/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDrawState.h" #include "GrPaint.h" bool GrDrawState::setIdentityViewMatrix() { if (fColorStages.count() || fCoverageStages.count()) { SkMatrix invVM; if (!fCommon.fViewMatrix.invert(&invVM)) { // sad trombone sound return false; } for (int s = 0; s < fColorStages.count(); ++s) { fColorStages[s].localCoordChange(invVM); } for (int s = 0; s < fCoverageStages.count(); ++s) { fCoverageStages[s].localCoordChange(invVM); } } fCommon.fViewMatrix.reset(); return true; } void GrDrawState::setFromPaint(const GrPaint& paint, const SkMatrix& vm, GrRenderTarget* rt) { SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages()); fColorStages.reset(); fCoverageStages.reset(); for (int i = 0; i < paint.numColorStages(); ++i) { fColorStages.push_back(paint.getColorStage(i)); } for (int i = 0; i < paint.numCoverageStages(); ++i) { fCoverageStages.push_back(paint.getCoverageStage(i)); } this->setRenderTarget(rt); fCommon.fViewMatrix = vm; // These have no equivalent in GrPaint, set them to defaults fCommon.fBlendConstant = 0x0; fCommon.fDrawFace = kBoth_DrawFace; fCommon.fStencilSettings.setDisabled(); this->resetStateFlags(); // Enable the clip bit this->enableState(GrDrawState::kClip_StateBit); this->setColor(paint.getColor()); this->setState(GrDrawState::kDither_StateBit, paint.isDither()); this->setState(GrDrawState::kHWAntialias_StateBit, paint.isAntiAlias()); this->setBlendFunc(paint.getSrcBlendCoeff(), paint.getDstBlendCoeff()); this->setCoverage(paint.getCoverage()); } //////////////////////////////////////////////////////////////////////////////// static size_t vertex_size(const GrVertexAttrib* attribs, int count) { // this works as long as we're 4 byte-aligned #ifdef SK_DEBUG uint32_t overlapCheck = 0; #endif SkASSERT(count <= GrDrawState::kMaxVertexAttribCnt); size_t size = 0; for (int index = 0; index < count; ++index) { size_t attribSize = GrVertexAttribTypeSize(attribs[index].fType); size += attribSize; #ifdef SK_DEBUG size_t dwordCount = attribSize >> 2; uint32_t mask = (1 << dwordCount)-1; size_t offsetShift = attribs[index].fOffset >> 2; SkASSERT(!(overlapCheck & (mask << offsetShift))); overlapCheck |= (mask << offsetShift); #endif } return size; } size_t GrDrawState::getVertexSize() const { return vertex_size(fCommon.fVAPtr, fCommon.fVACount); } //////////////////////////////////////////////////////////////////////////////// void GrDrawState::setVertexAttribs(const GrVertexAttrib* attribs, int count) { SkASSERT(count <= kMaxVertexAttribCnt); fCommon.fVAPtr = attribs; fCommon.fVACount = count; // Set all the indices to -1 memset(fCommon.fFixedFunctionVertexAttribIndices, 0xff, sizeof(fCommon.fFixedFunctionVertexAttribIndices)); #ifdef SK_DEBUG uint32_t overlapCheck = 0; #endif for (int i = 0; i < count; ++i) { if (attribs[i].fBinding < kGrFixedFunctionVertexAttribBindingCnt) { // The fixed function attribs can only be specified once SkASSERT(-1 == fCommon.fFixedFunctionVertexAttribIndices[attribs[i].fBinding]); SkASSERT(GrFixedFunctionVertexAttribVectorCount(attribs[i].fBinding) == GrVertexAttribTypeVectorCount(attribs[i].fType)); fCommon.fFixedFunctionVertexAttribIndices[attribs[i].fBinding] = i; } #ifdef SK_DEBUG size_t dwordCount = GrVertexAttribTypeSize(attribs[i].fType) >> 2; uint32_t mask = (1 << dwordCount)-1; size_t offsetShift = attribs[i].fOffset >> 2; SkASSERT(!