/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrClipMaskManager.h" #include "GrAAConvexPathRenderer.h" #include "GrAAHairLinePathRenderer.h" #include "GrAARectRenderer.h" #include "GrDrawTargetCaps.h" #include "GrGpu.h" #include "GrPaint.h" #include "GrPathRenderer.h" #include "GrRenderTarget.h" #include "GrStencilBuffer.h" #include "GrSWMaskHelper.h" #include "effects/GrTextureDomain.h" #include "effects/GrConvexPolyEffect.h" #include "effects/GrRRectEffect.h" #include "SkRasterClip.h" #include "SkStrokeRec.h" #include "SkTLazy.h" #define GR_AA_CLIP 1 typedef SkClipStack::Element Element; using namespace GrReducedClip; //////////////////////////////////////////////////////////////////////////////// namespace { // set up the draw state to enable the aa clipping mask. Besides setting up the // stage matrix this also alters the vertex layout void setup_drawstate_aaclip(GrGpu* gpu, GrTexture* result, const SkIRect &devBound) { GrDrawState* drawState = gpu->drawState(); SkASSERT(drawState); SkMatrix mat; // We want to use device coords to compute the texture coordinates. We set our matrix to be // equal to the view matrix followed by an offset to the devBound, and then a scaling matrix to // normalized coords. We apply this matrix to the vertex positions rather than local coords. mat.setIDiv(result->width(), result->height()); mat.preTranslate(SkIntToScalar(-devBound.fLeft), SkIntToScalar(-devBound.fTop)); mat.preConcat(drawState->getViewMatrix()); SkIRect domainTexels = SkIRect::MakeWH(devBound.width(), devBound.height()); // This could be a long-lived effect that is cached with the alpha-mask. drawState->addCoverageEffect( GrTextureDomainEffect::Create(result, mat, GrTextureDomain::MakeTexelDomain(result, domainTexels), GrTextureDomain::kDecal_Mode, GrTextureParams::kNone_FilterMode, kPosition_GrCoordSet))->unref(); } bool path_needs_SW_renderer(GrContext* context, GrGpu* gpu, const SkPath& origPath, const SkStrokeRec& stroke, bool doAA) { // the gpu alpha mask will draw the inverse paths as non-inverse to a temp buffer SkTCopyOnFirstWrite<SkPath> path(origPath); if (path->isInverseFillType()) { path.writable()->toggleInverseFillType(); } // last (false) parameter disallows use of the SW path renderer GrPathRendererChain::DrawType type = doAA ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; return NULL == context->getPathRenderer(*path, stroke, gpu, false, type); } } /* * This method traverses the clip stack to see if the GrSoftwarePathRenderer * will be used on any element. If so, it returns true to indicate that the * entire clip should be rendered in SW and then uploaded en masse to the gpu. */ bool GrClipMaskManager::useSWOnlyPath(const ElementList& elements) { // TODO: generalize this function so that when // a clip gets complex enough it can just be done in SW regardless // of whether it would invoke the GrSoftwarePathRenderer. SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); for (ElementList::Iter iter(elements.headIter()); iter.get(); iter.next()) { const Element* element = iter.get(); // rects can always be drawn directly w/o using the software path // Skip rrects once we're drawing them directly. if (Element::kRect_Type != element->getType()) { SkPath path; element->asPath(&path); if (path_needs_SW_renderer(this->getContext(), fGpu, path, stroke, element->isAA())) { return true; } } } return false; } bool GrClipMaskManager::installClipEffects(const ElementList& elements, GrDrawState::AutoRestoreEffects* are, const SkVector& clipToRTOffset, const SkRect* drawBounds) { GrDrawState* drawState = fGpu->drawState(); SkRect boundsInClipSpace; if (NULL != drawBounds) { boundsInClipSpace = *drawBounds; boundsInClipSpace.offset(-clipToRTOffset.fX, -clipToRTOffset.fY); } are->set(drawState); GrRenderTarget* rt = drawState->getRenderTarget(); ElementList::Iter iter(elements); bool setARE = false; bool failed = false; while (NULL != iter.get()) { SkRegion::Op op = iter.get()->getOp(); bool invert; bool skip = false; switch (op) { case SkRegion::kReplace_Op: SkASSERT(iter.get() == elements.head()); // Fallthrough, handled same as intersect. case SkRegion::kIntersect_Op: invert = false; if (NULL != drawBounds && iter.get()->contains(boundsInClipSpace)) { skip = true; } break; case SkRegion::kDifference_Op: invert = true; // We don't currently have a cheap test for whether a rect is fully outside an // element's primitive, so don't attempt to set skip. break; default: failed = true; break; } if (failed) { break; } if (!skip) { GrEffectEdgeType edgeType; if (GR_AA_CLIP && iter.get()->isAA()) { if (rt->isMultisampled()) { // Coverage based AA clips don't place nicely with MSAA. failed = true; break; } edgeType = invert ? kInverseFillAA_GrEffectEdgeType : kFillAA_GrEffectEdgeType; } else { edgeType = invert ? kInverseFillBW_GrEffectEdgeType : kFillBW_GrEffectEdgeType; } SkAutoTUnref<GrEffectRef> effect; switch (iter.get()->getType()) { case SkClipStack::Element::kPath_Type: effect.reset(GrConvexPolyEffect::Create(edgeType, iter.get()->getPath(), &clipToRTOffset)); break; case SkClipStack::Element::kRRect_Type: { SkRRect rrect = iter.get()->getRRect(); rrect.offset(clipToRTOffset.fX, clipToRTOffset.fY); effect.reset(GrRRectEffect::Create(edgeType, rrect)); break; } case SkClipStack::Element::kRect_Type: { SkRect rect = iter.get()->getRect(); rect.offset(clipToRTOffset.fX, clipToRTOffset.fY); effect.reset(GrConvexPolyEffect::Create(edgeType, rect)); break; } default: break; } if (effect) { if (!setARE) { are->set(fGpu->drawState()); setARE = true; } fGpu->drawState()->addCoverageEffect(effect); } else { failed = true; break; } } iter.next(); } if (failed) { are->set(NULL); } return !failed; } //////////////////////////////////////////////////////////////////////////////// // sort out what kind of clip mask needs to be created: alpha, stencil, // scissor, or entirely software bool GrClipMaskManager::setupClipping(const GrClipData* clipDataIn, GrDrawState::AutoRestoreEffects* are, const SkRect* devBounds) { fCurrClipMaskType = kNone_ClipMaskType; ElementList elements(16); int32_t genID; InitialState initialState; SkIRect clipSpaceIBounds; bool requiresAA; GrDrawState* drawState = fGpu->drawState(); const GrRenderTarget* rt = drawState->getRenderTarget(); // GrDrawTarget should have filtered this for us SkASSERT(NULL != rt); bool ignoreClip = !drawState->isClipState() || clipDataIn->fClipStack->isWideOpen(); if (!ignoreClip) { SkIRect clipSpaceRTIBounds = SkIRect::MakeWH(rt->width(), rt->height()); clipSpaceRTIBounds.offset(clipDataIn->fOrigin); ReduceClipStack(*clipDataIn->fClipStack, clipSpaceRTIBounds, &elements, &genID, &initialState, &clipSpaceIBounds, &requiresAA); if (elements.isEmpty()) { if (kAllIn_InitialState == initialState) { ignoreClip = clipSpaceIBounds == clipSpaceRTIBounds; } else { return false; } } } if (ignoreClip) { fGpu->disableScissor(); this->setGpuStencil(); return true; } // An element count of 4 was chosen because of the common pattern in Blink of: // isect RR // diff RR // isect convex_poly // isect convex_poly // when drawing rounded div borders. This could probably be tuned based on a // configuration's relative costs of switching RTs to generate a mask vs // longer shaders. if (elements.count() <= 4) { SkVector clipToRTOffset = { SkIntToScalar(-clipDataIn->fOrigin.fX), SkIntToScalar(-clipDataIn->fOrigin.fY) }; if (elements.isEmpty() || (requiresAA && this->installClipEffects(elements, are, clipToRTOffset, devBounds))) { SkIRect scissorSpaceIBounds(clipSpaceIBounds); scissorSpaceIBounds.offset(-clipDataIn->fOrigin); if (NULL == devBounds || !SkRect::Make(scissorSpaceIBounds).contains(*devBounds)) { fGpu->enableScissor(scissorSpaceIBounds); } else { fGpu->disableScissor(); } this->setGpuStencil(); return true; } } #if GR_AA_CLIP // If MSAA is enabled we can do everything in the stencil buffer. if (0 == rt->numSamples() && requiresAA) { GrTexture* result = NULL; if (this->useSWOnlyPath(elements)) { // The clip geometry is complex enough that it will be more efficient to create it // entirely in software result = this->createSoftwareClipMask(genID, initialState, elements, clipSpaceIBounds); } else { result = this->createAlphaClipMask(genID, initialState, elements, clipSpaceIBounds); } if (NULL != result) { // The mask's top left coord should be pinned to the rounded-out top left corner of // clipSpace bounds. We determine the mask's position WRT to the render target here. SkIRect rtSpaceMaskBounds = clipSpaceIBounds; rtSpaceMaskBounds.offset(-clipDataIn->fOrigin); are->set(fGpu->drawState()); setup_drawstate_aaclip(fGpu, result, rtSpaceMaskBounds); fGpu->disableScissor(); this->setGpuStencil(); return true; } // if alpha clip mask creation fails fall through to the non-AA code paths } #endif // GR_AA_CLIP // Either a hard (stencil buffer) clip was explicitly requested or an anti-aliased clip couldn't // be created. In either case, free up the texture in the anti-aliased mask cache. // TODO: this may require more investigation. Ganesh performs a lot of utility draws (e.g., // clears, InOrderDrawBuffer playbacks) that hit the stencil buffer path. These may be // "incorrectly" clearing the AA cache. fAACache.reset(); // use the stencil clip if we can't represent the clip as a rectangle. SkIPoint clipSpaceToStencilSpaceOffset = -clipDataIn->fOrigin; this->createStencilClipMask(genID, initialState, elements, clipSpaceIBounds, clipSpaceToStencilSpaceOffset); // This must occur after createStencilClipMask. That function may change the scissor. Also, it // only guarantees that the stencil mask is correct within the bounds it was passed, so we must // use both stencil and scissor test to the bounds for the final draw. SkIRect scissorSpaceIBounds(clipSpaceIBounds); scissorSpaceIBounds.offset(clipSpaceToStencilSpaceOffset); fGpu->enableScissor(scissorSpaceIBounds); this->setGpuStencil(); return true; } #define VISUALIZE_COMPLEX_CLIP 0 #if VISUALIZE_COMPLEX_CLIP #include "SkRandom.h" SkRandom gRandom; #define SET_RANDOM_COLOR drawState->setColor(0xff000000 | gRandom.nextU()); #else #define SET_RANDOM_COLOR #endif namespace { //////////////////////////////////////////////////////////////////////////////// // set up the OpenGL blend function to perform the specified // boolean operation for alpha clip mask creation void setup_boolean_blendcoeffs(GrDrawState* drawState, SkRegion::Op op) { switch (op) { case SkRegion::kReplace_Op: drawState->setBlendFunc(kOne_GrBlendCoeff, kZero_GrBlendCoeff); break; case SkRegion::kIntersect_Op: drawState->setBlendFunc(kDC_GrBlendCoeff, kZero_GrBlendCoeff); break; case SkRegion::kUnion_Op: drawState->setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); break; case SkRegion::kXOR_Op: drawState->setBlendFunc(kIDC_GrBlendCoeff, kISC_GrBlendCoeff); break; case SkRegion::kDifference_Op: drawState->setBlendFunc(kZero_GrBlendCoeff, kISC_GrBlendCoeff); break; case SkRegion::kReverseDifference_Op: drawState->setBlendFunc(kIDC_GrBlendCoeff, kZero_GrBlendCoeff); break; default: SkASSERT(false); break; } } } //////////////////////////////////////////////////////////////////////////////// bool GrClipMaskManager::drawElement(GrTexture* target, const SkClipStack::Element* element, GrPathRenderer* pr) { GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(target->asRenderTarget()); // TODO: Draw rrects directly here. switch (element->getType()) { case Element::kEmpty_Type: SkDEBUGFAIL("Should never get here with an empty element."); break; case Element::kRect_Type: // TODO: Do rects directly to the accumulator using a aa-rect GrEffect that covers the // entire mask bounds and writes 0 outside the rect. if (element->isAA()) { getContext()->getAARectRenderer()->fillAARect(fGpu, fGpu, element->getRect(), SkMatrix::I(), element->getRect(), false); } else { fGpu->drawSimpleRect(element->getRect(), NULL); } return true; default: { SkPath path; element->asPath(&path); if (path.isInverseFillType()) { path.toggleInverseFillType(); } SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); if (NULL == pr) { GrPathRendererChain::DrawType type; type = element->isAA() ? GrPathRendererChain::kColorAntiAlias_DrawType : GrPathRendererChain::kColor_DrawType; pr = this->getContext()->getPathRenderer(path, stroke, fGpu, false, type); } if (NULL == pr) { return false; } pr->drawPath(path, stroke, fGpu, element->isAA()); break; } } return true; } bool GrClipMaskManager::canStencilAndDrawElement(GrTexture* target, const SkClipStack::Element* element, GrPathRenderer** pr) { GrDrawState* drawState = fGpu->drawState(); drawState->setRenderTarget(target->asRenderTarget()); if (Element::kRect_Type == element->getType()) { return true; } else { // We shouldn't get here with an empty clip element. SkASSERT(Element::kEmpty_Type != element->getType()); SkPath path; element->asPath(&path); if (path.isInverseFillType()) { path.toggleInverseFillType(); } SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); GrPathRendererChain::DrawType type = element->isAA() ? GrPathRendererChain::kStencilAndColorAntiAlias_DrawType : GrPathRendererChain::kStencilAndColor_DrawType; *pr = this->getContext()->getPathRenderer(path, stroke, fGpu, false, type); return