/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAARectRenderer.h" #include "GrGpu.h" #include "gl/GrGLEffect.h" #include "gl/GrGLVertexEffect.h" #include "GrTBackendEffectFactory.h" #include "SkColorPriv.h" #include "effects/GrVertexEffect.h" /////////////////////////////////////////////////////////////////////////////// class GrGLAlignedRectEffect; // Axis Aligned special case class GrAlignedRectEffect : public GrVertexEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gAlignedRectEffect, GrAlignedRectEffect, ()); gAlignedRectEffect->ref(); return gAlignedRectEffect; } virtual ~GrAlignedRectEffect() {} static const char* Name() { return "AlignedRectEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory<GrAlignedRectEffect>::getInstance(); } class GLEffect : public GrGLVertexEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLFullShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { // setup the varying for the Axis aligned rect effect // xy -> interpolated offset // zw -> w/2+0.5, h/2+0.5 const char *vsRectName, *fsRectName; builder->addVarying(kVec4f_GrSLType, "Rect", &vsRectName, &fsRectName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsRectName, attr0Name->c_str()); // TODO: compute all these offsets, spans, and scales in the VS builder->fsCodeAppendf("\tfloat insetW = min(1.0, %s.z) - 0.5;\n", fsRectName); builder->fsCodeAppendf("\tfloat insetH = min(1.0, %s.w) - 0.5;\n", fsRectName); builder->fsCodeAppend("\tfloat outset = 0.5;\n"); // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range. builder->fsCodeAppend("\tfloat spanW = insetW + outset;\n"); builder->fsCodeAppend("\tfloat spanH = insetH + outset;\n"); // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum // value of coverage that is used. In other words it is the coverage that is // used in the interior of the rect after the ramp. builder->fsCodeAppend("\tfloat scaleW = min(1.0, 2.0*insetW/spanW);\n"); builder->fsCodeAppend("\tfloat scaleH = min(1.0, 2.0*insetH/spanH);\n"); // Compute the coverage for the rect's width builder->fsCodeAppendf( "\tfloat coverage = scaleW*clamp((%s.z-abs(%s.x))/spanW, 0.0, 1.0);\n", fsRectName, fsRectName); // Compute the coverage for the rect's height and merge with the width builder->fsCodeAppendf( "\tcoverage = coverage*scaleH*clamp((%s.w-abs(%s.y))/spanH, 0.0, 1.0);\n", fsRectName, fsRectName); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("coverage")).c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0; } virtual void setData(const GrGLUniformManager& uman, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLVertexEffect INHERITED; }; private: GrAlignedRectEffect() : GrVertexEffect() { this->addVertexAttrib(kVec4f_GrSLType); } virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrVertexEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(GrAlignedRectEffect); GrEffectRef* GrAlignedRectEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return GrAlignedRectEffect::Create(); } /////////////////////////////////////////////////////////////////////////////// class GrGLRectEffect; /** * The output of this effect is a modulation of the input color and coverage * for an arbitrarily oriented rect. The rect is specified as: * Center of the rect * Unit vector point down the height of the rect * Half width + 0.5 * Half height + 0.5 * The center and vector are stored in a vec4 varying ("RectEdge") with the * center in the xy components and the vector in the zw components. * The munged width and height are stored in a vec2 varying ("WidthHeight") * with the width in x and the height in y. */ class GrRectEffect : public GrVertexEffect { public: static GrEffectRef* Create() { GR_CREATE_STATIC_EFFECT(gRectEffect, GrRectEffect, ()); gRectEffect->ref(); return