * The mapping of attributes with kEffect bindings to GrEffect inputs is specified when * setEffect is called. */ /** * Sets vertex attributes for next draw. The object driving the templatization * should be a global GrVertexAttrib array that is never changed. */ template <const GrVertexAttrib A[]> void setVertexAttribs(int count) { this->setVertexAttribs(A, count); } const GrVertexAttrib* getVertexAttribs() const { return fCommon.fVAPtr; } int getVertexAttribCount() const { return fCommon.fVACount; } size_t getVertexSize() const; /** * Sets default vertex attributes for next draw. The default is a single attribute: * {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType} */ void setDefaultVertexAttribs(); /** * Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the * binding does not appear in the current attribs. These bindings should appear only once in * the attrib array. */ int positionAttributeIndex() const { return fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding]; } int localCoordAttributeIndex() const { return fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; } int colorVertexAttributeIndex() const { return fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; } int coverageVertexAttributeIndex() const { return fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; } bool hasLocalCoordAttribute() const { return -1 != fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; } bool hasColorVertexAttribute() const { return -1 != fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; } bool hasCoverageVertexAttribute() const { return -1 != fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; } bool validateVertexAttribs() const; /** * Helper to save/restore vertex attribs */ class AutoVertexAttribRestore { public: AutoVertexAttribRestore(GrDrawState* drawState) { SkASSERT(NULL != drawState); fDrawState = drawState; fVAPtr = drawState->fCommon.fVAPtr; fVACount = drawState->fCommon.fVACount; fDrawState->setDefaultVertexAttribs(); } ~AutoVertexAttribRestore(){ fDrawState->setVertexAttribs(fVAPtr, fVACount); } private: GrDrawState* fDrawState; const GrVertexAttrib* fVAPtr; int fVACount; }; /** * Accessing positions, local coords, or colors, of a vertex within an array is a hassle * involving casts and simple math. These helpers exist to keep GrDrawTarget clients' code a bit * nicer looking. */ /** * Gets a pointer to a GrPoint of a vertex's position or texture * coordinate. * @param vertices the vertex array * @param vertexIndex the index of the vertex in the array * @param vertexSize the size of each vertex in the array * @param offset the offset in bytes of the vertex component. * Defaults to zero (corresponding to vertex position) * @return pointer to the vertex component as a GrPoint */ static SkPoint* GetVertexPoint(void* vertices, int vertexIndex, int vertexSize, int offset = 0) { intptr_t start = GrTCast<intptr_t>(vertices); return GrTCast<SkPoint*>(start + offset + vertexIndex * vertexSize); } static const SkPoint* GetVertexPoint(const void* vertices, int vertexIndex, int vertexSize, int offset = 0) { intptr_t start = GrTCast<intptr_t>(vertices); return GrTCast<const SkPoint*>(start + offset + vertexIndex * vertexSize); } /** * Gets a pointer to a GrColor inside a vertex within a vertex array. * @param vertices the vetex array * @param vertexIndex the index of the vertex in the array * @param vertexSize the size of each vertex in the array * @param offset the offset in bytes of the vertex color * @return pointer to the vertex component as a GrColor */ static GrColor* GetVertexColor(void* vertices, int vertexIndex, int vertexSize, int offset) { intptr_t start = GrTCast<intptr_t>(vertices); return GrTCast<GrColor*>(start + offset + vertexIndex * vertexSize); } static const GrColor* GetVertexColor(const void* vertices, int vertexIndex, int vertexSize, int offset) { const intptr_t start = GrTCast<intptr_t>(vertices); return GrTCast<const GrColor*>(start + offset + vertexIndex * vertexSize); } /// @} /** * Determines whether src alpha is guaranteed to be one for all src pixels */ bool srcAlphaWillBeOne() const; /** * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. */ bool hasSolidCoverage() const; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Color //// /** * Sets color for next draw to a premultiplied-alpha color. * * @param color the color to set. */ void setColor(GrColor color) { fCommon.fColor = color; } GrColor getColor() const { return