(overlapCheck & (mask << offsetShift))); overlapCheck |= (mask << offsetShift); #endif } // Positions must be specified. SkASSERT(-1 != fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding]); } //////////////////////////////////////////////////////////////////////////////// void GrDrawState::setDefaultVertexAttribs() { static const GrVertexAttrib kPositionAttrib = {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}; fCommon.fVAPtr = &kPositionAttrib; fCommon.fVACount = 1; // set all the fixed function indices to -1 except position. memset(fCommon.fFixedFunctionVertexAttribIndices, 0xff, sizeof(fCommon.fFixedFunctionVertexAttribIndices)); fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding] = 0; } //////////////////////////////////////////////////////////////////////////////// bool GrDrawState::validateVertexAttribs() const { // check consistency of effects and attributes GrSLType slTypes[kMaxVertexAttribCnt]; for (int i = 0; i < kMaxVertexAttribCnt; ++i) { slTypes[i] = static_cast<GrSLType>(-1); } int totalStages = fColorStages.count() + fCoverageStages.count(); for (int s = 0; s < totalStages; ++s) { int covIdx = s - fColorStages.count(); const GrEffectStage& stage = covIdx < 0 ? fColorStages[s] : fCoverageStages[covIdx]; const GrEffectRef* effect = stage.getEffect(); SkASSERT(NULL != effect); // make sure that any attribute indices have the correct binding type, that the attrib // type and effect's shader lang type are compatible, and that attributes shared by // multiple effects use the same shader lang type. const int* attributeIndices = stage.getVertexAttribIndices(); int numAttributes = stage.getVertexAttribIndexCount(); for (int i = 0; i < numAttributes; ++i) { int attribIndex = attributeIndices[i]; if (attribIndex >= fCommon.fVACount || kEffect_GrVertexAttribBinding != fCommon.fVAPtr[attribIndex].fBinding) { return false; } GrSLType effectSLType = (*effect)->vertexAttribType(i); GrVertexAttribType attribType = fCommon.fVAPtr[attribIndex].fType; int slVecCount = GrSLTypeVectorCount(effectSLType); int attribVecCount = GrVertexAttribTypeVectorCount(attribType); if (slVecCount != attribVecCount || (static_cast<GrSLType>(-1) != slTypes[attribIndex] && slTypes[attribIndex] != effectSLType)) { return false; } slTypes[attribIndex] = effectSLType; } } return true; } bool GrDrawState::willEffectReadDstColor() const { if (!this->isColorWriteDisabled()) { for (int s = 0; s < fColorStages.count(); ++s) { if ((*fColorStages[s].getEffect())->willReadDstColor()) { return true; } } } for (int s = 0; s < fCoverageStages.count(); ++s) { if ((*fCoverageStages[s].getEffect())->willReadDstColor()) { return true; } } return false; } //////////////////////////////////////////////////////////////////////////////// bool GrDrawState::srcAlphaWillBeOne() const { uint32_t validComponentFlags; GrColor color; // Check if per-vertex or constant color may have partial alpha if (this->hasColorVertexAttribute()) { validComponentFlags = 0; color = 0; // not strictly necessary but we get false alarms from tools about uninit. } else { validComponentFlags = kRGBA_GrColorComponentFlags; color = this->getColor(); } // Run through the color stages for (int s = 0; s < fColorStages.count(); ++s) { const GrEffectRef* effect = fColorStages[s].getEffect(); (*effect)->getConstantColorComponents(&color, &validComponentFlags); } // Check whether coverage is treated as color. If so we run through the coverage computation. if (this->isCoverageDrawing()) { GrColor coverageColor = this->getCoverageColor(); GrColor oldColor = color; color = 0; for (int c = 0; c < 4; ++c) { if (validComponentFlags & (1 << c)) { U8CPU a = (oldColor >> (c * 8)) & 0xff; U8CPU b = (coverageColor >> (c * 8)) & 0xff; color |= (SkMulDiv255Round(a, b) << (c * 8)); } } for (int s = 0; s < fCoverageStages.count(); ++s) { const GrEffectRef* effect = fCoverageStages[s].getEffect(); (*effect)->getConstantColorComponents(&color, &validComponentFlags); } } return (kA_GrColorComponentFlag & validComponentFlags) && 0xff == GrColorUnpackA(color); } bool GrDrawState::hasSolidCoverage() const { // If we're drawing coverage directly then coverage is effectively treated as color. if (this->isCoverageDrawing()) { return