/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This test only works with the GPU backend. #include "gm.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrPathUtils.h" #include "GrTest.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkGeometry.h" #include "effects/GrBezierEffect.h" // Position & KLM line eq values. These are the vertex attributes for Bezier curves. The last value // of the Vec4f is ignored. namespace { extern const GrVertexAttrib kAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding} }; } static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) { return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]); } namespace skiagm { /** * This GM directly exercises effects that draw Bezier curves in the GPU backend. */ class BezierCubicEffects : public GM { public: BezierCubicEffects() { this->setBGColor(0xFFFFFFFF); } protected: virtual SkString onShortName() SK_OVERRIDE { return SkString("bezier_cubic_effects"); } virtual SkISize onISize() SK_OVERRIDE { return SkISize::Make(800, 800); } virtual uint32_t onGetFlags() const SK_OVERRIDE { // This is a GPU-specific GM. return kGPUOnly_Flag; } virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); if (NULL == rt) { return; } GrContext* context = rt->getContext(); if (NULL == context) { return; } struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; static const int kNumCubics = 15; SkRandom rand; // Mult by 3 for each edge effect type int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols); SkScalar w = SkIntToScalar(rt->width()) / numCols; SkScalar h = SkIntToScalar(rt->height()) / numRows; int row = 0; int col = 0; for (int i = 0; i < kNumCubics; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; for(int edgeType = 0; edgeType < kGrEffectEdgeTypeCnt; ++edgeType) { SkAutoTUnref<GrEffectRef> effect; { // scope to contain GrTestTarget GrTestTarget tt; context->getTestTarget(&tt); if (NULL == tt.target()) { continue; } GrEffectEdgeType et = (GrEffectEdgeType)edgeType; effect.reset(GrCubicEffect::Create(et, *tt.target()->caps())); if (!effect) { continue; } } SkScalar x = SkScalarMul(col, w); SkScalar y = SkScalarMul(row, h); SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY}, {x + baseControlPts[3].fX, y + baseControlPts[3].fY} }; SkPoint chopped[10]; SkScalar klmEqs[9]; SkScalar klmSigns[3]; int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts, chopped, klmEqs, klmSigns); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 4; ++i) { canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = chopped + 3 * c; for (int i = 0; i < 4; ++i) { canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); } SkRect bounds; bounds.set(pts, 4); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); Vertex verts[4]; verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, sizeof(Vertex)); for (int v = 0; v < 4; ++v) { verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, klmSigns[c]); verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, klmSigns[c]); verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f); } GrTestTarget tt; context->getTestTarget(&tt); SkASSERT(NULL != tt.target()); GrDrawState* drawState = tt.target()->drawState(); drawState->setVertexAttribs<kAttribs>(2); drawState->addCoverageEffect(effect, 1); drawState->setRenderTarget(rt); drawState->setColor(0xff000000); tt.target()->setVertexSourceToArray(verts, 4); tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer()); tt.target()->drawIndexed(kTriangleFan_GrPrimitiveType, 0, 0, 4, 6); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// /** * This GM directly exercises effects that draw Bezier curves in the GPU backend. */ class BezierConicEffects : public GM { public: BezierConicEffects() { this->setBGColor(0xFFFFFFFF); } protected: virtual SkString onShortName() SK_OVERRIDE { return SkString("bezier_conic_effects"); } virtual SkISize onISize() SK_OVERRIDE { return SkISize::Make(800, 800); } virtual uint32_t onGetFlags() const SK_OVERRIDE { // This is a GPU-specific GM. return kGPUOnly_Flag; } virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); if (NULL == rt) { return; } GrContext* context = rt->getContext(); if (NULL == context) { return; } struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; static const int kNumConics = 10; SkRandom rand; // Mult by 3 for each edge effect type int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols); SkScalar w = SkIntToScalar(rt->width()) / numCols; SkScalar h = SkIntToScalar(rt->height()) / numRows; int row = 0; int col = 0; for (int i = 0; i < kNumConics; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; SkScalar weight = rand.nextRangeF(0.f, 2.f); for(int edgeType = 0; edgeType < kGrEffectEdgeTypeCnt; ++edgeType) { SkAutoTUnref<GrEffectRef> effect; { // scope to contain GrTestTarget GrTestTarget tt; context->getTestTarget(&tt); if (NULL == tt.target()) { continue; } GrEffectEdgeType et = (GrEffectEdgeType)edgeType; effect.reset(GrConicEffect::Create(et, *tt.target()->caps())); if (!effect) { continue; } } SkScalar x = SkScalarMul(col, w); SkScalar y = SkScalarMul(row, h); SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY} }; SkConic