fCommon.fColor; } /** * Sets the color to be used for the next draw to be * (r,g,b,a) = (alpha, alpha, alpha, alpha). * * @param alpha The alpha value to set as the color. */ void setAlpha(uint8_t a) { this->setColor((a << 24) | (a << 16) | (a << 8) | a); } /** * Constructor sets the color to be 'color' which is undone by the destructor. */ class AutoColorRestore : public ::SkNoncopyable { public: AutoColorRestore() : fDrawState(NULL), fOldColor(0) {} AutoColorRestore(GrDrawState* drawState, GrColor color) { fDrawState = NULL; this->set(drawState, color); } void reset() { if (NULL != fDrawState) { fDrawState->setColor(fOldColor); fDrawState = NULL; } } void set(GrDrawState* drawState, GrColor color) { this->reset(); fDrawState = drawState; fOldColor = fDrawState->getColor(); fDrawState->setColor(color); } ~AutoColorRestore() { this->reset(); } private: GrDrawState* fDrawState; GrColor fOldColor; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Coverage //// /** * Sets a constant fractional coverage to be applied to the draw. The * initial value (after construction or reset()) is 0xff. The constant * coverage is ignored when per-vertex coverage is provided. */ void setCoverage(uint8_t coverage) { fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); } uint8_t getCoverage() const { return GrColorUnpackR(fCommon.fCoverage); } GrColor getCoverageColor() const { return fCommon.fCoverage; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Effect Stages /// Each stage hosts a GrEffect. The effect produces an output color or coverage in the fragment /// shader. Its inputs are the output from the previous stage as well as some variables /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color, /// the fragment position, local coordinates). /// /// The stages are divided into two sets, color-computing and coverage-computing. The final /// color stage produces the final pixel color. The coverage-computing stages function exactly /// as the color-computing but the output of the final coverage stage is treated as a fractional /// pixel coverage rather than as input to the src/dst color blend step. /// /// The input color to the first color-stage is either the constant color or interpolated /// per-vertex colors. The input to the first coverage stage is either a constant coverage /// (usually full-coverage) or interpolated per-vertex coverage. /// /// See the documentation of kCoverageDrawing_StateBit for information about disabling the /// the color / coverage distinction. //// const GrEffectRef* addColorEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) { SkASSERT(NULL != effect); SkNEW_APPEND_TO_TARRAY(&fColorStages, GrEffectStage, (effect, attr0, attr1)); return effect; } const GrEffectRef* addCoverageEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) { SkASSERT(NULL != effect); SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrEffectStage, (effect, attr0, attr1)); return effect; } /** * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates. */ void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix) { GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix); this->addColorEffect(effect)->unref(); } void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix) { GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix); this->addCoverageEffect(effect)->unref(); } void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix, const GrTextureParams& params) { GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params); this->addColorEffect(effect)->unref(); } void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix, const GrTextureParams& params) { GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params); this->addCoverageEffect(effect)->unref(); } /** * When this object is destroyed it will remove any effects from the draw state that were added * after its constructor. */ class AutoRestoreEffects : public ::SkNoncopyable { public: AutoRestoreEffects() : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {} AutoRestoreEffects(GrDrawState* ds) : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) { this->set(ds); } ~AutoRestoreEffects() { this->set(NULL); } void set(GrDrawState* ds) { if (NULL != fDrawState) { int n = fDrawState->fColorStages.count() - fColorEffectCnt; SkASSERT(n >= 0); fDrawState->fColorStages.pop_back_n(n); n = fDrawState->fCoverageStages.count() - fCoverageEffectCnt; SkASSERT(n >= 