/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrContext.h" #include "effects/GrConfigConversionEffect.h" #include "effects/GrDashingEffect.h" #include "effects/GrSingleTextureEffect.h" #include "GrAARectRenderer.h" #include "GrBufferAllocPool.h" #include "GrGpu.h" #include "GrDrawTargetCaps.h" #include "GrIndexBuffer.h" #include "GrInOrderDrawBuffer.h" #include "GrLayerCache.h" #include "GrOvalRenderer.h" #include "GrPathRenderer.h" #include "GrPathUtils.h" #include "GrResourceCache.h" #include "GrSoftwarePathRenderer.h" #include "GrStencilBuffer.h" #include "GrStrokeInfo.h" #include "GrTextStrike.h" #include "GrTraceMarker.h" #include "GrTracing.h" #include "SkDashPathPriv.h" #include "SkGr.h" #include "SkRTConf.h" #include "SkRRect.h" #include "SkStrokeRec.h" #include "SkTLazy.h" #include "SkTLS.h" #include "SkTraceEvent.h" // It can be useful to set this to false to test whether a bug is caused by using the // InOrderDrawBuffer, to compare performance of using/not using InOrderDrawBuffer, or to make // debugging simpler. SK_CONF_DECLARE(bool, c_Defer, "gpu.deferContext", true, "Defers rendering in GrContext via GrInOrderDrawBuffer."); #define BUFFERED_DRAW (c_Defer ? kYes_BufferedDraw : kNo_BufferedDraw) #ifdef SK_DEBUG // change this to a 1 to see notifications when partial coverage fails #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 #else #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 #endif static const size_t MAX_RESOURCE_CACHE_COUNT = GR_DEFAULT_RESOURCE_CACHE_COUNT_LIMIT; static const size_t MAX_RESOURCE_CACHE_BYTES = GR_DEFAULT_RESOURCE_CACHE_MB_LIMIT * 1024 * 1024; static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15; static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11; static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4; #define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this) // Glorified typedef to avoid including GrDrawState.h in GrContext.h class GrContext::AutoRestoreEffects : public GrDrawState::AutoRestoreEffects {}; class GrContext::AutoCheckFlush { public: AutoCheckFlush(GrContext* context) : fContext(context) { SkASSERT(NULL != context); } ~AutoCheckFlush() { if (fContext->fFlushToReduceCacheSize) { fContext->flush(); } } private: GrContext* fContext; }; GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext) { GrContext* context = SkNEW(GrContext); if (context->init(backend, backendContext)) { return context; } else { context->unref(); return NULL; } } GrContext::GrContext() { fDrawState = NULL; fGpu = NULL; fClip = NULL; fPathRendererChain = NULL; fSoftwarePathRenderer = NULL; fResourceCache = NULL; fFontCache = NULL; fDrawBuffer = NULL; fDrawBufferVBAllocPool = NULL; fDrawBufferIBAllocPool = NULL; fFlushToReduceCacheSize = false; fAARectRenderer = NULL; fOvalRenderer = NULL; fViewMatrix.reset(); fMaxTextureSizeOverride = 1 << 20; fGpuTracingEnabled = false; } bool GrContext::init(GrBackend backend, GrBackendContext backendContext) { SkASSERT(NULL == fGpu); fGpu = GrGpu::Create(backend, backendContext, this); if (NULL == fGpu) { return false; } fDrawState = SkNEW(GrDrawState); fGpu->setDrawState(fDrawState); fResourceCache = SkNEW_ARGS(GrResourceCache, (MAX_RESOURCE_CACHE_COUNT, MAX_RESOURCE_CACHE_BYTES)); fResourceCache->setOverbudgetCallback(OverbudgetCB, this); fFontCache = SkNEW_ARGS(GrFontCache, (fGpu)); fLayerCache.reset(SkNEW_ARGS(GrLayerCache, (fGpu))); fLastDrawWasBuffered = kNo_BufferedDraw; fAARectRenderer = SkNEW(GrAARectRenderer); fOvalRenderer = SkNEW(GrOvalRenderer); fDidTestPMConversions = false; this->setupDrawBuffer(); return true; } GrContext::~GrContext() { if (NULL == fGpu) { return; } this->flush(); for (int i = 0; i < fCleanUpData.count(); ++i) { (*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo); } // Since the gpu can hold scratch textures, give it a chance to let go // of them before freeing the texture cache fGpu->purgeResources(); delete fResourceCache; fResourceCache = NULL; delete fFontCache; delete fDrawBuffer; delete fDrawBufferVBAllocPool; delete fDrawBufferIBAllocPool; fAARectRenderer->unref(); fOvalRenderer->unref(); fGpu->unref(); SkSafeUnref(fPathRendererChain); SkSafeUnref(fSoftwarePathRenderer); fDrawState->unref(); } void GrContext::contextLost() { this->contextDestroyed(); this->setupDrawBuffer(); } void GrContext::contextDestroyed() { // abandon first to so destructors // don't try to free the resources in the API. fGpu->abandonResources(); // a path renderer may be holding onto resources that // are now unusable SkSafeSetNull(fPathRendererChain); SkSafeSetNull(fSoftwarePathRenderer); delete fDrawBuffer; fDrawBuffer = NULL; delete fDrawBufferVBAllocPool; fDrawBufferVBAllocPool = NULL; delete fDrawBufferIBAllocPool; fDrawBufferIBAllocPool = NULL; fAARectRenderer->reset(); fOvalRenderer->reset(); fResourceCache->purgeAllUnlocked(); fFontCache->freeAll(); fLayerCache->freeAll(); fGpu->markContextDirty(); } void GrContext::resetContext(uint32_t state) { fGpu->markContextDirty(state); } void GrContext::freeGpuResources() { this->flush(); fGpu->purgeResources(); fAARectRenderer->reset(); fOvalRenderer->reset(); fResourceCache->purgeAllUnlocked(); fFontCache->freeAll(); fLayerCache->freeAll(); // a path renderer may be holding onto resources SkSafeSetNull(fPathRendererChain); SkSafeSetNull(fSoftwarePathRenderer); } void GrContext::getResourceCacheUsage(int* resourceCount, size_t* resourceBytes) const { if (NULL != resourceCount) { *resourceCount = fResourceCache->getCachedResourceCount(); } if (NULL != resourceBytes) { *resourceBytes = fResourceCache->getCachedResourceBytes(); } } //////////////////////////////////////////////////////////////////////////////// GrTexture* GrContext::findAndRefTexture(const GrTextureDesc& desc, const GrCacheID& cacheID, const GrTextureParams* params) { GrResourceKey resourceKey = GrTextureImpl::ComputeKey(fGpu, params, desc, cacheID); GrCacheable* resource = fResourceCache->find(resourceKey); SkSafeRef(resource); return static_cast<GrTexture*>(resource); } bool GrContext::isTextureInCache(const GrTextureDesc& desc, const GrCacheID& cacheID, const GrTextureParams* params) const { GrResourceKey resourceKey = GrTextureImpl::ComputeKey(fGpu, params, desc, cacheID); return fResourceCache->hasKey(resourceKey); } void GrContext::addStencilBuffer(GrStencilBuffer* sb) { ASSERT_OWNED_RESOURCE(sb); GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(), sb->height(), sb->numSamples()); fResourceCache->addResource(resourceKey, sb); } GrStencilBuffer* GrContext::findStencilBuffer(int width, int height, int sampleCnt) { GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width, height, sampleCnt); GrCacheable* resource = fResourceCache->find(resourceKey); return static_cast<GrStencilBuffer*>(resource); } static void stretch_image(void* dst, int dstW, int dstH, const void* src, int srcW, int srcH, size_t bpp) { SkFixed