NULL != *pr; } } void GrClipMaskManager::mergeMask(GrTexture* dstMask, GrTexture* srcMask, SkRegion::Op op, const SkIRect& dstBound, const SkIRect& srcBound) { GrDrawState::AutoViewMatrixRestore avmr; GrDrawState* drawState = fGpu->drawState(); SkAssertResult(avmr.setIdentity(drawState)); GrDrawState::AutoRestoreEffects are(drawState); drawState->setRenderTarget(dstMask->asRenderTarget()); setup_boolean_blendcoeffs(drawState, op); SkMatrix sampleM; sampleM.setIDiv(srcMask->width(), srcMask->height()); drawState->addColorEffect( GrTextureDomainEffect::Create(srcMask, sampleM, GrTextureDomain::MakeTexelDomain(srcMask, srcBound), GrTextureDomain::kDecal_Mode, GrTextureParams::kNone_FilterMode))->unref(); fGpu->drawSimpleRect(SkRect::Make(dstBound), NULL); } // get a texture to act as a temporary buffer for AA clip boolean operations // TODO: given the expense of createTexture we may want to just cache this too void GrClipMaskManager::getTemp(int width, int height, GrAutoScratchTexture* temp) { if (NULL != temp->texture()) { // we've already allocated the temp texture return; } GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit|kNoStencil_GrTextureFlagBit; desc.fWidth = width; desc.fHeight = height; desc.fConfig = kAlpha_8_GrPixelConfig; temp->set(this->getContext(), desc); } //////////////////////////////////////////////////////////////////////////////// // Return the texture currently in the cache if it exists. Otherwise, return NULL GrTexture* GrClipMaskManager::getCachedMaskTexture(int32_t elementsGenID, const SkIRect& clipSpaceIBounds) { bool cached = fAACache.canReuse(elementsGenID, clipSpaceIBounds); if (!cached) { return NULL; } return fAACache.getLastMask(); } //////////////////////////////////////////////////////////////////////////////// // Allocate a texture in the texture cache. This function returns the texture // allocated (or NULL on error). GrTexture* GrClipMaskManager::allocMaskTexture(int32_t elementsGenID, const SkIRect& clipSpaceIBounds, bool willUpload) { // Since we are setting up the cache we should free up the // currently cached mask so it can be reused. fAACache.reset(); GrTextureDesc desc; desc.fFlags = willUpload ? kNone_GrTextureFlags : kRenderTarget_GrTextureFlagBit; desc.fWidth = clipSpaceIBounds.width(); desc.fHeight = clipSpaceIBounds.height(); desc.fConfig = kRGBA_8888_GrPixelConfig; if (willUpload || this->getContext()->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) { // We would always like A8 but it isn't supported on all platforms desc.fConfig = kAlpha_8_GrPixelConfig; } fAACache.acquireMask(elementsGenID, desc, clipSpaceIBounds); return fAACache.getLastMask(); } //////////////////////////////////////////////////////////////////////////////// // Create a 8-bit clip mask in alpha GrTexture* GrClipMaskManager::createAlphaClipMask(int32_t elementsGenID, InitialState initialState, const ElementList& elements, const SkIRect& clipSpaceIBounds) { SkASSERT(kNone_ClipMaskType == fCurrClipMaskType); // First, check for cached texture GrTexture* result = this->getCachedMaskTexture(elementsGenID, clipSpaceIBounds); if (NULL != result) { fCurrClipMaskType = kAlpha_ClipMaskType; return result; } // There's no texture in the cache. Let's try to allocate it then. result = this->allocMaskTexture(elementsGenID, clipSpaceIBounds, false); if (NULL == result) { fAACache.reset(); return NULL; } // The top-left of the mask corresponds to the top-left corner of the bounds. SkVector clipToMaskOffset = { SkIntToScalar(-clipSpaceIBounds.fLeft), SkIntToScalar(-clipSpaceIBounds.fTop) }; // The texture may be larger than necessary, this rect represents the part of the texture // we populate with a rasterization of the clip. SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height()); // Set the matrix so that rendered clip elements are transformed to mask space from clip space. SkMatrix translate; translate.setTranslate(clipToMaskOffset); GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &translate); GrDrawState* drawState = fGpu->drawState(); // We're drawing a coverage mask and want coverage to be run through the blend function. drawState->enableState(GrDrawState::kCoverageDrawing_StateBit); // The scratch texture that we are drawing into can be substantially larger than the mask. Only // clear the part that we care about. fGpu->clear(&maskSpaceIBounds, kAllIn_InitialState == initialState ? 