#include "precompiled.h" // // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Context.cpp: Implements the gl::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "libGLESv2/Context.h" #include "libGLESv2/main.h" #include "common/utilities.h" #include "libGLESv2/formatutils.h" #include "libGLESv2/Buffer.h" #include "libGLESv2/Fence.h" #include "libGLESv2/Framebuffer.h" #include "libGLESv2/Renderbuffer.h" #include "libGLESv2/Program.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/Query.h" #include "libGLESv2/Texture.h" #include "libGLESv2/ResourceManager.h" #include "libGLESv2/renderer/IndexDataManager.h" #include "libGLESv2/renderer/RenderTarget.h" #include "libGLESv2/renderer/Renderer.h" #include "libGLESv2/VertexArray.h" #include "libGLESv2/Sampler.h" #include "libGLESv2/validationES.h" #include "libGLESv2/TransformFeedback.h" #include "libEGL/Surface.h" #undef near #undef far namespace gl { static const char* makeStaticString(const std::string& str) { static std::set<std::string> strings; std::set<std::string>::iterator it = strings.find(str); if (it != strings.end()) return it->c_str(); return strings.insert(str).first->c_str(); } Context::Context(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) : mRenderer(renderer) { ASSERT(robustAccess == false); // Unimplemented mFenceNVHandleAllocator.setBaseHandle(0); setClearColor(0.0f, 0.0f, 0.0f, 0.0f); mClientVersion = clientVersion; mState.depthClearValue = 1.0f; mState.stencilClearValue = 0; mState.rasterizer.rasterizerDiscard = false; mState.rasterizer.cullFace = false; mState.rasterizer.cullMode = GL_BACK; mState.rasterizer.frontFace = GL_CCW; mState.rasterizer.polygonOffsetFill = false; mState.rasterizer.polygonOffsetFactor = 0.0f; mState.rasterizer.polygonOffsetUnits = 0.0f; mState.rasterizer.pointDrawMode = false; mState.rasterizer.multiSample = false; mState.scissorTest = false; mState.scissor.x = 0; mState.scissor.y = 0; mState.scissor.width = 0; mState.scissor.height = 0; mState.blend.blend = false; mState.blend.sourceBlendRGB = GL_ONE; mState.blend.sourceBlendAlpha = GL_ONE; mState.blend.destBlendRGB = GL_ZERO; mState.blend.destBlendAlpha = GL_ZERO; mState.blend.blendEquationRGB = GL_FUNC_ADD; mState.blend.blendEquationAlpha = GL_FUNC_ADD; mState.blend.sampleAlphaToCoverage = false; mState.blend.dither = true; mState.blendColor.red = 0; mState.blendColor.green = 0; mState.blendColor.blue = 0; mState.blendColor.alpha = 0; mState.depthStencil.depthTest = false; mState.depthStencil.depthFunc = GL_LESS; mState.depthStencil.depthMask = true; mState.depthStencil.stencilTest = false; mState.depthStencil.stencilFunc = GL_ALWAYS; mState.depthStencil.stencilMask = -1; mState.depthStencil.stencilWritemask = -1; mState.depthStencil.stencilBackFunc = GL_ALWAYS; mState.depthStencil.stencilBackMask = - 1; mState.depthStencil.stencilBackWritemask = -1; mState.depthStencil.stencilFail = GL_KEEP; mState.depthStencil.stencilPassDepthFail = GL_KEEP; mState.depthStencil.stencilPassDepthPass = GL_KEEP; mState.depthStencil.stencilBackFail = GL_KEEP; mState.depthStencil.stencilBackPassDepthFail = GL_KEEP; mState.depthStencil.stencilBackPassDepthPass = GL_KEEP; mState.stencilRef = 0; mState.stencilBackRef = 0; mState.sampleCoverage = false; mState.sampleCoverageValue = 1.0f; mState.sampleCoverageInvert = false; mState.generateMipmapHint = GL_DONT_CARE; mState.fragmentShaderDerivativeHint = GL_DONT_CARE; mState.lineWidth = 1.0f; mState.viewport.x = 0; mState.viewport.y = 0; mState.viewport.width = 0; mState.viewport.height = 0; mState.zNear = 0.0f; mState.zFar = 1.0f; mState.blend.colorMaskRed = true; mState.blend.colorMaskGreen = true; mState.blend.colorMaskBlue = true; mState.blend.colorMaskAlpha = true; const GLfloat defaultFloatValues[] = { 0.0f, 0.0f, 0.0f, 1.0f }; for (int attribIndex = 0; attribIndex < MAX_VERTEX_ATTRIBS; attribIndex++) { mState.vertexAttribCurrentValues[attribIndex].setFloatValues(defaultFloatValues); } if (shareContext != NULL) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(mRenderer); } // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. mTexture2DZero.set(new Texture2D(mRenderer, 0)); mTextureCubeMapZero.set(new TextureCubeMap(mRenderer, 0)); mTexture3DZero.set(new Texture3D(mRenderer, 0)); mTexture2DArrayZero.set(new Texture2DArray(mRenderer, 0)); for (unsigned int textureUnit = 0; textureUnit < ArraySize(mState.samplers); textureUnit++) { mState.samplers[textureUnit] = 0; } mState.activeSampler = 