dst[4]; SkScalar klmEqs[9]; int cnt = chop_conic(controlPts, dst, weight); GrPathUtils::getConicKLM(controlPts, weight, klmEqs); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 3; ++i) { canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = dst[c].fPts; for (int i = 0; i < 3; ++i) { canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); } SkRect bounds; //SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}}; //bounds.set(bPts, 2); bounds.set(pts, 3); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); Vertex verts[4]; verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, sizeof(Vertex)); for (int v = 0; v < 4; ++v) { verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, 1.f); verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, 1.f); verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f); } GrTestTarget tt; context->getTestTarget(&tt); SkASSERT(NULL != tt.target()); GrDrawState* drawState = tt.target()->drawState(); drawState->setVertexAttribs<kAttribs>(2); drawState->addCoverageEffect(effect, 1); drawState->setRenderTarget(rt); drawState->setColor(0xff000000); tt.target()->setVertexSourceToArray(verts, 4); tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer()); tt.target()->drawIndexed(kTriangleFan_GrPrimitiveType, 0, 0, 4, 6); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: // Uses the max curvature function for quads to estimate // where to chop the conic. If the max curvature is not // found along the curve segment it will return 1 and // dst[0] is the original conic. If it returns 2 the dst[0] // and dst[1] are the two new conics. int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { SkScalar t = SkFindQuadMaxCurvature(src); if (t == 0) { if (dst) { dst[0].set(src, weight); } return 1; } else { if (dst) { SkConic conic; conic.set(src, weight); conic.chopAt(t, dst); } return 2; } } // Calls split_conic on the entire conic and then once more on each subsection. // Most cases will result in either 1 conic (chop point is not within t range) // or 3 points (split once and then one subsection is split again). int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { SkConic dstTemp[2]; int conicCnt = split_conic(src, dstTemp, weight); if (2 == conicCnt) { int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); } else { dst[0] = dstTemp[0]; } return conicCnt; } typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// /** * This GM directly exercises effects that draw Bezier quad curves in the GPU backend. */ class BezierQuadEffects : public GM { public: BezierQuadEffects() { this->setBGColor(0xFFFFFFFF); } protected: virtual SkString onShortName() SK_OVERRIDE { return SkString("bezier_quad_effects"); } virtual SkISize onISize() SK_OVERRIDE { return SkISize::Make(800, 800); } virtual uint32_t onGetFlags() const SK_OVERRIDE { // This is a GPU-specific GM. return kGPUOnly_Flag; } virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); if (NULL == rt) { return; } GrContext* context = rt->getContext(); if (NULL == context) { return; } struct Vertex { SkPoint fPosition; float fUV[4]; // The last two values are ignored. The effect expects a vec4f. }; static const int kNumQuads = 5; SkRandom rand; int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols); SkScalar w = SkIntToScalar(rt->width()) / numCols; SkScalar h = SkIntToScalar(rt->height()) / numRows; int row = 0; int col = 0; for (int i = 0; i < kNumQuads; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; for(int edgeType = 0; edgeType < kGrEffectEdgeTypeCnt; ++edgeType) { SkAutoTUnref<GrEffectRef> effect; { // scope to contain GrTestTarget GrTestTarget tt; context->getTestTarget(&tt); if (NULL == tt.target()) { continue; } GrEffectEdgeType et = (GrEffectEdgeType)edgeType; effect.reset(GrQuadEffect::Create(et, *tt.target()->caps())); if (!effect) { continue; } } SkScalar x = SkScalarMul(col, w); SkScalar y = SkScalarMul(row, h); SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY} }; SkPoint chopped[5]; int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 3; ++i) { canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = chopped + 2 * c; for (int i = 0; i < 3; ++i) { canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); } SkRect bounds; bounds.set(pts, 3); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); Vertex verts[4]; verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, sizeof(Vertex)); GrPathUtils::QuadUVMatrix DevToUV(pts); DevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts); GrTestTarget tt; context->getTestTarget(&tt); SkASSERT(NULL != tt.target()); GrDrawState* drawState = tt.target()->drawState(); drawState->setVertexAttribs<kAttribs>(2); drawState->addCoverageEffect(effect, 1); drawState->setRenderTarget(rt); drawState->setColor(0xff000000); tt.target()->setVertexSourceToArray(verts, 4); tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer()); tt.target()->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 4, 6); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: typedef GM INHERITED; }; DEF_GM( return SkNEW(BezierCubicEffects); ) DEF_GM( return SkNEW(BezierConicEffects); ) DEF_GM( return SkNEW(BezierQuadEffects); ) } #endif