0xffffffff : 0x00000000, true, result->asRenderTarget()); // When we use the stencil in the below loop it is important to have this clip installed. // The second pass that zeros the stencil buffer renders the rect maskSpaceIBounds so the first // pass must not set values outside of this bounds or stencil values outside the rect won't be // cleared. GrDrawTarget::AutoClipRestore acr(fGpu, maskSpaceIBounds); drawState->enableState(GrDrawState::kClip_StateBit); GrAutoScratchTexture temp; // walk through each clip element and perform its set op for (ElementList::Iter iter = elements.headIter(); iter.get(); iter.next()) { const Element* element = iter.get(); SkRegion::Op op = element->getOp(); bool invert = element->isInverseFilled(); if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) { GrPathRenderer* pr = NULL; bool useTemp = !this->canStencilAndDrawElement(result, element, &pr); GrTexture* dst; // This is the bounds of the clip element in the space of the alpha-mask. The temporary // mask buffer can be substantially larger than the actually clip stack element. We // touch the minimum number of pixels necessary and use decal mode to combine it with // the accumulator. SkIRect maskSpaceElementIBounds; if (useTemp) { if (invert) { maskSpaceElementIBounds = maskSpaceIBounds; } else { SkRect elementBounds = element->getBounds(); elementBounds.offset(clipToMaskOffset); elementBounds.roundOut(&maskSpaceElementIBounds); } this->getTemp(maskSpaceIBounds.fRight, maskSpaceIBounds.fBottom, &temp); if (NULL == temp.texture()) { fAACache.reset(); return NULL; } dst = temp.texture(); // clear the temp target and set blend to replace fGpu->clear(&maskSpaceElementIBounds, invert ? 0xffffffff : 0x00000000, true, dst->asRenderTarget()); setup_boolean_blendcoeffs(drawState, SkRegion::kReplace_Op); } else { // draw directly into the result with the stencil set to make the pixels affected // by the clip shape be non-zero. dst = result; GR_STATIC_CONST_SAME_STENCIL(kStencilInElement, kReplace_StencilOp, kReplace_StencilOp, kAlways_StencilFunc, 0xffff, 0xffff, 0xffff); drawState->setStencil(kStencilInElement); setup_boolean_blendcoeffs(drawState, op); } drawState->setAlpha(invert ? 0x00 : 0xff); if (!this->drawElement(dst, element, pr)) { fAACache.reset(); return NULL; } if (useTemp) { // Now draw into the accumulator using the real operation and the temp buffer as a // texture this->mergeMask(result, temp.texture(), op, maskSpaceIBounds, maskSpaceElementIBounds); } else { // Draw to the exterior pixels (those with a zero stencil value). drawState->setAlpha(invert ? 0xff : 0x00); GR_STATIC_CONST_SAME_STENCIL(kDrawOutsideElement, kZero_StencilOp, kZero_StencilOp, kEqual_StencilFunc, 0xffff, 0x0000, 0xffff); drawState->setStencil(kDrawOutsideElement); fGpu->drawSimpleRect(clipSpaceIBounds); drawState->disableStencil(); } } else { // all the remaining ops can just be directly draw into the accumulation buffer drawState->setAlpha(0xff); setup_boolean_blendcoeffs(drawState, op); this->drawElement(result, element); } } fCurrClipMaskType = kAlpha_ClipMaskType; return result; } //////////////////////////////////////////////////////////////////////////////// // Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device // (as opposed to canvas) coordinates bool GrClipMaskManager::createStencilClipMask(int32_t elementsGenID, InitialState initialState, const ElementList& elements, const SkIRect& clipSpaceIBounds, const SkIPoint& clipSpaceToStencilOffset) { SkASSERT(kNone_ClipMaskType == fCurrClipMaskType); GrDrawState* drawState = fGpu->drawState(); SkASSERT(drawState->isClipState()); GrRenderTarget* rt = drawState->getRenderTarget(); SkASSERT(NULL != rt); // TODO: dynamically attach a SB when needed. GrStencilBuffer* stencilBuffer = rt->getStencilBuffer(); if (NULL == stencilBuffer) { return false; } if (stencilBuffer->mustRenderClip(elementsGenID, clipSpaceIBounds, clipSpaceToStencilOffset)) { stencilBuffer->setLastClip(elementsGenID, clipSpaceIBounds, clipSpaceToStencilOffset); // Set the matrix so that rendered clip elements are transformed from clip to stencil space. SkVector translate = { SkIntToScalar(clipSpaceToStencilOffset.fX), SkIntToScalar(clipSpaceToStencilOffset.fY) }; SkMatrix matrix; matrix.setTranslate(translate); GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &matrix); drawState = fGpu->drawState(); drawState->setRenderTarget(rt); // We set the current clip to the bounds so that our recursive draws are scissored to them. SkIRect stencilSpaceIBounds(clipSpaceIBounds); stencilSpaceIBounds.offset(clipSpaceToStencilOffset); GrDrawTarget::AutoClipRestore acr(fGpu, stencilSpaceIBounds); drawState->enableState(GrDrawState::kClip_StateBit); #if !VISUALIZE_COMPLEX_CLIP drawState->enableState(GrDrawState::kNoColorWrites_StateBit); #endif int clipBit = stencilBuffer->bits(); SkASSERT((clipBit <= 16) && "Ganesh only handles 16b or smaller stencil buffers"); clipBit = (1 << (clipBit-1)); fGpu->clearStencilClip(stencilSpaceIBounds, kAllIn_InitialState == initialState); // walk through each clip element and perform its set op // with the existing clip. for (ElementList::Iter iter(elements.headIter()); NULL != iter.get(); iter.next()) { const Element* element = iter.get(); bool fillInverted = false; // enabled at bottom of loop drawState->disableState(GrGpu::kModifyStencilClip_StateBit); // if the target is MSAA then we want MSAA enabled when the clip is soft if (rt->isMultisampled()) { drawState->setState(GrDrawState::kHWAntialias_StateBit, element->isAA()); } // This will be used to determine whether the clip shape can be rendered into the // stencil with arbitrary stencil settings. GrPathRenderer::StencilSupport stencilSupport; SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); SkRegion::Op op = element->getOp(); GrPathRenderer* pr = NULL; SkPath clipPath; if (Element::kRect_Type == element->getType()) { stencilSupport = GrPathRenderer::kNoRestriction_StencilSupport; fillInverted = false; } else { element->asPath(&clipPath); fillInverted = clipPath.isInverseFillType(); if (fillInverted) { clipPath.toggleInverseFillType(); } pr = this->getContext()->getPathRenderer(clipPath, stroke, fGpu, false, GrPathRendererChain::kStencilOnly_DrawType, &stencilSupport); if (NULL == pr) { return false; } } int passes; GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses]; bool canRenderDirectToStencil = GrPathRenderer::kNoRestriction_StencilSupport == stencilSupport; bool canDrawDirectToClip; // Given the renderer, the element, // fill rule, and set operation can // we render the element directly to // stencil bit used for clipping. canDrawDirectToClip = GrStencilSettings::GetClipPasses(op, canRenderDirectToStencil, clipBit, fillInverted, &passes, stencilSettings); // draw the element to the client stencil bits if necessary if (!canDrawDirectToClip) { GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil, kIncClamp_StencilOp, kIncClamp_StencilOp, kAlways_StencilFunc, 0xffff, 0x0000, 0xffff); SET_RANDOM_COLOR if (Element::kRect_Type == element->getType()) { *drawState->stencil() = gDrawToStencil; fGpu->drawSimpleRect(element->getRect(), NULL); } else { if (!clipPath.isEmpty()) { if (canRenderDirectToStencil) { *drawState->stencil() = gDrawToStencil; pr->drawPath(clipPath, stroke, fGpu, false); } else { pr->stencilPath(clipPath, stroke, fGpu); } } } } // now we modify the clip bit by rendering either the clip // element directly or a bounding rect of the entire clip. drawState->enableState(GrGpu::kModifyStencilClip_StateBit); for (int p = 0; p < passes; ++p) { *drawState->stencil() = stencilSettings[p]; if (canDrawDirectToClip) { if (Element::kRect_Type == element->getType()) { SET_RANDOM_COLOR fGpu->drawSimpleRect(element->getRect(), NULL); } else { SET_RANDOM_COLOR pr->drawPath(clipPath, stroke, fGpu, false); } } else { SET_RANDOM_COLOR // The view matrix is setup to do clip space -> stencil space translation, so // draw rect in clip space. fGpu->drawSimpleRect(SkRect::Make(clipSpaceIBounds), NULL); } } } } // set this last because recursive draws may overwrite it back to kNone. SkASSERT(kNone_ClipMaskType == fCurrClipMaskType); fCurrClipMaskType = kStencil_ClipMaskType; return true; } // mapping of clip-respecting stencil funcs to normal stencil funcs // mapping depends on whether stencil-clipping is in effect. static const GrStencilFunc gSpecialToBasicStencilFunc[2][kClipStencilFuncCount] = { {// Stencil-Clipping is DISABLED, we are effectively always inside the clip // In the Clip Funcs kAlways_StencilFunc, // kAlwaysIfInClip_StencilFunc kEqual_StencilFunc, // kEqualIfInClip_StencilFunc kLess_StencilFunc, // kLessIfInClip_StencilFunc kLEqual_StencilFunc, // kLEqualIfInClip_StencilFunc // Special