dx = (srcW << 16) / dstW; SkFixed dy = (srcH << 16) / dstH; SkFixed y = dy >> 1; size_t dstXLimit = dstW*bpp; for (int j = 0; j < dstH; ++j) { SkFixed x = dx >> 1; const uint8_t* srcRow = reinterpret_cast<const uint8_t *>(src) + (y>>16)*srcW*bpp; uint8_t* dstRow = reinterpret_cast<uint8_t *>(dst) + j*dstW*bpp; for (size_t i = 0; i < dstXLimit; i += bpp) { memcpy(dstRow + i, srcRow + (x>>16)*bpp, bpp); x += dx; } y += dy; } } namespace { // position + local coordinate extern const GrVertexAttrib gVertexAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(SkPoint), kLocalCoord_GrVertexAttribBinding} }; }; // The desired texture is NPOT and tiled but that isn't supported by // the current hardware. Resize the texture to be a POT GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc, const GrCacheID& cacheID, const void* srcData, size_t rowBytes, bool filter) { SkAutoTUnref<GrTexture> clampedTexture(this->findAndRefTexture(desc, cacheID, NULL)); if (NULL == clampedTexture) { clampedTexture.reset(this->createTexture(NULL, desc, cacheID, srcData, rowBytes)); if (NULL == clampedTexture) { return NULL; } } GrTextureDesc rtDesc = desc; rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; rtDesc.fWidth = GrNextPow2(desc.fWidth); rtDesc.fHeight = GrNextPow2(desc.fHeight); GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); if (NULL != texture) { GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(texture->asRenderTarget()); // if filtering is not desired then we want to ensure all // texels in the resampled image are copies of texels from // the original. GrTextureParams params(SkShader::kClamp_TileMode, filter ? GrTextureParams::kBilerp_FilterMode : GrTextureParams::kNone_FilterMode); drawState->addColorTextureEffect(clampedTexture, SkMatrix::I(), params); drawState->setVertexAttribs<gVertexAttribs>(SK_ARRAY_COUNT(gVertexAttribs)); GrDrawTarget::AutoReleaseGeometry arg(fGpu, 4, 0); if (arg.succeeded()) { SkPoint* verts = (SkPoint*) arg.vertices(); verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2 * sizeof(SkPoint)); verts[1].setIRectFan(0, 0, 1, 1, 2 * sizeof(SkPoint)); fGpu->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4); } } else { // TODO: Our CPU stretch doesn't filter. But we create separate // stretched textures when the texture params is either filtered or // not. Either implement filtered stretch blit on CPU or just create // one when FBO case fails. rtDesc.fFlags = kNone_GrTextureFlags; // no longer need to clamp at min RT size. rtDesc.fWidth = GrNextPow2(desc.fWidth); rtDesc.fHeight = GrNextPow2(desc.fHeight); // We shouldn't be resizing a compressed texture. SkASSERT(!GrPixelConfigIsCompressed(desc.fConfig)); size_t bpp = GrBytesPerPixel(desc.fConfig); SkAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); stretch_image(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, srcData, desc.fWidth, desc.fHeight, bpp); size_t stretchedRowBytes = rtDesc.fWidth * bpp; texture = fGpu->createTexture(rtDesc, stretchedPixels.get(), stretchedRowBytes); SkASSERT(NULL != texture); } return texture; } GrTexture* GrContext::createTexture(const GrTextureParams* params, const GrTextureDesc& desc, const GrCacheID& cacheID, const void* srcData, size_t rowBytes, GrResourceKey* cacheKey) { GrResourceKey resourceKey = GrTextureImpl::ComputeKey(fGpu, params, desc, cacheID); GrTexture* texture; if (GrTextureImpl::NeedsResizing(resourceKey)) { // We do not know how to resize compressed textures. SkASSERT(!GrPixelConfigIsCompressed(desc.fConfig)); texture = this->createResizedTexture(desc, cacheID, srcData, rowBytes, GrTextureImpl::NeedsBilerp(resourceKey)); } else { texture = fGpu->createTexture(desc, srcData, rowBytes); } if (NULL != texture) { // Adding a resource could put us overbudget. Try to free up the // necessary space before adding it. fResourceCache->purgeAsNeeded(1, texture->gpuMemorySize()); fResourceCache->addResource(resourceKey, texture); if (NULL != cacheKey) { *cacheKey = resourceKey; } } return texture; } static GrTexture* create_scratch_texture(GrGpu* gpu, GrResourceCache* resourceCache, const GrTextureDesc& desc) { GrTexture* texture = gpu->createTexture(desc, NULL, 0); if (NULL != texture) { GrResourceKey key = GrTextureImpl::ComputeScratchKey(texture->desc()); // Adding a resource could put us overbudget. Try to free up the // necessary space before adding it. resourceCache->purgeAsNeeded(1, texture->gpuMemorySize()); // Make the resource exclusive so future 'find' calls don't return it resourceCache->addResource(key, texture, GrResourceCache::kHide_OwnershipFlag); } return texture; } GrTexture* GrContext::lockAndRefScratchTexture(const GrTextureDesc& inDesc, ScratchTexMatch match) { SkASSERT((inDesc.fFlags & kRenderTarget_GrTextureFlagBit) || !(inDesc.fFlags & kNoStencil_GrTextureFlagBit)); // Renderable A8 targets are not universally supported (e.g., not on ANGLE) SkASSERT(this->isConfigRenderable(kAlpha_8_GrPixelConfig, inDesc.fSampleCnt > 0) || !(inDesc.fFlags & kRenderTarget_GrTextureFlagBit) || (inDesc.fConfig != kAlpha_8_GrPixelConfig)); if (!fGpu->caps()->reuseScratchTextures() && !(inDesc.fFlags & kRenderTarget_GrTextureFlagBit)) { // If we're never recycling this texture we can always make it the right size return create_scratch_texture(fGpu, fResourceCache, inDesc); } GrTextureDesc desc = inDesc; if (kApprox_ScratchTexMatch == match) { // bin by pow2 with a reasonable min static const int MIN_SIZE = 16; desc.fWidth = SkTMax(MIN_SIZE, GrNextPow2(desc.fWidth)); desc.fHeight = SkTMax(MIN_SIZE, GrNextPow2(desc.fHeight)); } GrCacheable* resource = NULL; int origWidth = desc.fWidth; int origHeight = desc.fHeight; do { GrResourceKey key = GrTextureImpl::ComputeScratchKey(desc); // Ensure we have exclusive access to the texture so future 'find' calls don't return it resource = fResourceCache->find(key, GrResourceCache::kHide_OwnershipFlag); if (NULL != resource) { resource->ref(); break; } if (kExact_ScratchTexMatch == match) { break; } // We had a cache miss and we are in approx mode, relax the fit of the flags. // We no longer try to reuse textures that were previously used as render targets in // situations where no RT is needed; doing otherwise can confuse the video driver and // cause significant performance problems in some cases. if (desc.fFlags & kNoStencil_GrTextureFlagBit) { desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit; } else { break; } } while (true); if (NULL == resource) { desc.fFlags = inDesc.fFlags; desc.fWidth = origWidth; desc.fHeight = origHeight; resource = create_scratch_texture(fGpu, fResourceCache, desc); } return static_cast<GrTexture*>(resource); } void GrContext::addExistingTextureToCache(GrTexture* texture) { if (NULL == texture) { return; } // This texture should already have a cache entry since it was once // attached SkASSERT(NULL != texture->getCacheEntry()); // Conceptually, the