0); fDrawState->fCoverageStages.pop_back_n(n); SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;) } fDrawState = ds; if (NULL != ds) { fColorEffectCnt = ds->fColorStages.count(); fCoverageEffectCnt = ds->fCoverageStages.count(); SkDEBUGCODE(++ds->fBlockEffectRemovalCnt;) } } bool isSet() const { return NULL != fDrawState; } private: GrDrawState* fDrawState; int fColorEffectCnt; int fCoverageEffectCnt; }; int numColorStages() const { return fColorStages.count(); } int numCoverageStages() const { return fCoverageStages.count(); } int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); } const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; } const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; } /** * Checks whether any of the effects will read the dst pixel color. */ bool willEffectReadDstColor() const; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Blending //// /** * Sets the blending function coefficients. * * The blend function will be: * D' = sat(S*srcCoef + D*dstCoef) * * where D is the existing destination color, S is the incoming source * color, and D' is the new destination color that will be written. sat() * is the saturation function. * * @param srcCoef coefficient applied to the src color. * @param dstCoef coefficient applied to the dst color. */ void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { fCommon.fSrcBlend = srcCoeff; fCommon.fDstBlend = dstCoeff; #ifdef SK_DEBUG if (GrBlendCoeffRefsDst(dstCoeff)) { GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n"); } if (GrBlendCoeffRefsSrc(srcCoeff)) { GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n"); } #endif } GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; } GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; } void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, GrBlendCoeff* dstBlendCoeff) const { *srcBlendCoeff = fCommon.fSrcBlend; *dstBlendCoeff = fCommon.fDstBlend; } /** * Sets the blending function constant referenced by the following blending * coefficients: * kConstC_GrBlendCoeff * kIConstC_GrBlendCoeff * kConstA_GrBlendCoeff * kIConstA_GrBlendCoeff * * @param constant the constant to set */ void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; } /** * Retrieves the last value set by setBlendConstant() * @return the blending constant value */ GrColor getBlendConstant() const { return fCommon.fBlendConstant; } /** * Determines whether multiplying the computed per-pixel color by the pixel's fractional * coverage before the blend will give the correct final destination color. In general it * will not as coverage is applied after blending. */ bool canTweakAlphaForCoverage() const; /** * Optimizations for blending / coverage to that can be applied based on the current state. */ enum BlendOptFlags { /** * No optimization */ kNone_BlendOpt = 0, /** * Don't draw at all */ kSkipDraw_BlendOptFlag = 0x1, /** * Emit the src color, disable HW blending (replace dst with src) */ kDisableBlend_BlendOptFlag = 0x2, /** * The coverage value does not have to be computed separately from alpha, the the output * color can be the modulation of the two. */ kCoverageAsAlpha_BlendOptFlag = 0x4, /** * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are * "don't cares". */ kEmitCoverage_BlendOptFlag = 0x8, /** * Emit transparent black instead of the src color, no need to compute coverage. */ kEmitTransBlack_BlendOptFlag = 0x10, }; GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags); /** * Determines what optimizations can be applied based on the blend. The coefficients may have * to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional * params that receive the tweaked coefficients. Normally the function looks at the current * state to see if coverage is enabled. By setting forceCoverage the caller can speculatively * determine the blend optimizations that would be used if there was partial pixel coverage. * * Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for * playback) must call this function and respect the flags that replace the output color. */ BlendOptFlags getBlendOpts(bool forceCoverage = false, GrBlendCoeff* srcCoeff = NULL, GrBlendCoeff* dstCoeff = NULL) const; /// @} /////////////////////////////////////////////////////////////////////////// /// @name View Matrix //// /** * Sets the view matrix to identity and updates any installed effects to compensate for the * coord system change. */ bool setIdentityViewMatrix(); /** * Retrieves the current view matrix * @return the current view matrix. */ const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; } /** * Retrieves the inverse of the current view matrix. * * If the current view matrix is invertible, return true, and if matrix * is non-null, copy the inverse into it. If the current view matrix is * non-invertible, return false and ignore the matrix parameter. * * @param matrix if not null, will receive a copy of the current inverse. */ bool getViewInverse(SkMatrix* matrix) const { // TODO: determine whether we really need to leave matrix unmodified // at call sites when inversion fails. SkMatrix inverse; if (fCommon.fViewMatrix.invert(&inverse)) { if (matrix) { *matrix = inverse; } return true; } return false; } //////////////////////////////////////////////////////////////////////////// /** * Preconcats the current view matrix and restores the previous view matrix in the destructor. * Effect matrices are automatically adjusted to compensate and adjusted back in the destructor. */ class AutoViewMatrixRestore : public ::SkNoncopyable { public: AutoViewMatrixRestore() : fDrawState(NULL) {} AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) { fDrawState = NULL; this->set(ds, preconcatMatrix); } ~AutoViewMatrixRestore() { this->restore(); } /** * Can be called prior to destructor to restore the original matrix. */ void restore(); void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix); /** Sets the draw state's matrix to identity. This can fail because the current view matrix is not invertible. */ bool setIdentity(GrDrawState* drawState); private: void doEffectCoordChanges(const SkMatrix& coordChangeMatrix); GrDrawState* fDrawState; SkMatrix fViewMatrix; int fNumColorStages; SkAutoSTArray<8, GrEffectStage::SavedCoordChange> fSavedCoordChanges; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Render Target //// /** * Sets the render-target used at the next drawing call * * @param target The render target to set. */ void setRenderTarget(GrRenderTarget* target) { fRenderTarget.reset(SkSafeRef(target)); } /** * Retrieves the currently set render-target. * * @return The currently set render target. */ const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } class AutoRenderTargetRestore : public ::SkNoncopyable { public: AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { fDrawState = NULL; fSavedTarget = NULL; this->set(ds, newTarget); } ~AutoRenderTargetRestore() { this->restore(); } void restore() { if (NULL != fDrawState) { fDrawState->setRenderTarget(fSavedTarget); fDrawState = NULL; } SkSafeSetNull(fSavedTarget); } void set(GrDrawState* ds, GrRenderTarget* newTarget) { this->restore(); if (NULL != ds) { SkASSERT(NULL == fSavedTarget); fSavedTarget = ds->getRenderTarget(); SkSafeRef(fSavedTarget); ds->setRenderTarget(newTarget); fDrawState = ds; } } private: GrDrawState* fDrawState; GrRenderTarget* fSavedTarget; }; /// @} /////////////////////////////////////////////////////////////////////////// /// @name Stencil //// /** * Sets the stencil settings to use for the next draw. * Changing the clip has the side-effect of possibly zeroing * out the client settable stencil bits. So multipass algorithms * using stencil should not change the clip between passes. * @param settings the stencil settings to use. */ void setStencil(const GrStencilSettings& settings) { fCommon.fStencilSettings = settings; } /** * Shortcut to disable stencil testing and ops. */ void disableStencil() { fCommon.fStencilSettings.setDisabled(); } const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; } GrStencilSettings* stencil() { return &fCommon.fStencilSettings; } /// @} /////////////////////////////////////////////////////////////////////////// /// @name State Flags //// /** * Flags that affect rendering. Controlled using enable/disableState(). All * default to disabled. */ enum StateBits { /** * Perform dithering. TODO: Re-evaluate whether we need this bit */ kDither_StateBit = 0x01, /** * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by * the 3D API. */ kHWAntialias_StateBit = 0x02, /** * Draws will respect the clip, otherwise the clip is ignored. */ kClip_StateBit = 0x04, /** * Disables writing to the color buffer. Useful when performing stencil * operations. */ kNoColorWrites_StateBit = 0x08, /** * Usually coverage is applied after color blending. The color is blended using the coeffs * specified by setBlendFunc(). The blended color is then combined with dst using coeffs * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In * this case there is no distinction between coverage and color and the caller needs direct * control over the blend coeffs. When set, there will be a single blend step controlled by * setBlendFunc() which will use coverage*color as the src color. */ kCoverageDrawing_StateBit = 0x10, // Users of the class may add additional bits to the vector kDummyStateBit, kLastPublicStateBit = kDummyStateBit-1, }; void resetStateFlags() { fCommon.fFlagBits = 0; } /** * Enable render state settings. * * @param stateBits bitfield of StateBits specifying the states to enable */ void enableState(uint32_t stateBits) { fCommon.fFlagBits |= stateBits; } /** * Disable render state settings. * * @param stateBits bitfield of StateBits specifying the states to disable */ void disableState(uint32_t stateBits) { fCommon.fFlagBits &= ~(stateBits); } /** * Enable or disable stateBits based on a boolean. * * @param stateBits bitfield of StateBits to enable or disable * @param enable if true enable stateBits, otherwise disable */ void setState(uint32_t stateBits, bool enable) { if (enable) { this->enableState(stateBits); } else { this->disableState(stateBits); } } bool isDitherState() const { return 0 != (fCommon.fFlagBits & kDither_StateBit); } bool isHWAntialiasState() const { return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit); } bool isClipState() const { return 0 != (fCommon.fFlagBits & kClip_StateBit); } bool isColorWriteDisabled() const { return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit); } bool isCoverageDrawing() const { return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit); } bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fCommon.fFlagBits); } /// @} /////////////////////////////////////////////////////////////////////////// /// @name Face Culling //// enum DrawFace { kInvalid_DrawFace = -1, kBoth_DrawFace, kCCW_DrawFace, kCW_DrawFace, }; /** * Controls whether clockwise, counterclockwise, or both faces are drawn. * @param face the face(s) to draw. */ void setDrawFace(DrawFace face) { SkASSERT(kInvalid_DrawFace != face); fCommon.fDrawFace = face; } /** * Gets whether the target is drawing clockwise, counterclockwise, * or both faces. * @return the current draw face(s). */ DrawFace getDrawFace() const { return fCommon.fDrawFace; } /// @} /////////////////////////////////////////////////////////////////////////// bool operator ==(const GrDrawState& s) const { if (fRenderTarget.get() != s.fRenderTarget.get() || fColorStages.count() != s.fColorStages.count() || fCoverageStages.count() != s.fCoverageStages.count() || fCommon != s.fCommon) { return false; } for (int i = 0; i < fColorStages.count(); i++) { if (fColorStages[i] != s.fColorStages[i]) { return false; } } for (int i = 0; i < fCoverageStages.count(); i++) { if (fCoverageStages[i] != s.fCoverageStages[i]) { return false; } } return true; } bool operator !=(const GrDrawState& s) const { return !(*this == s); } GrDrawState& operator= (const GrDrawState& s) { SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages()); this->setRenderTarget(s.fRenderTarget.get()); fCommon = s.fCommon; fColorStages = s.fColorStages; fCoverageStages = s.fCoverageStages; return *this; } private: void onReset(const SkMatrix* initialViewMatrix) { SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages()); fColorStages.reset(); fCoverageStages.reset(); fRenderTarget.reset(NULL); this->setDefaultVertexAttribs(); fCommon.fColor = 0xffffffff; if (NULL == initialViewMatrix) { fCommon.fViewMatrix.reset(); } else { fCommon.fViewMatrix = *initialViewMatrix; } fCommon.fSrcBlend = kOne_GrBlendCoeff; fCommon.fDstBlend = kZero_GrBlendCoeff; fCommon.fBlendConstant = 0x0; fCommon.fFlagBits = 0x0; fCommon.fStencilSettings.setDisabled(); fCommon.fCoverage = 0xffffffff; fCommon.fDrawFace = kBoth_DrawFace; } /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */ struct CommonState { // These fields are roughly sorted by decreasing likelihood of being different in op== GrColor fColor; SkMatrix fViewMatrix; GrBlendCoeff fSrcBlend; GrBlendCoeff fDstBlend; GrColor fBlendConstant; uint32_t fFlagBits; const GrVertexAttrib* fVAPtr; int fVACount; GrStencilSettings fStencilSettings; GrColor fCoverage; DrawFace fDrawFace; // This is simply a different representation of info in fVertexAttribs and thus does // not need to be compared in op==. int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt]; bool operator== (const CommonState& other) const { bool result = fColor == other.fColor && fViewMatrix.cheapEqualTo(other.fViewMatrix) && fSrcBlend == other.fSrcBlend && fDstBlend == other.fDstBlend && fBlendConstant == other.fBlendConstant && fFlagBits == other.fFlagBits && fVACount == other.fVACount && !memcmp(fVAPtr, other.fVAPtr, fVACount * sizeof(GrVertexAttrib)) && fStencilSettings == other.fStencilSettings && fCoverage == other.fCoverage && fDrawFace == other.fDrawFace; SkASSERT(!result || 0 == memcmp(fFixedFunctionVertexAttribIndices, other.fFixedFunctionVertexAttribIndices, sizeof(fFixedFunctionVertexAttribIndices))); return result; } bool operator!