true; } GrColor coverage; uint32_t validComponentFlags; // Initialize to an unknown starting coverage if per-vertex coverage is specified. if (this->hasCoverageVertexAttribute()) { validComponentFlags = 0; } else { coverage = fCommon.fCoverage; validComponentFlags = kRGBA_GrColorComponentFlags; } // Run through the coverage stages and see if the coverage will be all ones at the end. for (int s = 0; s < fCoverageStages.count(); ++s) { const GrEffectRef* effect = fCoverageStages[s].getEffect(); (*effect)->getConstantColorComponents(&coverage, &validComponentFlags); } return (kRGBA_GrColorComponentFlags == validComponentFlags) && (0xffffffff == coverage); } //////////////////////////////////////////////////////////////////////////////// // Some blend modes allow folding a fractional coverage value into the color's alpha channel, while // others will blend incorrectly. bool GrDrawState::canTweakAlphaForCoverage() const { /* The fractional coverage is f. The src and dst coeffs are Cs and Cd. The dst and src colors are S and D. We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the source color's alpha we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second term can be rearranged as [1-(1-Cd)f]D. By substituting in the various possibilities for Cd we find that only 1, ISA, and ISC produce the correct destination when applied to S' and D. Also, if we're directly rendering coverage (isCoverageDrawing) then coverage is treated as color by definition. */ return kOne_GrBlendCoeff == fCommon.fDstBlend || kISA_GrBlendCoeff == fCommon.fDstBlend || kISC_GrBlendCoeff == fCommon.fDstBlend || this->isCoverageDrawing(); } GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage, GrBlendCoeff* srcCoeff, GrBlendCoeff* dstCoeff) const { GrBlendCoeff bogusSrcCoeff, bogusDstCoeff; if (NULL == srcCoeff) { srcCoeff = &bogusSrcCoeff; } *srcCoeff = this->getSrcBlendCoeff(); if (NULL == dstCoeff) { dstCoeff = &bogusDstCoeff; } *dstCoeff = this->getDstBlendCoeff(); if (this->isColorWriteDisabled()) { *srcCoeff = kZero_GrBlendCoeff; *dstCoeff = kOne_GrBlendCoeff; } bool srcAIsOne = this->srcAlphaWillBeOne(); bool dstCoeffIsOne = kOne_GrBlendCoeff == *dstCoeff || (kSA_GrBlendCoeff == *dstCoeff && srcAIsOne); bool dstCoeffIsZero = kZero_GrBlendCoeff == *dstCoeff || (kISA_GrBlendCoeff == *dstCoeff && srcAIsOne); bool covIsZero = !this->isCoverageDrawing() && !this->hasCoverageVertexAttribute() && 0 == this->getCoverageColor(); // When coeffs are (0,1) there is no reason to draw at all, unless // stenciling is enabled. Having color writes disabled is effectively // (0,1). The same applies when coverage is known to be 0. if ((kZero_GrBlendCoeff == *srcCoeff && dstCoeffIsOne) || covIsZero) { if (this->getStencil().doesWrite()) { return kDisableBlend_BlendOptFlag | kEmitCoverage_BlendOptFlag; } else { return kSkipDraw_BlendOptFlag; } } // check for coverage due to constant coverage, per-vertex coverage, or coverage stage bool hasCoverage = forceCoverage || 0xffffffff != this->getCoverageColor() || this->hasCoverageVertexAttribute() || fCoverageStages.count() > 0; // if we don't have coverage we can check whether the dst // has to read at all. If not, we'll disable blending. if (!hasCoverage) { if (dstCoeffIsZero) { if (kOne_GrBlendCoeff == *srcCoeff) { // if there is no coverage and coeffs are (1,0) then we // won't need to read the dst at all, it gets replaced by src return kDisableBlend_BlendOptFlag; } else if (kZero_GrBlendCoeff == *srcCoeff) { // if the op is "clear" then we don't need to emit a color // or blend, just write transparent black into the dst. *srcCoeff = kOne_GrBlendCoeff; *dstCoeff = kZero_GrBlendCoeff; return kDisableBlend_BlendOptFlag | kEmitTransBlack_BlendOptFlag; } } } else if (this->isCoverageDrawing()) { // we have coverage but we aren't distinguishing