cache entry is going to assume responsibility // for the creation ref. Assert refcnt == 1. SkASSERT(texture->unique()); if (fGpu->caps()->reuseScratchTextures() || NULL != texture->asRenderTarget()) { // Since this texture came from an AutoScratchTexture it should // still be in the exclusive pile. Recycle it. fResourceCache->makeNonExclusive(texture->getCacheEntry()); this->purgeCache(); } else if (texture->getDeferredRefCount() <= 0) { // When we aren't reusing textures we know this scratch texture // will never be reused and would be just wasting time in the cache fResourceCache->makeNonExclusive(texture->getCacheEntry()); fResourceCache->deleteResource(texture->getCacheEntry()); } else { // In this case (fDeferredRefCount > 0) but the cache is the only // one holding a real ref. Mark the object so when the deferred // ref count goes to 0 the texture will be deleted (remember // in this code path scratch textures aren't getting reused). texture->setNeedsDeferredUnref(); } } void GrContext::unlockScratchTexture(GrTexture* texture) { ASSERT_OWNED_RESOURCE(texture); SkASSERT(NULL != texture->getCacheEntry()); // If this is a scratch texture we detached it from the cache // while it was locked (to avoid two callers simultaneously getting // the same texture). if (texture->getCacheEntry()->key().isScratch()) { if (fGpu->caps()->reuseScratchTextures() || NULL != texture->asRenderTarget()) { fResourceCache->makeNonExclusive(texture->getCacheEntry()); this->purgeCache(); } else if (texture->unique() && texture->getDeferredRefCount() <= 0) { // Only the cache now knows about this texture. Since we're never // reusing scratch textures (in this code path) it would just be // wasting time sitting in the cache. fResourceCache->makeNonExclusive(texture->getCacheEntry()); fResourceCache->deleteResource(texture->getCacheEntry()); } else { // In this case (fRefCnt > 1 || defRefCnt > 0) but we don't really // want to readd it to the cache (since it will never be reused). // Instead, give up the cache's ref and leave the decision up to // addExistingTextureToCache once its ref count reaches 0. For // this to work we need to leave it in the exclusive list. texture->impl()->setFlag((GrTextureFlags) GrTextureImpl::kReturnToCache_FlagBit); // Give up the cache's ref to the texture texture->unref(); } } } void GrContext::purgeCache() { if (NULL != fResourceCache) { fResourceCache->purgeAsNeeded(); } } bool GrContext::OverbudgetCB(void* data) { SkASSERT(NULL != data); GrContext* context = reinterpret_cast<GrContext*>(data); // Flush the InOrderDrawBuffer to possibly free up some textures context->fFlushToReduceCacheSize = true; return true; } GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& descIn, void* srcData, size_t rowBytes) { GrTextureDesc descCopy = descIn; return fGpu->createTexture(descCopy, srcData, rowBytes); } void GrContext::getResourceCacheLimits(int* maxTextures, size_t* maxTextureBytes) const { fResourceCache->getLimits(maxTextures, maxTextureBytes); } void GrContext::setResourceCacheLimits(int maxTextures, size_t maxTextureBytes) { fResourceCache->setLimits(maxTextures, maxTextureBytes); } int GrContext::getMaxTextureSize() const { return SkTMin(fGpu->caps()->maxTextureSize(), fMaxTextureSizeOverride); } int GrContext::getMaxRenderTargetSize() const { return fGpu->caps()->maxRenderTargetSize(); } int GrContext::getMaxSampleCount() const { return fGpu->caps()->maxSampleCount(); } /////////////////////////////////////////////////////////////////////////////// GrTexture* GrContext::wrapBackendTexture(const GrBackendTextureDesc& desc) { return fGpu->wrapBackendTexture(desc); } GrRenderTarget* GrContext::wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { return fGpu->wrapBackendRenderTarget(desc); } /////////////////////////////////////////////////////////////////////////////// bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params, int width, int height) const { const GrDrawTargetCaps* caps = fGpu->caps(); if (!caps->isConfigTexturable(kIndex_8_GrPixelConfig)) { return false; } bool isPow2 = SkIsPow2(width) && SkIsPow2(height); if (!isPow2) { bool tiled = NULL != params && params->isTiled(); if (tiled && !caps->npotTextureTileSupport()) { return false; } } return true; } //////////////////////////////////////////////////////////////////////////////// void GrContext::clear(const SkIRect* rect, const GrColor color, bool canIgnoreRect, GrRenderTarget* target) { AutoRestoreEffects are; AutoCheckFlush acf(this); this->prepareToDraw(NULL, BUFFERED_DRAW, &are, &acf)->clear(rect, color, canIgnoreRect, target); } void GrContext::drawPaint(const GrPaint& origPaint) { // set rect to be big enough to fill the space, but not super-huge, so we // don't overflow fixed-point implementations SkRect r; r.setLTRB(0, 0, SkIntToScalar(getRenderTarget()->width()), SkIntToScalar(getRenderTarget()->height())); SkMatrix inverse; SkTCopyOnFirstWrite<GrPaint> paint(origPaint); AutoMatrix am; // We attempt to map r by the inverse matrix and draw that. mapRect will // map the four corners and bound them with a new rect. This will not // produce a correct result for some perspective matrices. if (!this->getMatrix().hasPerspective()) { if (!fViewMatrix.invert(&inverse)) { GrPrintf("Could not invert matrix\n"); return; } inverse.mapRect(&r); } else { if (!am.setIdentity(this, paint.writable())) { GrPrintf("Could not invert matrix\n"); return; } } // by definition this fills the entire clip, no need for AA if (paint->isAntiAlias()) { paint.writable()->setAntiAlias(false); } this->drawRect(*paint, r); } #ifdef SK_DEVELOPER void GrContext::dumpFontCache() const { fFontCache->dump(); } #endif //////////////////////////////////////////////////////////////////////////////// /* create a triangle strip that strokes the specified triangle. There are 8 unique vertices, but we repreat the last 2 to close up. Alternatively we could use an indices array, and then only send 8 verts, but not sure that would be faster. */ static void setStrokeRectStrip(SkPoint verts[10], SkRect rect, SkScalar width) { const SkScalar rad = SkScalarHalf(width); rect.sort(); verts[0].set(rect.fLeft + rad, rect.fTop + rad); verts[1].set(rect.fLeft - rad, rect.fTop - rad); verts[2].set(rect.fRight - rad, rect.fTop + rad); verts[3].set(rect.fRight + rad, rect.fTop - rad); verts[4].set(rect.fRight - rad, rect.fBottom - rad); verts[5].set(rect.fRight + rad, rect.fBottom + rad); verts[6].set(rect.fLeft + rad, rect.fBottom - rad); verts[7].set(rect.fLeft - rad, rect.fBottom + rad); verts[8] = verts[0]; verts[9] = verts[1]; } static bool isIRect(const SkRect& r) { return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) && SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom); } static bool apply_aa_to_rect(GrDrawTarget* target, const SkRect& rect, SkScalar strokeWidth, const SkMatrix& combinedMatrix, SkRect* devBoundRect, bool* useVertexCoverage) { // we use a simple coverage ramp to do aa on axis-aligned rects // we check if the rect will be axis-aligned, and the rect won't land on // integer coords. // we are keeping around the "tweak the alpha" trick because // it is our only hope for the fixed-pipe implementation. // In a shader implementation we can give a separate coverage input // TODO: remove this ugliness when we drop the fixed-pipe impl *useVertexCoverage = false; if (!target->getDrawState().canTweakAlphaForCoverage()) { if (target->shouldDisableCoverageAAForBlend()) { #ifdef SK_DEBUG //GrPrintf("Turning off AA to correctly apply blend.