// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_SCOPED_PTR_H__ #define BASE_SCOPED_PTR_H__ // This is an implementation designed to match the anticipated future TR2 // implementation of the scoped_ptr class, and its closely-related brethren, // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. // // See http://wiki/Main/ScopedPointerInterface for the spec that drove this // file. #include <assert.h> #include <stdlib.h> #include <cstddef> #ifdef OS_EMBEDDED_QNX // NOTE(akirmse): // The C++ standard says that <stdlib.h> declares both ::foo and std::foo // But this isn't done in QNX version 6.3.2 200709062316. using std::free; using std::malloc; using std::realloc; #endif template <class C> class scoped_ptr; template <class C, class Free> class scoped_ptr_malloc; template <class C> class scoped_array; template <class C> scoped_ptr<C> make_scoped_ptr(C *); // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> // automatically deletes the pointer it holds (if any). // That is, scoped_ptr<T> owns the T object that it points to. // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. // Also like T*, scoped_ptr<T> is thread-compatible, and once you // dereference it, you get the threadsafety guarantees of T. // // The size of a scoped_ptr is small: // sizeof(scoped_ptr<C>) == sizeof(C*) template <class C> class scoped_ptr { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with new. explicit scoped_ptr(C* p = NULL) : ptr_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_ptr() { enum { type_must_be_complete = sizeof(C) }; delete ptr_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != ptr_) { enum { type_must_be_complete = sizeof(C) }; delete ptr_; ptr_ = p; } } // Accessors to get the owned object. // operator* and operator-> will assert() if there is no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether a scoped_ptr and a raw pointer refer to // the same object, not just to two different but equal objects. bool operator==(const C* p) const { return ptr_ == p; } bool operator!=(const C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr& p2) { C* tmp = ptr_; ptr_ = p2.ptr_; p2.ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = ptr_; ptr_ = NULL; return retVal; } private: C* ptr_; // google3 friend class that can access copy ctor (although if it actually // calls a copy ctor, there will be a problem) see below friend scoped_ptr<C> make_scoped_ptr<C>(C *p); // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't // make sense, and if C2 == C, it still doesn't make sense because you should // never have the same object owned by two different scoped_ptrs. template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; // Disallow evil constructors scoped_ptr(const scoped_ptr&); void operator=(const scoped_ptr&); }; // Free functions template <class C> inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { p1.swap(p2); } template <class C> inline bool operator==(const C* p1, const scoped_ptr<C>& p2) { return p1 == p2.get(); } template <class C> inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) { return p1 == p2.get(); } template <class C> inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) { return p1 != p2.get(); } template <class C> inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) { return p1 != p2.get(); } template <class C> scoped_ptr<C> make_scoped_ptr(C *p) { // This does nothing but to return a scoped_ptr of the type that the passed // pointer is of. (This eliminates the need to specify the name of T when // making a scoped_ptr that is used anonymously/temporarily.) From an // access control point of view, we construct an unnamed scoped_ptr here // which we return and thus copy-construct. Hence, we need to have access // to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed // that we never actually call the copy constructor, which is a good thing // as we would call the temporary's object destructor (and thus delete p) // if we actually did copy some object, here. return scoped_ptr<C>(p); } // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate // with new [] and the destructor deletes objects with delete []. // // As with scoped_ptr<C>, a scoped_array<C> either points to an object // or is NULL. A scoped_array<C> owns the object that it points to. // scoped_array<T> is thread-compatible, and once you index into it, // the returned objects have only the threadsafety guarantees of T. // // Size: sizeof(scoped_array<C>) == sizeof(C*) template <class C> class scoped_array { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_array. // The input parameter must be allocated with new []. explicit scoped_array(C* p = NULL) : array_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_array() { enum { type_must_be_complete = sizeof(C) }; delete[] array_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != array_) { enum { type_must_be_complete = sizeof(C) }; delete[] array_; array_ = p; } } // Get one element of the current object. // Will assert() if there is no current object, or index i is negative. C& operator[](std::ptrdiff_t i) const { assert(i >= 0); assert(array_ != NULL); return array_[i]; } // Get a pointer to the zeroth element of the current object. // If there is no current object, return NULL. C* get() const { return array_; } // Comparison operators. // These return whether a scoped_array and a raw pointer refer to // the same array, not just to two different but equal arrays. bool operator==(const C* p) const { return array_ == p; } bool operator!=(const C* p) const { return array_ != p; } // Swap two scoped arrays. void swap(scoped_array& p2) { C* tmp = array_; array_ = p2.array_; p2.array_ = tmp; } // Release an array. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = array_; array_ = NULL; return retVal; } private: C* array_; // Forbid comparison of different scoped_array types. template <class C2> bool operator==(scoped_array<C2> const& p2) const; template <class C2> bool operator!=(scoped_array<C2> const& p2) const; // Disallow evil constructors scoped_array(const scoped_array&); void operator=(const scoped_array&); }; // Free functions template <class C> inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) { p1.swap(p2); } template <class C> inline bool operator==(const C* p1, const scoped_array<C>& p2) { return p1 == p2.get(); } template <class C> inline bool operator==(const C* p1, const scoped_array<const C>& p2) { return p1 == p2.get(); } template <class C> inline bool operator!=(const C* p1, const scoped_array<C>& p2) { return p1 != p2.get(); } template <class C> inline bool operator!=(const C* p1, const scoped_array<const C>& p2) { return p1 != p2.get(); } // This class wraps the c library function free() in a class that can be // passed as a template argument to scoped_ptr_malloc below. class ScopedPtrMallocFree { public: inline void operator()(void* x) const { free(x); } }; // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a // second template argument, the functor used to free the object. template<class C, class FreeProc = ScopedPtrMallocFree> class scoped_ptr_malloc { public: // The element type typedef C element_type; // Construction with no arguments sets ptr_ to NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with an allocator that matches the // Free functor. For the default Free functor, this is malloc, calloc, or // realloc. explicit scoped_ptr_malloc(): ptr_(NULL) { } // Construct with a C*, and provides an error with a D*. template<class must_be_C> explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { } // Construct with a void*, such as you get from malloc. explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { } // Destructor. If there is a C object, call the Free functor. ~scoped_ptr_malloc() { free_(ptr_); } // Reset. Calls the Free functor on the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (ptr_ != p) { free_(ptr_); ptr_ = p; } } // Reallocates the existing pointer, and returns 'true' if // the reallcation is succesfull. If the reallocation failed, then // the pointer remains in its previous state. // // Note: this calls realloc() directly, even if an alternate 'free' // functor is provided in the template instantiation. bool try_realloc(size_t new_size) { C* new_ptr = static_cast<C*>(realloc(ptr_, new_size)); if (new_ptr == NULL) { return false; } ptr_ = new_ptr; return true; } // Get the current object. // operator* and operator-> will cause an assert() failure if there is // no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether a scoped_ptr_malloc and a plain pointer refer // to the same object, not just to two different but equal objects. // For compatibility with the boost-derived implementation, these // take non-const arguments. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr_malloc & b) { C* tmp = b.ptr_; b.ptr_ = ptr_; ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* tmp = ptr_; ptr_ = NULL; return tmp; } private: C* ptr_; // no reason to use these: each scoped_ptr_malloc should have its own object template <class C2, class GP> bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; template <class C2, class GP> bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; static FreeProc const free_; // Disallow evil constructors scoped_ptr_malloc(const scoped_ptr_malloc&); void operator=(const scoped_ptr_malloc&); }; template<class C, class FP> FP const scoped_ptr_malloc<C, FP>::free_ = FP(); template<class C, class FP> inline void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { a.swap(b); } template<class C, class FP> inline bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { return p == b.get(); } template<class C, class FP> inline bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { return p != b.get(); } #endif // BASE_SCOPED_PTR_H__