gRectEffect; } virtual ~GrRectEffect() {} static const char* Name() { return "RectEdge"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory<GrRectEffect>::getInstance(); } class GLEffect : public GrGLVertexEffect { public: GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED (factory) {} virtual void emitCode(GrGLFullShaderBuilder* builder, const GrDrawEffect& drawEffect, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) SK_OVERRIDE { // setup the varying for the center point and the unit vector // that points down the height of the rect const char *vsRectEdgeName, *fsRectEdgeName; builder->addVarying(kVec4f_GrSLType, "RectEdge", &vsRectEdgeName, &fsRectEdgeName); const SkString* attr0Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); builder->vsCodeAppendf("\t%s = %s;\n", vsRectEdgeName, attr0Name->c_str()); // setup the varying for width/2+.5 and height/2+.5 const char *vsWidthHeightName, *fsWidthHeightName; builder->addVarying(kVec2f_GrSLType, "WidthHeight", &vsWidthHeightName, &fsWidthHeightName); const SkString* attr1Name = builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]); builder->vsCodeAppendf("\t%s = %s;\n", vsWidthHeightName, attr1Name->c_str()); // TODO: compute all these offsets, spans, and scales in the VS builder->fsCodeAppendf("\tfloat insetW = min(1.0, %s.x) - 0.5;\n", fsWidthHeightName); builder->fsCodeAppendf("\tfloat insetH = min(1.0, %s.y) - 0.5;\n", fsWidthHeightName); builder->fsCodeAppend("\tfloat outset = 0.5;\n"); // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range. builder->fsCodeAppend("\tfloat spanW = insetW + outset;\n"); builder->fsCodeAppend("\tfloat spanH = insetH + outset;\n"); // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum // value of coverage that is used. In other words it is the coverage that is // used in the interior of the rect after the ramp. builder->fsCodeAppend("\tfloat scaleW = min(1.0, 2.0*insetW/spanW);\n"); builder->fsCodeAppend("\tfloat scaleH = min(1.0, 2.0*insetH/spanH);\n"); // Compute the coverage for the rect's width builder->fsCodeAppendf("\tvec2 offset = %s.xy - %s.xy;\n", builder->fragmentPosition(), fsRectEdgeName); builder->fsCodeAppendf("\tfloat perpDot = abs(offset.x * %s.w - offset.y * %s.z);\n", fsRectEdgeName, fsRectEdgeName); builder->fsCodeAppendf( "\tfloat coverage = scaleW*clamp((%s.x-perpDot)/spanW, 0.0, 1.0);\n", fsWidthHeightName); // Compute the coverage for the rect's height and merge with the width builder->fsCodeAppendf("\tperpDot = abs(dot(offset, %s.zw));\n", fsRectEdgeName); builder->fsCodeAppendf( "\tcoverage = coverage*scaleH*clamp((%s.y-perpDot)/spanH, 0.0, 1.0);\n", fsWidthHeightName); builder->fsCodeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("coverage")).c_str()); } static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { return 0; } virtual void setData(const GrGLUniformManager& uman, const GrDrawEffect&) SK_OVERRIDE {} private: typedef GrGLVertexEffect INHERITED; }; private: GrRectEffect() : GrVertexEffect() { this->addVertexAttrib(kVec4f_GrSLType); this->addVertexAttrib(kVec2f_GrSLType); this->setWillReadFragmentPosition(); } virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE { return true; } GR_DECLARE_EFFECT_TEST; typedef GrVertexEffect INHERITED; }; GR_DEFINE_EFFECT_TEST(GrRectEffect); GrEffectRef* GrRectEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { return GrRectEffect::Create(); } /////////////////////////////////////////////////////////////////////////////// namespace { extern const GrVertexAttrib gAARectCoverageAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kCoverage_GrVertexAttribBinding}, }; extern const GrVertexAttrib gAARectColorAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kColor_GrVertexAttribBinding}, }; static