\n"); #endif return false; } else { *useVertexCoverage = true; } } const GrDrawState& drawState = target->getDrawState(); if (drawState.getRenderTarget()->isMultisampled()) { return false; } if (0 == strokeWidth && target->willUseHWAALines()) { return false; } #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) if (strokeWidth >= 0) { #endif if (!combinedMatrix.preservesAxisAlignment()) { return false; } #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) } else { if (!combinedMatrix.preservesRightAngles()) { return false; } } #endif combinedMatrix.mapRect(devBoundRect, rect); if (strokeWidth < 0) { return !isIRect(*devBoundRect); } else { return true; } } static inline bool rect_contains_inclusive(const SkRect& rect, const SkPoint& point) { return point.fX >= rect.fLeft && point.fX <= rect.fRight && point.fY >= rect.fTop && point.fY <= rect.fBottom; } void GrContext::drawRect(const GrPaint& paint, const SkRect& rect, const GrStrokeInfo* strokeInfo, const SkMatrix* matrix) { if (NULL != strokeInfo && strokeInfo->isDashed()) { SkPath path; path.addRect(rect); this->drawPath(paint, path, *strokeInfo); return; } AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GR_CREATE_TRACE_MARKER("GrContext::drawRect", target); SkScalar width = NULL == strokeInfo ? -1 : strokeInfo->getStrokeRec().getWidth(); SkMatrix combinedMatrix = target->drawState()->getViewMatrix(); if (NULL != matrix) { combinedMatrix.preConcat(*matrix); } // Check if this is a full RT draw and can be replaced with a clear. We don't bother checking // cases where the RT is fully inside a stroke. if (width < 0) { SkRect rtRect; target->getDrawState().getRenderTarget()->getBoundsRect(&rtRect); SkRect clipSpaceRTRect = rtRect; bool checkClip = false; if (NULL != this->getClip()) { checkClip = true; clipSpaceRTRect.offset(SkIntToScalar(this->getClip()->fOrigin.fX), SkIntToScalar(this->getClip()->fOrigin.fY)); } // Does the clip contain the entire RT? if (!checkClip || target->getClip()->fClipStack->quickContains(clipSpaceRTRect)) { SkMatrix invM; if (!combinedMatrix.invert(&invM)) { return; } // Does the rect bound the RT? SkPoint srcSpaceRTQuad[4]; invM.mapRectToQuad(srcSpaceRTQuad, rtRect); if (rect_contains_inclusive(rect, srcSpaceRTQuad[0]) && rect_contains_inclusive(rect, srcSpaceRTQuad[1]) && rect_contains_inclusive(rect, srcSpaceRTQuad[2]) && rect_contains_inclusive(rect, srcSpaceRTQuad[3])) { // Will it blend? GrColor clearColor; if (paint.isOpaqueAndConstantColor(&clearColor)) { target->clear(NULL, clearColor, true); return; } } } } SkRect devBoundRect; bool useVertexCoverage; bool needAA = paint.isAntiAlias() && !target->getDrawState().getRenderTarget()->isMultisampled(); bool doAA = needAA && apply_aa_to_rect(target, rect, width, combinedMatrix, &devBoundRect, &useVertexCoverage); const SkStrokeRec& strokeRec = strokeInfo->getStrokeRec(); if (doAA) { GrDrawState::AutoViewMatrixRestore avmr; if (!avmr.setIdentity(target->drawState())) { return; } if (width >= 0) { fAARectRenderer->strokeAARect(this->getGpu(), target, rect, combinedMatrix, devBoundRect, strokeRec, useVertexCoverage); } else { // filled AA rect fAARectRenderer->fillAARect(this->getGpu(), target, rect, combinedMatrix, devBoundRect, useVertexCoverage); } return; } if (width >= 0) { // TODO: consider making static vertex buffers for these cases. // Hairline could be done by just adding closing vertex to // unitSquareVertexBuffer() static const int worstCaseVertCount = 10; target->drawState()->setDefaultVertexAttribs(); GrDrawTarget::AutoReleaseGeometry geo(target, worstCaseVertCount, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrPrimitiveType primType; int vertCount; SkPoint* vertex = geo.positions(); if (width > 0) { vertCount = 10; primType = kTriangleStrip_GrPrimitiveType; setStrokeRectStrip(vertex, rect, width); } else { // hairline vertCount = 5; primType = kLineStrip_GrPrimitiveType; vertex[0].set(rect.fLeft, rect.fTop); vertex[1].set(rect.fRight, rect.fTop); vertex[2].set(rect.fRight, rect.fBottom); vertex[3].set(rect.fLeft, rect.fBottom); vertex[4].set(rect.fLeft, rect.fTop); } GrDrawState::AutoViewMatrixRestore avmr; if (NULL != matrix) { GrDrawState* drawState = target->drawState(); avmr.set(drawState, *matrix); } target->drawNonIndexed(primType, 0, vertCount); } else { // filled BW rect target->drawSimpleRect(rect, matrix); } } void GrContext::drawRectToRect(const GrPaint& paint, const SkRect& dstRect, const SkRect& localRect, const SkMatrix* dstMatrix, const SkMatrix* localMatrix) { AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GR_CREATE_TRACE_MARKER("GrContext::drawRectToRect", target); target->drawRect(dstRect, dstMatrix, &localRect, localMatrix); } namespace { extern const GrVertexAttrib gPosUVColorAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, {kVec2f_GrVertexAttribType, sizeof(SkPoint), kLocalCoord_GrVertexAttribBinding }, {kVec4ub_GrVertexAttribType, 2*sizeof(SkPoint), kColor_GrVertexAttribBinding} }; extern const GrVertexAttrib gPosColorAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kColor_GrVertexAttribBinding}, }; static void set_vertex_attributes(GrDrawState* drawState, const SkPoint* texCoords, const GrColor* colors, int* colorOffset, int* texOffset) { *texOffset = -1; *colorOffset = -1; if (NULL != texCoords && NULL != colors) { *texOffset = sizeof(SkPoint); *colorOffset = 2*sizeof(SkPoint); drawState->setVertexAttribs<gPosUVColorAttribs>(3); } else if (NULL != texCoords) { *texOffset = sizeof(SkPoint); drawState->setVertexAttribs<gPosUVColorAttribs>(2); } else if (NULL != colors) { *colorOffset = sizeof(SkPoint); drawState->setVertexAttribs<gPosColorAttribs>(2); } else { drawState->setVertexAttribs<gPosColorAttribs>(1); } } }; void GrContext::drawVertices(const GrPaint& paint, GrPrimitiveType primitiveType, int vertexCount, const SkPoint positions[], const SkPoint texCoords[], const GrColor colors[], const uint16_t indices[], int indexCount) { AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget::AutoReleaseGeometry geo; // must be inside AutoCheckFlush scope GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GrDrawState* drawState = target->drawState(); GR_CREATE_TRACE_MARKER("GrContext::drawVertices", target); int colorOffset = -1, texOffset = -1; set_vertex_attributes(drawState, texCoords, colors, &colorOffset, &texOffset); size_t vertexSize = drawState->getVertexSize(); if (sizeof(SkPoint) != vertexSize) { if (!geo.set(target, vertexCount, 0)) { GrPrintf("Failed to get space for vertices!