// Copyright 2007 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* * A simple mutex wrapper, supporting locks and read-write locks. * You should assume the locks are *not* re-entrant. */ #ifndef RE2_UTIL_MUTEX_H_ #define RE2_UTIL_MUTEX_H_ namespace re2 { #ifndef WIN32 #define HAVE_PTHREAD 1 #define HAVE_RWLOCK 1 #endif #if defined(NO_THREADS) typedef int MutexType; // to keep a lock-count #elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK) // Needed for pthread_rwlock_*. If it causes problems, you could take it // out, but then you'd have to unset HAVE_RWLOCK (at least on linux -- it // *does* cause problems for FreeBSD, or MacOSX, but isn't needed // for locking there.) # ifdef __linux__ # undef _XOPEN_SOURCE # define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls # endif # include <pthread.h> typedef pthread_rwlock_t MutexType; #elif defined(HAVE_PTHREAD) # include <pthread.h> typedef pthread_mutex_t MutexType; #elif defined(WIN32) # ifndef WIN32_LEAN_AND_MEAN # define WIN32_LEAN_AND_MEAN // We only need minimal includes # endif # ifdef GMUTEX_TRYLOCK // We need Windows NT or later for TryEnterCriticalSection(). If you // don't need that functionality, you can remove these _WIN32_WINNT // lines, and change TryLock() to assert(0) or something. # ifndef _WIN32_WINNT # define _WIN32_WINNT 0x0400 # endif # endif # include <windows.h> typedef CRITICAL_SECTION MutexType; #else # error Need to implement mutex.h for your architecture, or #define NO_THREADS #endif class Mutex { public: // Create a Mutex that is not held by anybody. inline Mutex(); // Destructor inline ~Mutex(); inline void Lock(); // Block if needed until free then acquire exclusively inline void Unlock(); // Release a lock acquired via Lock() inline bool TryLock(); // If free, Lock() and return true, else return false // Note that on systems that don't support read-write locks, these may // be implemented as synonyms to Lock() and Unlock(). So you can use // these for efficiency, but don't use them anyplace where being able // to do shared reads is necessary to avoid deadlock. inline void ReaderLock(); // Block until free or shared then acquire a share inline void ReaderUnlock(); // Release a read share of this Mutex inline void WriterLock() { Lock(); } // Acquire an exclusive lock inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock() inline void AssertHeld() { } private: MutexType mutex_; // Catch the error of writing Mutex when intending MutexLock. Mutex(Mutex *ignored); // Disallow "evil" constructors Mutex(const Mutex&); void operator=(const Mutex&); }; // Now the implementation of Mutex for various systems #if defined(NO_THREADS) // When we don't have threads, we can be either reading or writing, // but not both. We can have lots of readers at once (in no-threads // mode, that's most likely to happen in recursive function calls), // but only one writer. We represent this by having mutex_ be -1 when // writing and a number > 0 when reading (and 0 when no lock is held). // // In debug mode, we assert these invariants, while in non-debug mode // we do nothing, for efficiency. That's why everything is in an // assert. #include <assert.h> Mutex::Mutex() : mutex_(0) { } Mutex::~Mutex() { assert(mutex_ == 0); } void Mutex::Lock() { assert(--mutex_ == -1); } void Mutex::Unlock() { assert(mutex_++ == -1); } bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; } void Mutex::ReaderLock() { assert(++mutex_ > 0); } void Mutex::ReaderUnlock() { assert(mutex_-- > 0); } #elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK) #include <stdlib.h> // for abort() #define SAFE_PTHREAD(fncall) do { if ((fncall) != 0) abort(); } while (0) Mutex::Mutex() { SAFE_PTHREAD(pthread_rwlock_init(&mutex_, NULL)); } Mutex::~Mutex() { SAFE_PTHREAD(pthread_rwlock_destroy(&mutex_)); } void Mutex::Lock() { SAFE_PTHREAD(pthread_rwlock_wrlock(&mutex_)); } void Mutex::Unlock() { SAFE_PTHREAD(pthread_rwlock_unlock(&mutex_)); } bool Mutex::TryLock() { return pthread_rwlock_trywrlock(&mutex_) == 0; } void Mutex::ReaderLock() { SAFE_PTHREAD(pthread_rwlock_rdlock(&mutex_)); } void Mutex::ReaderUnlock() { SAFE_PTHREAD(pthread_rwlock_unlock(&mutex_)); } #undef SAFE_PTHREAD #elif defined(HAVE_PTHREAD) #include <stdlib.h> // for abort() #define SAFE_PTHREAD(fncall) do { if ((fncall) != 0) abort(); } while (0) Mutex::Mutex() { SAFE_PTHREAD(pthread_mutex_init(&mutex_, NULL)); } Mutex::~Mutex() { SAFE_PTHREAD(pthread_mutex_destroy(&mutex_)); } void Mutex::Lock() { SAFE_PTHREAD(pthread_mutex_lock(&mutex_)); } void Mutex::Unlock() { SAFE_PTHREAD(pthread_mutex_unlock(&mutex_)); } bool Mutex::TryLock() { return pthread_mutex_trylock(&mutex_) == 0; } void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks void Mutex::ReaderUnlock() { Unlock(); } #undef SAFE_PTHREAD #elif defined(WIN32) Mutex::Mutex() { InitializeCriticalSection(&mutex_); } Mutex::~Mutex() { DeleteCriticalSection(&mutex_); } void Mutex::Lock() { EnterCriticalSection(&mutex_); } void Mutex::Unlock() { LeaveCriticalSection(&mutex_); } bool Mutex::TryLock() { return TryEnterCriticalSection(&mutex_) != 0; } void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks void Mutex::ReaderUnlock() { Unlock(); } #endif // -------------------------------------------------------------------------- // Some helper classes // MutexLock(mu) acquires mu when constructed and releases it when destroyed. class MutexLock { public: explicit MutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); } ~MutexLock() { mu_->Unlock(); } private: Mutex * const mu_; // Disallow "evil" constructors MutexLock(const MutexLock&); void operator=(const MutexLock&); }; // ReaderMutexLock and WriterMutexLock do the same, for rwlocks class ReaderMutexLock { public: explicit ReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); } ~ReaderMutexLock() { mu_->ReaderUnlock(); } private: Mutex * const mu_; // Disallow "evil" constructors ReaderMutexLock(const ReaderMutexLock&); void operator=(const ReaderMutexLock&); }; class WriterMutexLock { public: explicit WriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); } ~WriterMutexLock() { mu_->WriterUnlock(); } private: Mutex * const mu_; // Disallow "evil" constructors WriterMutexLock(const WriterMutexLock&); void operator=(const WriterMutexLock&); }; // Catch bug where variable name is omitted, e.g. MutexLock (&mu); #define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_decl_missing_var_name) #define ReaderMutexLock(x) COMPILE_ASSERT(0, rmutex_lock_decl_missing_var_name) #define WriterMutexLock(x) COMPILE_ASSERT(0, wmutex_lock_decl_missing_var_name) // Provide safe way to declare and use global, linker-initialized mutex. Sigh. #ifdef HAVE_PTHREAD #define GLOBAL_MUTEX(name) \ static pthread_mutex_t (name) = PTHREAD_MUTEX_INITIALIZER #define GLOBAL_MUTEX_LOCK(name) \ pthread_mutex_lock(&(name)) #define GLOBAL_MUTEX_UNLOCK(name) \ pthread_mutex_unlock(&(name)) #else #define GLOBAL_MUTEX(name) \ static Mutex name #define GLOBAL_MUTEX_LOCK(name) \ name.Lock() #define GLOBAL_MUTEX_UNLOCK(name) \ name.Unlock() #endif } // namespace re2 #endif /* #define RE2_UTIL_MUTEX_H_ */