void set_aa_rect_vertex_attributes(GrDrawState* drawState, bool useCoverage) { if (useCoverage) { drawState->setVertexAttribs<gAARectCoverageAttribs>(SK_ARRAY_COUNT(gAARectCoverageAttribs)); } else { drawState->setVertexAttribs<gAARectColorAttribs>(SK_ARRAY_COUNT(gAARectColorAttribs)); } } static void set_inset_fan(SkPoint* pts, size_t stride, const SkRect& r, SkScalar dx, SkScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } }; void GrAARectRenderer::reset() { SkSafeSetNull(fAAFillRectIndexBuffer); SkSafeSetNull(fAAMiterStrokeRectIndexBuffer); SkSafeSetNull(fAABevelStrokeRectIndexBuffer); } static const uint16_t gFillAARectIdx[] = { 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, 3, 0, 4, 4, 7, 3, 4, 5, 6, 6, 7, 4, }; static const int kIndicesPerAAFillRect = SK_ARRAY_COUNT(gFillAARectIdx); static const int kVertsPerAAFillRect = 8; static const int kNumAAFillRectsInIndexBuffer = 256; GrIndexBuffer* GrAARectRenderer::aaFillRectIndexBuffer(GrGpu* gpu) { static const size_t kAAFillRectIndexBufferSize = kIndicesPerAAFillRect * sizeof(uint16_t) * kNumAAFillRectsInIndexBuffer; if (NULL == fAAFillRectIndexBuffer) { fAAFillRectIndexBuffer = gpu->createIndexBuffer(kAAFillRectIndexBufferSize, false); if (NULL != fAAFillRectIndexBuffer) { uint16_t* data = (uint16_t*) fAAFillRectIndexBuffer->map(); bool useTempData = (NULL == data); if (useTempData) { data = SkNEW_ARRAY(uint16_t, kNumAAFillRectsInIndexBuffer * kIndicesPerAAFillRect); } for (int i = 0; i < kNumAAFillRectsInIndexBuffer; ++i) { // Each AA filled rect is drawn with 8 vertices and 10 triangles (8 around // the inner rect (for AA) and 2 for the inner rect. int baseIdx = i * kIndicesPerAAFillRect; uint16_t baseVert = (uint16_t)(i * kVertsPerAAFillRect); for (int j = 0; j < kIndicesPerAAFillRect; ++j) { data[baseIdx+j] = baseVert + gFillAARectIdx[j]; } } if (useTempData) { if (!fAAFillRectIndexBuffer->updateData(data, kAAFillRectIndexBufferSize)) { SkFAIL("Can't get AA Fill Rect indices into buffer!"); } SkDELETE_ARRAY(data); } else { fAAFillRectIndexBuffer->unmap(); } } } return fAAFillRectIndexBuffer; } static const uint16_t gMiterStrokeAARectIdx[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; /** * As in miter-stroke, index = a + b, and a is the current index, b is the shift * from the first index. The index layout: * outer AA line: 0~3, 4~7 * outer edge: 8~11, 12~15 * inner edge: 16~19 * inner AA line: 20~23 * Following comes a bevel-stroke rect and its indices: * * 4 7 * ********************************* * * ______________________________ * * * / 12 15 \ * * * / \ * * 0 * |8 16_____________________19 11 | * 3 * * | | | | * * * | | **************** | | * * * | | * 20 23 * | | * * * | | * * | | * * * | | * 21 22 * | | * * * | | **************** | | * * * | |____________________| | * * 1 * |9 17 18 10| * 2 * * \ / * * * \13 __________________________14/ * * * * * ********************************** * 5 6 */ static const uint16_t gBevelStrokeAARectIdx[] = { // Draw outer AA, from outer AA line to outer edge, shift is 0. 0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0, 1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0, 5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0, 6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0, 2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0, 3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0, 7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0, 4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0, // Draw the stroke, from outer edge to inner edge, shift is 8. 