\n"); return; } void* curVertex = geo.vertices(); for (int i = 0; i < vertexCount; ++i) { *((SkPoint*)curVertex) = positions[i]; if (texOffset >= 0) { *(SkPoint*)((intptr_t)curVertex + texOffset) = texCoords[i]; } if (colorOffset >= 0) { *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; } curVertex = (void*)((intptr_t)curVertex + vertexSize); } } else { target->setVertexSourceToArray(positions, vertexCount); } // we don't currently apply offscreen AA to this path. Need improved // management of GrDrawTarget's geometry to avoid copying points per-tile. if (NULL != indices) { target->setIndexSourceToArray(indices, indexCount); target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount); target->resetIndexSource(); } else { target->drawNonIndexed(primitiveType, 0, vertexCount); } } /////////////////////////////////////////////////////////////////////////////// void GrContext::drawRRect(const GrPaint& paint, const SkRRect& rrect, const GrStrokeInfo& strokeInfo) { if (rrect.isEmpty()) { return; } if (strokeInfo.isDashed()) { SkPath path; path.addRRect(rrect); this->drawPath(paint, path, strokeInfo); return; } AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GR_CREATE_TRACE_MARKER("GrContext::drawRRect", target); const SkStrokeRec& strokeRec = strokeInfo.getStrokeRec(); if (!fOvalRenderer->drawRRect(target, this, paint.isAntiAlias(), rrect, strokeRec)) { SkPath path; path.addRRect(rrect); this->internalDrawPath(target, paint.isAntiAlias(), path, strokeInfo); } } /////////////////////////////////////////////////////////////////////////////// void GrContext::drawDRRect(const GrPaint& paint, const SkRRect& outer, const SkRRect& inner) { if (outer.isEmpty()) { return; } AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GR_CREATE_TRACE_MARKER("GrContext::drawDRRect", target); if (!fOvalRenderer->drawDRRect(target, this, paint.isAntiAlias(), outer, inner)) { SkPath path; path.addRRect(inner); path.addRRect(outer); path.setFillType(SkPath::kEvenOdd_FillType); GrStrokeInfo fillRec(SkStrokeRec::kFill_InitStyle); this->internalDrawPath(target, paint.isAntiAlias(), path, fillRec); } } /////////////////////////////////////////////////////////////////////////////// void GrContext::drawOval(const GrPaint& paint, const SkRect& oval, const GrStrokeInfo& strokeInfo) { if (oval.isEmpty()) { return; } if (strokeInfo.isDashed()) { SkPath path; path.addOval(oval); this->drawPath(paint, path, strokeInfo); return; } AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GR_CREATE_TRACE_MARKER("GrContext::drawOval", target); const SkStrokeRec& strokeRec = strokeInfo.getStrokeRec(); if (!fOvalRenderer->drawOval(target, this, paint.isAntiAlias(), oval, strokeRec)) { SkPath path; path.addOval(oval); this->internalDrawPath(target, paint.isAntiAlias(), path, strokeInfo); } } // Can 'path' be drawn as a pair of filled nested rectangles? static bool is_nested_rects(GrDrawTarget* target, const SkPath& path, const SkStrokeRec& stroke, SkRect rects[2], bool* useVertexCoverage) { SkASSERT(stroke.isFillStyle()); if (path.isInverseFillType()) { return false; } const GrDrawState& drawState = target->getDrawState(); // TODO: this restriction could be lifted if we were willing to apply // the matrix to all the points individually rather than just to the rect if (!drawState.getViewMatrix().preservesAxisAlignment()) { return false; } *useVertexCoverage = false; if (!target->getDrawState().canTweakAlphaForCoverage()) { if (target->shouldDisableCoverageAAForBlend()) { return false; } else { *useVertexCoverage = true; } } SkPath::Direction dirs[2]; if (!path.isNestedRects(rects, dirs)) { return false; } if (SkPath::kWinding_FillType == path.getFillType() && dirs[0] == dirs[1]) { // The two rects need to be wound opposite to each other return false; } // Right now, nested rects where the margin is not the same width // all around do not render correctly const SkScalar* outer = rects[0].asScalars(); const SkScalar* inner = rects[1].asScalars(); SkScalar margin = SkScalarAbs(outer[0] - inner[0]); for (int i = 1; i < 4; ++i) { SkScalar temp = SkScalarAbs(outer[i] - inner[i]); if (!SkScalarNearlyEqual(margin, temp)) { return false; } } return true; } void GrContext::drawPath(const GrPaint& paint, const SkPath& path, const GrStrokeInfo& strokeInfo) { if (path.isEmpty()) { if (path.isInverseFillType()) { this->drawPaint(paint); } return; } if (strokeInfo.isDashed()) { SkPoint pts[2]; if (path.isLine(pts)) { AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GrDrawState* drawState = target->drawState(); SkMatrix origViewMatrix = drawState->getViewMatrix(); GrDrawState::AutoViewMatrixRestore avmr; if (avmr.setIdentity(target->drawState())) { if (GrDashingEffect::DrawDashLine(pts, paint, strokeInfo, fGpu, target, origViewMatrix)) { return; } } } // Filter dashed path into new path with the dashing applied const SkPathEffect::DashInfo& info = strokeInfo.getDashInfo(); SkTLazy<SkPath> effectPath; GrStrokeInfo newStrokeInfo(strokeInfo, false); SkStrokeRec* stroke = newStrokeInfo.getStrokeRecPtr(); if (SkDashPath::FilterDashPath(effectPath.init(), path, stroke, NULL, info)) { this->drawPath(paint, *effectPath.get(), newStrokeInfo); return; } this->drawPath(paint, path, newStrokeInfo); return; } // Note that internalDrawPath may sw-rasterize the path into a scratch texture. // Scratch textures can be recycled after they are returned to the texture // cache. This presents a potential hazard for buffered drawing. However, // the writePixels that uploads to the scratch will perform a flush so we're // OK. AutoRestoreEffects are; AutoCheckFlush acf(this); GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); GrDrawState* drawState = target->drawState(); GR_CREATE_TRACE_MARKER("GrContext::drawPath", target); const SkStrokeRec& strokeRec = strokeInfo.getStrokeRec(); bool useCoverageAA = paint.isAntiAlias() && !drawState->getRenderTarget()->isMultisampled(); if (useCoverageAA && strokeRec.getWidth() < 0 && !path.isConvex()) { // Concave AA paths are expensive - try to avoid them for special cases bool useVertexCoverage; SkRect rects[2]; if (is_nested_rects(target, path, strokeRec, rects, &useVertexCoverage)) { SkMatrix origViewMatrix = drawState->getViewMatrix(); GrDrawState::AutoViewMatrixRestore avmr; if (!avmr.setIdentity(target->drawState())) { return; } fAARectRenderer->fillAANestedRects(this->getGpu(), target, rects, origViewMatrix, useVertexCoverage); return; } } SkRect ovalRect; bool isOval = path.isOval(&ovalRect); if (!isOval || path.isInverseFillType() || !fOvalRenderer->drawOval(target, this, paint.isAntiAlias(), ovalRect, strokeRec)) { this->internalDrawPath(target, paint.isAntiAlias(), path, strokeInfo); } } void