in the clip func that forces user's ref to be 0. kNotEqual_StencilFunc, // kNonZeroIfInClip_StencilFunc // make ref 0 and do normal nequal. }, {// Stencil-Clipping is ENABLED // In the Clip Funcs kEqual_StencilFunc, // kAlwaysIfInClip_StencilFunc // eq stencil clip bit, mask // out user bits. kEqual_StencilFunc, // kEqualIfInClip_StencilFunc // add stencil bit to mask and ref kLess_StencilFunc, // kLessIfInClip_StencilFunc kLEqual_StencilFunc, // kLEqualIfInClip_StencilFunc // for both of these we can add // the clip bit to the mask and // ref and compare as normal // Special in the clip func that forces user's ref to be 0. kLess_StencilFunc, // kNonZeroIfInClip_StencilFunc // make ref have only the clip bit set // and make comparison be less // 10..0 < 1..user_bits.. } }; namespace { // Sets the settings to clip against the stencil buffer clip while ignoring the // client bits. const GrStencilSettings& basic_apply_stencil_clip_settings() { // stencil settings to use when clip is in stencil GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings, kKeep_StencilOp, kKeep_StencilOp, kAlwaysIfInClip_StencilFunc, 0x0000, 0x0000, 0x0000); return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings); } } void GrClipMaskManager::setGpuStencil() { // We make two copies of the StencilSettings here (except in the early // exit scenario. One copy from draw state to the stack var. Then another // from the stack var to the gpu. We could make this class hold a ptr to // GrGpu's fStencilSettings and eliminate the stack copy here. const GrDrawState& drawState = fGpu->getDrawState(); // use stencil for clipping if clipping is enabled and the clip // has been written into the stencil. GrClipMaskManager::StencilClipMode clipMode; if (this->isClipInStencil() && drawState.isClipState()) { clipMode = GrClipMaskManager::kRespectClip_StencilClipMode; // We can't be modifying the clip and respecting it at the same time. SkASSERT(!drawState.isStateFlagEnabled( GrGpu::kModifyStencilClip_StateBit)); } else if (drawState.isStateFlagEnabled( GrGpu::kModifyStencilClip_StateBit)) { clipMode = GrClipMaskManager::kModifyClip_StencilClipMode; } else { clipMode = GrClipMaskManager::kIgnoreClip_StencilClipMode; } GrStencilSettings settings; // The GrGpu client may not be using the stencil buffer but we may need to // enable it in order to respect a stencil clip. if (drawState.getStencil().isDisabled()) { if (GrClipMaskManager::kRespectClip_StencilClipMode == clipMode) { settings = basic_apply_stencil_clip_settings(); } else { fGpu->disableStencil(); return; } } else { settings = drawState.getStencil(); } // TODO: dynamically attach a stencil buffer int stencilBits = 0; GrStencilBuffer* stencilBuffer = drawState.getRenderTarget()->getStencilBuffer(); if (NULL != stencilBuffer) { stencilBits = stencilBuffer->bits(); } SkASSERT(fGpu->caps()->stencilWrapOpsSupport() || !settings.usesWrapOp()); SkASSERT(fGpu->caps()->twoSidedStencilSupport() || !settings.isTwoSided()); this->adjustStencilParams(&settings, clipMode, stencilBits); fGpu->setStencilSettings(settings); } void GrClipMaskManager::adjustStencilParams(GrStencilSettings* settings, StencilClipMode mode, int stencilBitCnt) { SkASSERT(stencilBitCnt > 0); if (kModifyClip_StencilClipMode == mode) { // We assume that this clip manager itself is drawing to the GrGpu and // has already setup the correct values. return; } unsigned int clipBit = (1 << (stencilBitCnt - 1)); unsigned int userBits = clipBit - 1; GrStencilSettings::Face face = GrStencilSettings::kFront_Face; bool twoSided = fGpu->caps()->twoSidedStencilSupport(); bool finished = false; while (!finished) { GrStencilFunc func = settings->func(face); uint16_t writeMask = settings->writeMask(face); uint16_t funcMask = settings->funcMask(face); uint16_t funcRef = settings->funcRef(face); SkASSERT((unsigned) func < kStencilFuncCount); writeMask &= userBits; if (func >= kBasicStencilFuncCount) { int respectClip = kRespectClip_StencilClipMode == mode; if (respectClip) { // The GrGpu class should have checked this SkASSERT(this->isClipInStencil()); switch (func) { case kAlwaysIfInClip_StencilFunc: funcMask = clipBit; funcRef = clipBit; break; case kEqualIfInClip_StencilFunc: case kLessIfInClip_StencilFunc: case kLEqualIfInClip_StencilFunc: funcMask = (funcMask & userBits) | clipBit; funcRef = (funcRef & userBits) | clipBit; break; case