0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8, 1 + 8, 5 + 8, 9 + 8, 5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8, 6 + 8, 2 + 8, 10 + 8, 2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8, 3 + 8, 7 + 8, 11 + 8, 7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8, 4 + 8, 0 + 8, 8 + 8, // Draw the inner AA, from inner edge to inner AA line, shift is 16. 0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16, 1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16, 2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16, 3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16, }; int GrAARectRenderer::aaStrokeRectIndexCount(bool miterStroke) { return miterStroke ? SK_ARRAY_COUNT(gMiterStrokeAARectIdx) : SK_ARRAY_COUNT(gBevelStrokeAARectIdx); } GrIndexBuffer* GrAARectRenderer::aaStrokeRectIndexBuffer(GrGpu* gpu, bool miterStroke) { if (miterStroke) { if (NULL == fAAMiterStrokeRectIndexBuffer) { fAAMiterStrokeRectIndexBuffer = gpu->createIndexBuffer(sizeof(gMiterStrokeAARectIdx), false); if (NULL != fAAMiterStrokeRectIndexBuffer) { #ifdef SK_DEBUG bool updated = #endif fAAMiterStrokeRectIndexBuffer->updateData(gMiterStrokeAARectIdx, sizeof(gMiterStrokeAARectIdx)); GR_DEBUGASSERT(updated); } } return fAAMiterStrokeRectIndexBuffer; } else { if (NULL == fAABevelStrokeRectIndexBuffer) { fAABevelStrokeRectIndexBuffer = gpu->createIndexBuffer(sizeof(gBevelStrokeAARectIdx), false); if (NULL != fAABevelStrokeRectIndexBuffer) { #ifdef SK_DEBUG bool updated = #endif fAABevelStrokeRectIndexBuffer->updateData(gBevelStrokeAARectIdx, sizeof(gBevelStrokeAARectIdx)); GR_DEBUGASSERT(updated); } } return fAABevelStrokeRectIndexBuffer; } } void GrAARectRenderer::geometryFillAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix, const SkRect& devRect, bool useVertexCoverage) { GrDrawState* drawState = target->drawState(); set_aa_rect_vertex_attributes(drawState, useVertexCoverage); GrDrawTarget::AutoReleaseGeometry geo(target, 8, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaFillRectIndexBuffer(gpu); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast<intptr_t>(geo.vertices()); size_t vsize = drawState->getVertexSize(); SkASSERT(sizeof(SkPoint) + sizeof(GrColor) == vsize); SkPoint* fan0Pos = reinterpret_cast<SkPoint*>(verts); SkPoint* fan1Pos = reinterpret_cast<SkPoint*>(verts + 4 * vsize); SkScalar inset = SkMinScalar(devRect.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, devRect.height()); if (combinedMatrix.rectStaysRect()) { // Temporarily #if'ed out. We don't want to pass in the devRect but // right now it is computed in GrContext::apply_aa_to_rect and we don't // want to throw away the work #if 0 SkRect devRect; combinedMatrix.mapRect(&devRect, rect); #endif set_inset_fan(fan0Pos, vsize, devRect, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan1Pos, vsize, devRect, inset, inset); } else { // compute transformed (1, 0) and (0, 1) vectors SkVector vec[2] = { { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] }, { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] } }; vec[0].normalize(); vec[0].scale(SK_ScalarHalf); vec[1].normalize(); vec[1].scale(SK_ScalarHalf); // create the rotated rect fan0Pos->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vsize); combinedMatrix.mapPointsWithStride(fan0Pos, vsize, 4); // Now create the inset points and then outset the original // rotated points // TL *((SkPoint*)((intptr_t)fan1Pos + 0 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 0 * vsize)) + vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 0 * vsize)) -= vec[0] + vec[1]; // BL *((SkPoint*)((intptr_t)fan1Pos + 1 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 1 * vsize)) + vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 1 * vsize)) -= vec[0] - vec[1]; // BR *((SkPoint*)((intptr_t)fan1Pos + 2 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 2 * vsize)) - vec[0] - vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 2 * vsize)) += vec[0] + vec[1]; // TR *((SkPoint*)((intptr_t)fan1Pos + 3 * vsize)) = *((SkPoint*)((intptr_t)fan0Pos + 3 * vsize)) - vec[0] + vec[1]; *((SkPoint*)((intptr_t)fan0Pos + 3 * vsize)) += vec[0] - vec[1]; } verts += sizeof(SkPoint); for (int i = 0; i < 4; ++i) { *reinterpret_cast<GrColor*>(verts + i * vsize) = 0; } int scale; if (inset < SK_ScalarHalf) { scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(scale >= 0 && scale <= 255); } else { scale = 0xff; } GrColor innerColor; if (useVertexCoverage) { innerColor = GrColorPackRGBA(scale, scale, scale, scale); } else { if (0xff == scale) { innerColor = target->getDrawState().getColor(); } else { innerColor = SkAlphaMulQ(target->getDrawState().getColor(), scale); } } verts += 4 * vsize; for (int i = 0; i < 4; ++i) { *reinterpret_cast<GrColor*>(verts + i * vsize) = innerColor; } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, kVertsPerAAFillRect, kIndicesPerAAFillRect); target->resetIndexSource(); } namespace { // Rotated struct RectVertex { SkPoint fPos; SkPoint fCenter; SkPoint fDir; SkPoint fWidthHeight; }; // Rotated extern const GrVertexAttrib gAARectVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 3*sizeof(SkPoint), kEffect_GrVertexAttribBinding } }; // Axis Aligned struct AARectVertex { SkPoint fPos; SkPoint fOffset; SkPoint fWidthHeight; }; // Axis Aligned extern const GrVertexAttrib gAAAARectVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding }, }; }; void GrAARectRenderer::shaderFillAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix) { GrDrawState* drawState = target->drawState(); SkPoint center = SkPoint::Make(rect.centerX(), rect.centerY()); combinedMatrix.mapPoints(¢er, 1); // compute transformed (0, 1) vector SkVector dir = { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] }; dir.normalize(); // compute transformed (width, 0) and (0, height) vectors SkVector vec[2] = { { combinedMatrix[SkMatrix::kMScaleX], combinedMatrix[SkMatrix::kMSkewY] }, { combinedMatrix[SkMatrix::kMSkewX], combinedMatrix[SkMatrix::kMScaleY] } }; SkScalar newWidth = SkScalarHalf(rect.width() * vec[0].length()) + SK_ScalarHalf; SkScalar newHeight = SkScalarHalf(rect.height() * vec[1].length()) + SK_ScalarHalf; drawState->setVertexAttribs<gAARectVertexAttribs>(SK_ARRAY_COUNT(gAARectVertexAttribs)); SkASSERT(sizeof(RectVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } RectVertex* verts = reinterpret_cast<RectVertex*>(geo.vertices()); GrEffectRef* effect = GrRectEffect::Create(); static const int kRectAttrIndex = 1; static const int kWidthIndex = 2; drawState->addCoverageEffect(effect, kRectAttrIndex, kWidthIndex)->unref(); for (int i = 0; i < 4; ++i) { verts[i].fCenter = center; verts[i].fDir = dir; verts[i].fWidthHeight.fX = newWidth; verts[i].fWidthHeight.fY = newHeight; } SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkRect devBounds = { devRect.fLeft - SK_ScalarHalf, devRect.fTop - SK_ScalarHalf, devRect.fRight + SK_ScalarHalf, devRect.fBottom + SK_ScalarHalf }; verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop); verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom); verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom); verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop); target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer()); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6); target->resetIndexSource(); } void GrAARectRenderer::shaderFillAlignedAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix) { GrDrawState* drawState = target->drawState(); SkASSERT(combinedMatrix.rectStaysRect()); drawState->setVertexAttribs<gAAAARectVertexAttribs>(SK_ARRAY_COUNT(gAAAARectVertexAttribs)); SkASSERT(sizeof(AARectVertex) == drawState->getVertexSize()); GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } AARectVertex* verts = reinterpret_cast<AARectVertex*>(geo.vertices()); GrEffectRef* effect = GrAlignedRectEffect::Create(); static const int kOffsetIndex = 1; drawState->addCoverageEffect(effect, kOffsetIndex)->unref(); SkRect devRect; combinedMatrix.mapRect(&devRect, rect); SkRect devBounds = { devRect.fLeft - SK_ScalarHalf, devRect.fTop - SK_ScalarHalf, devRect.fRight + SK_ScalarHalf, devRect.fBottom + SK_ScalarHalf }; SkPoint widthHeight = { SkScalarHalf(devRect.width()) + SK_ScalarHalf, SkScalarHalf(devRect.height()) + SK_ScalarHalf }; verts[0].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fTop); verts[0].fOffset = SkPoint::Make(-widthHeight.fX, -widthHeight.fY); verts[0].fWidthHeight = widthHeight; verts[1].fPos = SkPoint::Make(devBounds.fLeft, devBounds.fBottom); verts[1].fOffset = SkPoint::Make(-widthHeight.fX, widthHeight.fY); verts[1].fWidthHeight = widthHeight; verts[2].fPos = SkPoint::Make(devBounds.fRight, devBounds.fBottom); verts[2].fOffset = widthHeight; verts[2].fWidthHeight = widthHeight; verts[3].fPos = SkPoint::Make(devBounds.fRight, devBounds.fTop); verts[3].fOffset = SkPoint::Make(widthHeight.fX, -widthHeight.fY); verts[3].fWidthHeight = widthHeight; target->setIndexSourceToBuffer(gpu->getContext()->getQuadIndexBuffer()); target->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6); target->resetIndexSource(); } void GrAARectRenderer::strokeAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& rect, const SkMatrix& combinedMatrix, const SkRect& devRect, const SkStrokeRec& stroke, bool useVertexCoverage) { SkVector devStrokeSize; SkScalar width = stroke.getWidth(); if (width > 0) { devStrokeSize.set(width, width); combinedMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); // Temporarily #if'ed out. We don't want to pass in the devRect but // right now it is computed in GrContext::apply_aa_to_rect and we don't // want to throw away the work #if 0 SkRect devRect; combinedMatrix.mapRect(&devRect, rect); #endif SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } SkRect devOutside(devRect); devOutside.outset(rx, ry); bool miterStroke = true; // small miter limit means right angles show bevel... if (stroke.getJoin() != SkPaint::kMiter_Join || stroke.getMiter() < SK_ScalarSqrt2) { miterStroke = false; } if (spare <= 0 && miterStroke) { this->fillAARect(gpu, target, devOutside, SkMatrix::I(), devOutside, useVertexCoverage); return; } SkRect devInside(devRect); devInside.inset(rx, ry); SkRect devOutsideAssist(devRect); // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outer of the rect. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside.inset(0, ry); devOutsideAssist.outset(0, ry); } this->geometryStrokeAARect(gpu, target, devOutside, devOutsideAssist, devInside, useVertexCoverage, miterStroke); } void GrAARectRenderer::geometryStrokeAARect(GrGpu* gpu, GrDrawTarget* target, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool useVertexCoverage, bool miterStroke) { GrDrawState* drawState = target->drawState(); set_aa_rect_vertex_attributes(drawState, useVertexCoverage); int innerVertexNum = 4; int outerVertexNum = miterStroke ? 4 : 8; int totalVertexNum = (outerVertexNum + innerVertexNum) * 2; GrDrawTarget::AutoReleaseGeometry geo(target, totalVertexNum, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } GrIndexBuffer* indexBuffer = this->aaStrokeRectIndexBuffer(gpu, miterStroke); if (NULL == indexBuffer) { GrPrintf("Failed to create index buffer!