GrContext::internalDrawPath(GrDrawTarget* target, bool useAA, const SkPath& path, const GrStrokeInfo& strokeInfo) { SkASSERT(!path.isEmpty()); GR_CREATE_TRACE_MARKER("GrContext::internalDrawPath", target); // An Assumption here is that path renderer would use some form of tweaking // the src color (either the input alpha or in the frag shader) to implement // aa. If we have some future driver-mojo path AA that can do the right // thing WRT to the blend then we'll need some query on the PR. bool useCoverageAA = useAA && !target->getDrawState().getRenderTarget()->isMultisampled() && !target->shouldDisableCoverageAAForBlend(); GrPathRendererChain::DrawType type = useCoverageAA ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; const SkPath* pathPtr = &path; SkTLazy<SkPath> tmpPath; SkTCopyOnFirstWrite<SkStrokeRec> stroke(strokeInfo.getStrokeRec()); // Try a 1st time without stroking the path and without allowing the SW renderer GrPathRenderer* pr = this->getPathRenderer(*pathPtr, *stroke, target, false, type); if (NULL == pr) { if (!GrPathRenderer::IsStrokeHairlineOrEquivalent(*stroke, this->getMatrix(), NULL)) { // It didn't work the 1st time, so try again with the stroked path if (stroke->applyToPath(tmpPath.init(), *pathPtr)) { pathPtr = tmpPath.get(); stroke.writable()->setFillStyle(); if (pathPtr->isEmpty()) { return; } } } // This time, allow SW renderer pr = this->getPathRenderer(*pathPtr, *stroke, target, true, type); } if (NULL == pr) { #ifdef SK_DEBUG GrPrintf("Unable to find path renderer compatible with path.\n"); #endif return; } pr->drawPath(*pathPtr, *stroke, target, useCoverageAA); } //////////////////////////////////////////////////////////////////////////////// void GrContext::flush(int flagsBitfield) { if (NULL == fDrawBuffer) { return; } if (kDiscard_FlushBit & flagsBitfield) { fDrawBuffer->reset(); } else { fDrawBuffer->flush(); } fFlushToReduceCacheSize = false; } bool GrContext::writeTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t flags) { ASSERT_OWNED_RESOURCE(texture); if ((kUnpremul_PixelOpsFlag & flags) || !fGpu->canWriteTexturePixels(texture, config)) { if (NULL != texture->asRenderTarget()) { return this->writeRenderTargetPixels(texture->asRenderTarget(), left, top, width, height, config, buffer, rowBytes, flags); } else { return false; } } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } return fGpu->writeTexturePixels(texture, left, top, width, height, config, buffer, rowBytes); } bool GrContext::readTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, uint32_t flags) { ASSERT_OWNED_RESOURCE(texture); GrRenderTarget* target = texture->asRenderTarget(); if (NULL != target) { return this->readRenderTargetPixels(target, left, top, width, height, config, buffer, rowBytes, flags); } else { // TODO: make this more efficient for cases where we're reading the entire // texture, i.e., use GetTexImage() instead // create scratch rendertarget and read from that GrAutoScratchTexture ast; GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fConfig = config; desc.fOrigin = kTopLeft_GrSurfaceOrigin; ast.set(this, desc, kExact_ScratchTexMatch); GrTexture* dst = ast.texture(); if (NULL != dst && NULL != (target = dst->asRenderTarget())) { this->copyTexture(texture, target, NULL); return this->readRenderTargetPixels(target, left, top, width, height, config, buffer, rowBytes, flags); } return false; } } #include "SkConfig8888.h" // toggles between RGBA and BGRA static SkColorType toggle_colortype32(SkColorType ct) { if (kRGBA_8888_SkColorType == ct) { return kBGRA_8888_SkColorType; } else { SkASSERT(kBGRA_8888_SkColorType == ct); return kRGBA_8888_SkColorType; } } bool GrContext::readRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig dstConfig, void* buffer, size_t rowBytes, uint32_t flags) { ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fRenderTarget.get(); if (NULL == target) { return false; } } if (!(kDontFlush_PixelOpsFlag & flags)) { this->flush(); } // Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul. // If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll // either do the flipY by drawing into a scratch with a matrix or on the cpu after the read. bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top, width, height, dstConfig, rowBytes); // We ignore the preferred config if it is different than our config unless it is an R/B swap. // In that case we'll perform an R and B swap while drawing to a scratch texture of the swapped // config. Then we will call readPixels on the scratch with the swapped config. The swaps during // the draw cancels out the fact that we call readPixels with a config that is R/B swapped from // dstConfig. GrPixelConfig readConfig = dstConfig; bool swapRAndB = false; if (GrPixelConfigSwapRAndB(dstConfig) == fGpu->preferredReadPixelsConfig(dstConfig, target->config())) { readConfig = GrPixelConfigSwapRAndB(readConfig); swapRAndB = true; } bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags); if (unpremul && !GrPixelConfigIs8888(dstConfig)) { // The unpremul flag is only allowed for these two configs. return false; } // If the src is a texture and we would have to do conversions after read pixels, we instead // do the conversions by drawing the src to a scratch texture. If we handle any of the // conversions in the draw we set the corresponding bool to false so that we don't reapply it // on the read back pixels. GrTexture* src = target->asTexture(); GrAutoScratchTexture ast; if (NULL != src && (swapRAndB || unpremul || flipY)) { // Make the scratch a render target because we don't have a robust readTexturePixels as of // yet. It calls this function. GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fConfig = readConfig; desc.fOrigin = kTopLeft_GrSurfaceOrigin; // When a full read back is faster than a partial we could always make the scratch exactly // match the passed rect. However, if we see many different size rectangles we will trash // our texture cache and pay the cost of creating and destroying many textures. So, we only // request an exact match when the caller is reading an entire RT. ScratchTexMatch match = kApprox_ScratchTexMatch; if (0 == left && 0 == top && target->width() == width && target->height() == height && fGpu->fullReadPixelsIsFasterThanPartial()) { match = kExact_ScratchTexMatch; } ast.set(this, desc, match); GrTexture* texture = ast.texture(); if (texture) { // compute a matrix to perform the draw SkMatrix textureMatrix; textureMatrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top); textureMatrix.postIDiv(src->width(), src->height()); SkAutoTUnref<const GrEffectRef> effect; if (unpremul) { effect.reset(this->createPMToUPMEffect(src, swapRAndB, textureMatrix)); if (NULL != effect) { unpremul = false; // we no longer need to do this on CPU after the