= (const CommonState& other) const { return !(*this == other); } }; /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef. DeferredState must directly reference GrEffects, however. */ struct SavedEffectStage { SavedEffectStage() : fEffect(NULL) {} const GrEffect* fEffect; GrEffectStage::SavedCoordChange fCoordChange; }; public: /** * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal * dispose mechanism returns them to the cache. This allows recycling resources through the * the cache while they are in a deferred draw queue. */ class DeferredState { public: DeferredState() : fRenderTarget(NULL) { SkDEBUGCODE(fInitialized = false;) } // TODO: Remove this when DeferredState no longer holds a ref to the RT ~DeferredState() { SkSafeUnref(fRenderTarget); } void saveFrom(const GrDrawState& drawState) { fCommon = drawState.fCommon; // TODO: Here we will copy the GrRenderTarget pointer without taking a ref. fRenderTarget = drawState.fRenderTarget.get(); SkSafeRef(fRenderTarget); // Here we ref the effects directly rather than the effect-refs. TODO: When the effect- // ref gets fully unref'ed it will cause the underlying effect to unref its resources // and recycle them to the cache (if no one else is holding a ref to the resources). fStages.reset(drawState.fColorStages.count() + drawState.fCoverageStages.count()); fColorStageCnt = drawState.fColorStages.count(); for (int i = 0; i < fColorStageCnt; ++i) { fStages[i].saveFrom(drawState.fColorStages[i]); } for (int i = 0; i < drawState.fCoverageStages.count(); ++i) { fStages[i + fColorStageCnt].saveFrom(drawState.fCoverageStages[i]); } SkDEBUGCODE(fInitialized = true;) } void restoreTo(GrDrawState* drawState) { SkASSERT(fInitialized); drawState->fCommon = fCommon; drawState->setRenderTarget(fRenderTarget); // reinflate color/cov stage arrays. drawState->fColorStages.reset(); for (int i = 0; i < fColorStageCnt; ++i) { SkNEW_APPEND_TO_TARRAY(&drawState->fColorStages, GrEffectStage, (fStages[i])); } int coverageStageCnt = fStages.count() - fColorStageCnt; drawState->fCoverageStages.reset(); for (int i = 0; i < coverageStageCnt; ++i) { SkNEW_APPEND_TO_TARRAY(&drawState->fCoverageStages, GrEffectStage, (fStages[i + fColorStageCnt])); } } bool isEqual(const GrDrawState& state) const { int numCoverageStages = fStages.count() - fColorStageCnt; if (fRenderTarget != state.fRenderTarget.get() || fColorStageCnt != state.fColorStages.count() || numCoverageStages != state.fCoverageStages.count() || fCommon != state.fCommon) { return false; } bool explicitLocalCoords = state.hasLocalCoordAttribute(); for (int i = 0; i < fColorStageCnt; ++i) { if (!fStages[i].isEqual(state.fColorStages[i], explicitLocalCoords)) { return false; } } for (int i = 0; i < numCoverageStages; ++i) { int s = fColorStageCnt + i; if (!fStages[s].isEqual(state.fCoverageStages[i], explicitLocalCoords)) { return false; } } return true; } private: typedef SkAutoSTArray<8, GrEffectStage::DeferredStage> DeferredStageArray; GrRenderTarget* fRenderTarget; CommonState fCommon; int fColorStageCnt; DeferredStageArray fStages; SkDEBUGCODE(bool fInitialized;) }; private: SkAutoTUnref<GrRenderTarget> fRenderTarget; CommonState fCommon; typedef SkSTArray<4, GrEffectStage> EffectStageArray; EffectStageArray fColorStages; EffectStageArray fCoverageStages; // Some of the auto restore objects assume that no effects are removed during their lifetime. // This is used to assert that this condition holds. SkDEBUGCODE(int fBlockEffectRemovalCnt;) /** * Sets vertex attributes for next draw. * * @param attribs the array of vertex attributes to set. * @param count the number of attributes being set, limited to kMaxVertexAttribCnt. */ void setVertexAttribs(const GrVertexAttrib attribs[], int count); typedef SkRefCnt INHERITED; }; GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags); #endif