it from alpha by request. return kCoverageAsAlpha_BlendOptFlag; } else { // check whether coverage can be safely rolled into alpha // of if we can skip color computation and just emit coverage if (this->canTweakAlphaForCoverage()) { return kCoverageAsAlpha_BlendOptFlag; } if (dstCoeffIsZero) { if (kZero_GrBlendCoeff == *srcCoeff) { // the source color is not included in the blend // the dst coeff is effectively zero so blend works out to: // (c)(0)D + (1-c)D = (1-c)D. *dstCoeff = kISA_GrBlendCoeff; return kEmitCoverage_BlendOptFlag; } else if (srcAIsOne) { // the dst coeff is effectively zero so blend works out to: // cS + (c)(0)D + (1-c)D = cS + (1-c)D. // If Sa is 1 then we can replace Sa with c // and set dst coeff to 1-Sa. *dstCoeff = kISA_GrBlendCoeff; return kCoverageAsAlpha_BlendOptFlag; } } else if (dstCoeffIsOne) { // the dst coeff is effectively one so blend works out to: // cS + (c)(1)D + (1-c)D = cS + D. *dstCoeff = kOne_GrBlendCoeff; return kCoverageAsAlpha_BlendOptFlag; } } if (kOne_GrBlendCoeff == *srcCoeff && kZero_GrBlendCoeff == *dstCoeff && this->willEffectReadDstColor()) { // In this case the shader will fully resolve the color, coverage, and dst and we don't // need blending. return kDisableBlend_BlendOptFlag; } return kNone_BlendOpt; } //////////////////////////////////////////////////////////////////////////////// void GrDrawState::AutoViewMatrixRestore::restore() { if (NULL != fDrawState) { SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;) fDrawState->fCommon.fViewMatrix = fViewMatrix; SkASSERT(fDrawState->numColorStages() >= fNumColorStages); int numCoverageStages = fSavedCoordChanges.count() - fNumColorStages; SkASSERT(fDrawState->numCoverageStages() >= numCoverageStages); int i = 0; for (int s = 0; s < fNumColorStages; ++s, ++i) { fDrawState->fColorStages[s].restoreCoordChange(fSavedCoordChanges[i]); } for (int s = 0; s < numCoverageStages; ++s, ++i) { fDrawState->fCoverageStages[s].restoreCoordChange(fSavedCoordChanges[i]); } fDrawState = NULL; } } void GrDrawState::AutoViewMatrixRestore::set(GrDrawState* drawState, const SkMatrix& preconcatMatrix) { this->restore(); SkASSERT(NULL == fDrawState); if (NULL == drawState || preconcatMatrix.isIdentity()) { return; } fDrawState = drawState; fViewMatrix = drawState->getViewMatrix(); drawState->fCommon.fViewMatrix.preConcat(preconcatMatrix); this->doEffectCoordChanges(preconcatMatrix); SkDEBUGCODE(++fDrawState->fBlockEffectRemovalCnt;) } bool GrDrawState::AutoViewMatrixRestore::setIdentity(GrDrawState* drawState) { this->restore(); if (NULL == drawState) { return false; } if (drawState->getViewMatrix().isIdentity()) { return true; } fViewMatrix = drawState->getViewMatrix(); if (0 == drawState->numTotalStages()) { drawState->fCommon.fViewMatrix.reset(); fDrawState = drawState; fNumColorStages = 0; fSavedCoordChanges.reset(0); SkDEBUGCODE(++fDrawState->fBlockEffectRemovalCnt;) return true; } else { SkMatrix inv; if (!fViewMatrix.invert(&inv)) { return false; } drawState->fCommon.fViewMatrix.reset(); fDrawState = drawState; this->doEffectCoordChanges(inv); SkDEBUGCODE(++fDrawState->fBlockEffectRemovalCnt;) return true; } } void GrDrawState::AutoViewMatrixRestore::doEffectCoordChanges(const SkMatrix& coordChangeMatrix) { fSavedCoordChanges.reset(fDrawState->numTotalStages()); int i = 0; fNumColorStages = fDrawState->numColorStages(); for (int s = 0; s < fNumColorStages; ++s, ++i) { fDrawState->fColorStages[s].saveCoordChange(&fSavedCoordChanges[i]); fDrawState->fColorStages[s].localCoordChange(coordChangeMatrix); } int numCoverageStages = fDrawState->numCoverageStages(); for (int s = 0; s < numCoverageStages; ++s, ++i) { fDrawState->fCoverageStages[s].saveCoordChange(&fSavedCoordChanges[i]); fDrawState->fCoverageStages[s].localCoordChange(coordChangeMatrix); } }