kNonZeroIfInClip_StencilFunc: funcMask = (funcMask & userBits) | clipBit; funcRef = clipBit; break; default: SkFAIL("Unknown stencil func"); } } else { funcMask &= userBits; funcRef &= userBits; } const GrStencilFunc* table = gSpecialToBasicStencilFunc[respectClip]; func = table[func - kBasicStencilFuncCount]; SkASSERT(func >= 0 && func < kBasicStencilFuncCount); } else { funcMask &= userBits; funcRef &= userBits; } settings->setFunc(face, func); settings->setWriteMask(face, writeMask); settings->setFuncMask(face, funcMask); settings->setFuncRef(face, funcRef); if (GrStencilSettings::kFront_Face == face) { face = GrStencilSettings::kBack_Face; finished = !twoSided; } else { finished = true; } } if (!twoSided) { settings->copyFrontSettingsToBack(); } } //////////////////////////////////////////////////////////////////////////////// GrTexture* GrClipMaskManager::createSoftwareClipMask(int32_t elementsGenID, GrReducedClip::InitialState initialState, const GrReducedClip::ElementList& elements, const SkIRect& clipSpaceIBounds) { SkASSERT(kNone_ClipMaskType == fCurrClipMaskType); GrTexture* result = this->getCachedMaskTexture(elementsGenID, clipSpaceIBounds); if (NULL != result) { return result; } // The mask texture may be larger than necessary. We round out the clip space bounds and pin // the top left corner of the resulting rect to the top left of the texture. SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height()); GrSWMaskHelper helper(this->getContext()); SkMatrix matrix; matrix.setTranslate(SkIntToScalar(-clipSpaceIBounds.fLeft), SkIntToScalar(-clipSpaceIBounds.fTop)); helper.init(maskSpaceIBounds, &matrix); helper.clear(kAllIn_InitialState == initialState ? 0xFF : 0x00); SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); for (ElementList::Iter iter(elements.headIter()) ; NULL != iter.get(); iter.next()) { const Element* element = iter.get(); SkRegion::Op op = element->getOp(); if (SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) { // Intersect and reverse difference require modifying pixels outside of the geometry // that is being "drawn". In both cases we erase all the pixels outside of the geometry // but leave the pixels inside the geometry alone. For reverse difference we invert all // the pixels before clearing the ones outside the geometry. if (SkRegion::kReverseDifference_Op == op) { SkRect temp = SkRect::Make(clipSpaceIBounds); // invert the entire scene helper.draw(temp, SkRegion::kXOR_Op, false, 0xFF); } SkPath clipPath; element->asPath(&clipPath); clipPath.toggleInverseFillType(); helper.draw(clipPath, stroke, SkRegion::kReplace_Op, element->isAA(), 0x00); continue; } // The other ops (union, xor, diff) only affect pixels inside // the geometry so they can just be drawn normally if (Element::kRect_Type == element->getType()) { helper.draw(element->getRect(), op, element->isAA(), 0xFF); } else { SkPath path; element->asPath(&path); helper.draw(path, stroke, op, element->isAA(), 0xFF); } } // Allocate clip mask texture result = this->allocMaskTexture(elementsGenID, clipSpaceIBounds, true); if (NULL == result) { fAACache.reset(); return NULL; } helper.toTexture(result); fCurrClipMaskType = kAlpha_ClipMaskType; return result; } //////////////////////////////////////////////////////////////////////////////// void GrClipMaskManager::releaseResources() { fAACache.releaseResources(); } void GrClipMaskManager::setGpu(GrGpu* gpu) { fGpu = gpu; fAACache.setContext(gpu->getContext()); } void GrClipMaskManager::adjustPathStencilParams(GrStencilSettings* settings) { const GrDrawState& drawState = fGpu->getDrawState(); GrClipMaskManager::StencilClipMode clipMode; if (this->isClipInStencil() && drawState.isClipState()) { clipMode = GrClipMaskManager::kRespectClip_StencilClipMode; // We can't be modifying the clip and respecting it at the same time. SkASSERT(!drawState.isStateFlagEnabled( GrGpu::kModifyStencilClip_StateBit)); } else if (drawState.isStateFlagEnabled( GrGpu::kModifyStencilClip_StateBit)) { clipMode = GrClipMaskManager::kModifyClip_StencilClipMode; } else { clipMode = GrClipMaskManager::kIgnoreClip_StencilClipMode; } // TODO: dynamically attach a stencil buffer int stencilBits = 0; GrStencilBuffer* stencilBuffer = drawState.getRenderTarget()->getStencilBuffer(); if (NULL != stencilBuffer) { stencilBits = stencilBuffer->bits(); this->adjustStencilParams(settings, clipMode, stencilBits); } }