\n"); return; } intptr_t verts = reinterpret_cast<intptr_t>(geo.vertices()); size_t vsize = drawState->getVertexSize(); SkASSERT(sizeof(SkPoint) + sizeof(GrColor) == vsize); // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following pointers refer to the four rects, from outermost to innermost. SkPoint* fan0Pos = reinterpret_cast<SkPoint*>(verts); SkPoint* fan1Pos = reinterpret_cast<SkPoint*>(verts + outerVertexNum * vsize); SkPoint* fan2Pos = reinterpret_cast<SkPoint*>(verts + 2 * outerVertexNum * vsize); SkPoint* fan3Pos = reinterpret_cast<SkPoint*>(verts + (2 * outerVertexNum + innerVertexNum) * vsize); #ifndef SK_IGNORE_THIN_STROKED_RECT_FIX // TODO: this only really works if the X & Y margins are the same all around // the rect SkScalar inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight); inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft); inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop); if (miterStroke) { inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom); } else { inset = SK_ScalarHalf * SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom); } SkASSERT(inset >= 0); #else SkScalar inset = SK_ScalarHalf; #endif if (miterStroke) { // outermost set_inset_fan(fan0Pos, vsize, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); // inner two set_inset_fan(fan1Pos, vsize, devOutside, inset, inset); set_inset_fan(fan2Pos, vsize, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vsize, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { SkPoint* fan0AssistPos = reinterpret_cast<SkPoint*>(verts + 4 * vsize); SkPoint* fan1AssistPos = reinterpret_cast<SkPoint*>(verts + (outerVertexNum + 4) * vsize); // outermost set_inset_fan(fan0Pos, vsize, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan0AssistPos, vsize, devOutsideAssist, -SK_ScalarHalf, -SK_ScalarHalf); // outer one of the inner two set_inset_fan(fan1Pos, vsize, devOutside, inset, inset); set_inset_fan(fan1AssistPos, vsize, devOutsideAssist, inset, inset); // inner one of the inner two set_inset_fan(fan2Pos, vsize, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vsize, devInside, SK_ScalarHalf, SK_ScalarHalf); } // The outermost rect has 0 coverage verts += sizeof(SkPoint); for (int i = 0; i < outerVertexNum; ++i) { *reinterpret_cast<GrColor*>(verts + i * vsize) = 0; } int scale; if (inset < SK_ScalarHalf) { scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(scale >= 0 && scale <= 255); } else { scale = 0xff; } // The inner two rects have full coverage GrColor innerColor; if (useVertexCoverage) { innerColor = GrColorPackRGBA(scale, scale, scale, scale); } else { if (0xff == scale) { innerColor = target->getDrawState().getColor(); } else { innerColor = SkAlphaMulQ(target->getDrawState().getColor(), scale); } } verts += outerVertexNum * vsize; for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) { *reinterpret_cast<GrColor*>(verts + i * vsize) = innerColor; } // The innermost rect has 0 coverage verts += (outerVertexNum + innerVertexNum) * vsize; for (int i = 0; i < innerVertexNum; ++i) { *reinterpret_cast<GrColor*>(verts + i * vsize) = 0; } target->setIndexSourceToBuffer(indexBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, totalVertexNum, aaStrokeRectIndexCount(miterStroke)); } void GrAARectRenderer::fillAANestedRects(GrGpu* gpu, GrDrawTarget* target, const SkRect rects[2], const SkMatrix& combinedMatrix, bool useVertexCoverage) { SkASSERT(combinedMatrix.rectStaysRect()); SkASSERT(!rects[1].isEmpty()); SkRect devOutside, devOutsideAssist, devInside; combinedMatrix.mapRect(&devOutside, rects[0]); // can't call mapRect for devInside since it calls sort combinedMatrix.mapPoints((SkPoint*)&devInside, (const SkPoint*)&rects[1], 2); if (devInside.isEmpty()) { this->fillAARect(gpu, target, devOutside, SkMatrix::I(), devOutside, useVertexCoverage); return; } this->geometryStrokeAARect(gpu, target, devOutside, devOutsideAssist, devInside, useVertexCoverage, true); }