read back. } } // If we failed to create a PM->UPM effect and have no other conversions to perform then // there is no longer any point to using the scratch. if (NULL != effect || flipY || swapRAndB) { if (!effect) { effect.reset(GrConfigConversionEffect::Create( src, swapRAndB, GrConfigConversionEffect::kNone_PMConversion, textureMatrix)); } swapRAndB = false; // we will handle the swap in the draw. // We protect the existing geometry here since it may not be // clear to the caller that a draw operation (i.e., drawSimpleRect) // can be invoked in this method GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); SkASSERT(effect); drawState->addColorEffect(effect); drawState->setRenderTarget(texture->asRenderTarget()); SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)); fGpu->drawSimpleRect(rect, NULL); // we want to read back from the scratch's origin left = 0; top = 0; target = texture->asRenderTarget(); } } } if (!fGpu->readPixels(target, left, top, width, height, readConfig, buffer, rowBytes)) { return false; } // Perform any conversions we weren't able to perform using a scratch texture. if (unpremul || swapRAndB) { SkDstPixelInfo dstPI; if (!GrPixelConfig2ColorType(dstConfig, &dstPI.fColorType)) { return false; } dstPI.fAlphaType = kUnpremul_SkAlphaType; dstPI.fPixels = buffer; dstPI.fRowBytes = rowBytes; SkSrcPixelInfo srcPI; srcPI.fColorType = swapRAndB ? toggle_colortype32(dstPI.fColorType) : dstPI.fColorType; srcPI.fAlphaType = kPremul_SkAlphaType; srcPI.fPixels = buffer; srcPI.fRowBytes = rowBytes; return srcPI.convertPixelsTo(&dstPI, width, height); } return true; } void GrContext::resolveRenderTarget(GrRenderTarget* target) { SkASSERT(target); ASSERT_OWNED_RESOURCE(target); // In the future we may track whether there are any pending draws to this // target. We don't today so we always perform a flush. We don't promise // this to our clients, though. this->flush(); fGpu->resolveRenderTarget(target); } void GrContext::discardRenderTarget(GrRenderTarget* target) { SkASSERT(target); ASSERT_OWNED_RESOURCE(target); AutoRestoreEffects are; AutoCheckFlush acf(this); this->prepareToDraw(NULL, BUFFERED_DRAW, &are, &acf)->discard(target); } void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst, const SkIPoint* topLeft) { if (NULL == src || NULL == dst) { return; } ASSERT_OWNED_RESOURCE(src); // Writes pending to the source texture are not tracked, so a flush // is required to ensure that the copy captures the most recent contents // of the source texture. See similar behavior in // GrContext::resolveRenderTarget. this->flush(); GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(dst); SkMatrix sampleM; sampleM.setIDiv(src->width(), src->height()); SkIRect srcRect = SkIRect::MakeWH(dst->width(), dst->height()); if (NULL != topLeft) { srcRect.offset(*topLeft); } SkIRect srcBounds = SkIRect::MakeWH(src->width(), src->height()); if (!srcRect.intersect(srcBounds)) { return; } sampleM.preTranslate(SkIntToScalar(srcRect.fLeft), SkIntToScalar(srcRect.fTop)); drawState->addColorTextureEffect(src, sampleM); SkRect dstR = SkRect::MakeWH(SkIntToScalar(srcRect.width()), SkIntToScalar(srcRect.height())); fGpu->drawSimpleRect(dstR, NULL); } bool GrContext::writeRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig srcConfig, const void* buffer, size_t rowBytes, uint32_t flags) { ASSERT_OWNED_RESOURCE(target); if (NULL == target) { target = fRenderTarget.get(); if (NULL == target) { return false; } } // TODO: when underlying api has a direct way to do this we should use it (e.g. glDrawPixels on // desktop GL). // We will always call some form of writeTexturePixels and we will pass our flags on to it. // Thus, we don't perform a flush here since that call will do it (if the kNoFlush flag isn't // set.) // If the RT is also a texture and we don't have to premultiply then take the texture path. // We expect to be at least as fast or faster since it doesn't use an intermediate texture as // we do below. #if !defined(SK_BUILD_FOR_MAC) // At least some drivers on the Mac get confused when glTexImage2D is called on a texture // attached to an FBO. The FBO still sees the old image. TODO: determine what OS versions and/or // HW is affected. if (NULL != target->asTexture() && !(kUnpremul_PixelOpsFlag & flags) && fGpu->canWriteTexturePixels(target->asTexture(), srcConfig)) { return this->writeTexturePixels(target->asTexture(), left, top, width, height, srcConfig, buffer, rowBytes, flags); } #endif // We ignore the preferred config unless it is a R/B swap of the src config. In that case // we will upload the original src data to a scratch texture but we will spoof it as the swapped // config. This scratch will then have R and B swapped. We correct for this by swapping again // when drawing the scratch to the dst using a conversion effect. bool swapRAndB = false; GrPixelConfig writeConfig = srcConfig; if (GrPixelConfigSwapRAndB(srcConfig) == fGpu->preferredWritePixelsConfig(srcConfig, target->config())) { writeConfig = GrPixelConfigSwapRAndB(srcConfig); swapRAndB = true; } GrTextureDesc desc; desc.fWidth = width; desc.fHeight = height; desc.fConfig = writeConfig; GrAutoScratchTexture ast(this, desc); GrTexture* texture = ast.texture(); if (NULL == texture) { return false; } SkAutoTUnref<const GrEffectRef> effect; SkMatrix textureMatrix; textureMatrix.setIDiv(texture->width(), texture->height()); // allocate a tmp buffer and sw convert the pixels to premul SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0); if (kUnpremul_PixelOpsFlag & flags) { if (!GrPixelConfigIs8888(srcConfig)) { return false; } effect.reset(this->createUPMToPMEffect(texture, swapRAndB, textureMatrix)); // handle the unpremul step on the CPU if we couldn't create an effect to do it. if (NULL == effect) { SkSrcPixelInfo srcPI; if (!GrPixelConfig2ColorType(srcConfig, &srcPI.fColorType)) { return false; } srcPI.fAlphaType = kUnpremul_SkAlphaType; srcPI.fPixels = buffer; srcPI.fRowBytes = rowBytes; tmpPixels.reset(width * height); SkDstPixelInfo dstPI; dstPI.fColorType = srcPI.fColorType; dstPI.fAlphaType = kPremul_SkAlphaType; dstPI.fPixels = tmpPixels.get(); dstPI.fRowBytes = 4 * width; if (!srcPI.convertPixelsTo(&dstPI, width, height)) { return false; } buffer = tmpPixels.get(); rowBytes = 4 * width; } } if (NULL == effect) { effect.reset(GrConfigConversionEffect::Create(texture, swapRAndB, GrConfigConversionEffect::kNone_PMConversion, textureMatrix)); } if (!this->writeTexturePixels(texture, 0, 0, width, height, writeConfig, buffer, rowBytes, flags & ~kUnpremul_PixelOpsFlag)) { return false; } // writeRenderTargetPixels can be called in the midst of drawing another // object (e.g., when uploading a SW path rendering to the gpu while // drawing a rect) so preserve the current geometry. SkMatrix matrix; matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top)); GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &matrix); GrDrawState* drawState = fGpu->drawState(); SkASSERT(effect); drawState->addColorEffect(effect); drawState->setRenderTarget(target); fGpu->drawSimpleRect(SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)), NULL); return true; } //////////////////////////////////////////////////////////////////////////////// GrDrawTarget* GrContext::prepareToDraw(const GrPaint* paint, BufferedDraw buffered, AutoRestoreEffects* are, AutoCheckFlush* acf) { // All users of this draw state should be freeing up all effects when they're done. // Otherwise effects that own resources may keep those resources alive indefinitely. SkASSERT(0 == fDrawState->numColorStages() && 0 == fDrawState->numCoverageStages()); if (kNo_BufferedDraw == buffered && kYes_BufferedDraw == fLastDrawWasBuffered) { fDrawBuffer->flush(); fLastDrawWasBuffered = kNo_BufferedDraw; } ASSERT_OWNED_RESOURCE(fRenderTarget.get()); if (NULL != paint) { SkASSERT(NULL != are); SkASSERT(NULL != acf); are->set(fDrawState); fDrawState->setFromPaint(*paint, fViewMatrix, fRenderTarget.get()); #if GR_DEBUG_PARTIAL_COVERAGE_CHECK if ((paint->hasMask() || 0xff != paint->fCoverage) && !fGpu->canApplyCoverage()) { GrPrintf("Partial pixel coverage will be incorrectly blended.\n"); } #endif } else { fDrawState->reset(fViewMatrix); fDrawState->setRenderTarget(fRenderTarget.get()); } GrDrawTarget* target; if (kYes_BufferedDraw == buffered) { fLastDrawWasBuffered = kYes_BufferedDraw; target = fDrawBuffer; } else { SkASSERT(kNo_BufferedDraw == buffered); fLastDrawWasBuffered = kNo_BufferedDraw; target = fGpu; } fDrawState->setState(GrDrawState::kClip_StateBit, NULL != fClip && !fClip->fClipStack->isWideOpen()); target->setClip(fClip); SkASSERT(fDrawState == target->drawState()); return target; } /* * This method finds a path renderer that can draw the specified path on * the provided target. * Due to its expense, the software path renderer has split out so it can * can be individually allowed/disallowed via the "allowSW" boolean. */ GrPathRenderer* GrContext::getPathRenderer(const SkPath& path, const SkStrokeRec& stroke, const GrDrawTarget* target, bool allowSW, GrPathRendererChain::DrawType drawType, GrPathRendererChain::StencilSupport* stencilSupport) { if (NULL == fPathRendererChain) { fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this)); } GrPathRenderer* pr = fPathRendererChain->getPathRenderer(path, stroke, target, drawType, stencilSupport); if (NULL == pr && allowSW) { if (NULL == fSoftwarePathRenderer) { fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this)); } pr = fSoftwarePathRenderer; } return pr; } //////////////////////////////////////////////////////////////////////////////// bool GrContext::isConfigRenderable(GrPixelConfig config, bool withMSAA) const { return fGpu->caps()->isConfigRenderable(config, withMSAA); } int GrContext::getRecommendedSampleCount(GrPixelConfig config, SkScalar dpi) const { if (!this->isConfigRenderable(config, true)) { return 0; } int chosenSampleCount = 0; if (fGpu->caps()->pathRenderingSupport()) { if (dpi >= 250.0f) { chosenSampleCount = 4; } else { chosenSampleCount = 16; } } return chosenSampleCount <= fGpu->caps()->maxSampleCount() ? chosenSampleCount : 0; } void GrContext::setupDrawBuffer() { SkASSERT(NULL == fDrawBuffer); SkASSERT(NULL == fDrawBufferVBAllocPool); SkASSERT(NULL == fDrawBufferIBAllocPool); fDrawBufferVBAllocPool = SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false, DRAW_BUFFER_VBPOOL_BUFFER_SIZE, DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS)); fDrawBufferIBAllocPool = SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false, DRAW_BUFFER_IBPOOL_BUFFER_SIZE, DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS)); fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu, fDrawBufferVBAllocPool, fDrawBufferIBAllocPool)); fDrawBuffer->setDrawState(fDrawState); } GrDrawTarget* GrContext::getTextTarget() { return this->prepareToDraw(NULL, BUFFERED_DRAW, NULL, NULL); } const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { return fGpu->getQuadIndexBuffer(); } namespace { void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) { GrConfigConversionEffect::PMConversion pmToUPM; GrConfigConversionEffect::PMConversion upmToPM; GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM); *pmToUPMValue = pmToUPM; *upmToPMValue = upmToPM; } } const GrEffectRef* GrContext::createPMToUPMEffect(GrTexture* texture, bool swapRAndB, const SkMatrix& matrix) { if (!fDidTestPMConversions) { test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); fDidTestPMConversions = true; } GrConfigConversionEffect::PMConversion pmToUPM = static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion); if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) { return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM, matrix); } else { return NULL; } } const GrEffectRef* GrContext::createUPMToPMEffect(GrTexture* texture, bool swapRAndB, const SkMatrix& matrix) { if (!fDidTestPMConversions) { test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); fDidTestPMConversions = true; } GrConfigConversionEffect::PMConversion upmToPM = static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion); if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) { return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM, matrix); } else { return NULL; } } GrPath* GrContext::createPath(const SkPath& inPath, const SkStrokeRec& stroke) { SkASSERT(fGpu->caps()->pathRenderingSupport()); // TODO: now we add to fResourceCache. This should change to fResourceCache. GrResourceKey resourceKey = GrPath::ComputeKey(inPath, stroke); GrPath* path = static_cast<GrPath*>(fResourceCache->find(resourceKey)); if (NULL != path && path->isEqualTo(inPath, stroke)) { path->ref(); } else { path = fGpu->createPath(inPath, stroke); fResourceCache->purgeAsNeeded(1, path->gpuMemorySize()); fResourceCache->addResource(resourceKey, path); } return path; } void GrContext::addResourceToCache(const GrResourceKey& resourceKey, GrCacheable* resource) { fResourceCache->purgeAsNeeded(1, resource->gpuMemorySize()); fResourceCache->addResource(resourceKey, resource); } GrCacheable* GrContext::findAndRefCachedResource(const GrResourceKey& resourceKey) { GrCacheable* resource = fResourceCache->find(resourceKey); SkSafeRef(resource); return resource; } void GrContext::addGpuTraceMarker(const GrGpuTraceMarker* marker) { fGpu->addGpuTraceMarker(marker); if (NULL != fDrawBuffer) { fDrawBuffer->addGpuTraceMarker(marker); } } void GrContext::removeGpuTraceMarker(const GrGpuTraceMarker* marker) { fGpu->removeGpuTraceMarker(marker); if (NULL != fDrawBuffer) { fDrawBuffer->removeGpuTraceMarker(marker); } } /////////////////////////////////////////////////////////////////////////////// #if GR_CACHE_STATS void GrContext::printCacheStats() const { fResourceCache->printStats(); } #endif