0; bindVertexArray(0); bindArrayBuffer(0); bindElementArrayBuffer(0); bindTextureCubeMap(0); bindTexture2D(0); bindReadFramebuffer(0); bindDrawFramebuffer(0); bindRenderbuffer(0); mState.activeQueries[GL_ANY_SAMPLES_PASSED].set(NULL); mState.activeQueries[GL_ANY_SAMPLES_PASSED_CONSERVATIVE].set(NULL); mState.activeQueries[GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN].set(NULL); bindGenericUniformBuffer(0); for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++) { bindIndexedUniformBuffer(0, i, 0, -1); } bindGenericTransformFeedbackBuffer(0); for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { bindIndexedTransformFeedbackBuffer(0, i, 0, -1); } bindCopyReadBuffer(0); bindCopyWriteBuffer(0); bindPixelPackBuffer(0); bindPixelUnpackBuffer(0); // [OpenGL ES 3.0.2] section 2.14.1 pg 85: // In the initial state, a default transform feedback object is bound and treated as // a transform feedback object with a name of zero. That object is bound any time // BindTransformFeedback is called with id of zero mTransformFeedbackZero.set(new TransformFeedback(0)); bindTransformFeedback(0); mState.currentProgram = 0; mCurrentProgramBinary.set(NULL); mCombinedExtensionsString = NULL; mRendererString = NULL; mInvalidEnum = false; mInvalidValue = false; mInvalidOperation = false; mOutOfMemory = false; mInvalidFramebufferOperation = false; mHasBeenCurrent = false; mContextLost = false; mResetStatus = GL_NO_ERROR; mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT); mRobustAccess = robustAccess; mSupportsBGRATextures = false; mSupportsDXT1Textures = false; mSupportsDXT3Textures = false; mSupportsDXT5Textures = false; mSupportsEventQueries = false; mSupportsOcclusionQueries = false; mNumCompressedTextureFormats = 0; } Context::~Context() { if (mState.currentProgram != 0) { Program *programObject = mResourceManager->getProgram(mState.currentProgram); if (programObject) { programObject->release(); } mState.currentProgram = 0; } mCurrentProgramBinary.set(NULL); while (!mFramebufferMap.empty()) { deleteFramebuffer(mFramebufferMap.begin()->first); } while (!mFenceNVMap.empty()) { deleteFenceNV(mFenceNVMap.begin()->first); } while (!mQueryMap.empty()) { deleteQuery(mQueryMap.begin()->first); } while (!mVertexArrayMap.empty()) { deleteVertexArray(mVertexArrayMap.begin()->first); } mTransformFeedbackZero.set(NULL); while (!mTransformFeedbackMap.empty()) { deleteTransformFeedback(mTransformFeedbackMap.begin()->first); } for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { mState.samplerTexture[type][sampler].set(NULL); } } for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { mIncompleteTextures[type].set(NULL); } const GLfloat defaultFloatValues[] = { 0.0f, 0.0f, 0.0f, 1.0f }; for (int attribIndex = 0; attribIndex < MAX_VERTEX_ATTRIBS; attribIndex++) { mState.vertexAttribCurrentValues[attribIndex].setFloatValues(defaultFloatValues); } mState.arrayBuffer.set(NULL); mState.renderbuffer.set(NULL); mState.transformFeedback.set(NULL); mTexture2DZero.set(NULL); mTextureCubeMapZero.set(NULL); mTexture3DZero.set(NULL); mTexture2DArrayZero.set(NULL); for (State::ActiveQueryMap::iterator i = mState.activeQueries.begin(); i != mState.activeQueries.end(); i++) { i->second.set(NULL); } mState.genericUniformBuffer.set(NULL); for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++) { mState.uniformBuffers[i].set(NULL); } mState.genericTransformFeedbackBuffer.set(NULL); for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { mState.transformFeedbackBuffers[i].set(NULL); } mState.copyReadBuffer.set(NULL); mState.copyWriteBuffer.set(NULL); mState.pack.pixelBuffer.set(NULL); mState.unpack.pixelBuffer.set(NULL); mResourceManager->release(); } void Context::makeCurrent(egl::Surface *surface) { if (!mHasBeenCurrent) { mMajorShaderModel = mRenderer->getMajorShaderModel(); mMaximumPointSize = mRenderer->getMaxPointSize(); mSupportsVertexTexture = mRenderer->getVertexTextureSupport(); mSupportsNonPower2Texture = mRenderer->getNonPower2TextureSupport(); mSupportsInstancing = mRenderer->getInstancingSupport(); mMaxViewportDimension = mRenderer->getMaxViewportDimension(); mMax2DTextureDimension = std::min(std::min(mRenderer->getMaxTextureWidth(), mRenderer->getMaxTextureHeight()), (int)gl::IMPLEMENTATION_MAX_2D_TEXTURE_SIZE); mMaxCubeTextureDimension = std::min(mMax2DTextureDimension, (int)gl::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE); mMax3DTextureDimension = std::min(std::min(mMax2DTextureDimension, mRenderer->getMaxTextureDepth()), (int)gl::IMPLEMENTATION_MAX_3D_TEXTURE_SIZE); mMax2DArrayTextureLayers = mRenderer->getMaxTextureArrayLayers(); mMaxRenderbufferDimension = mMax2DTextureDimension; mMax2DTextureLevel = log2(mMax2DTextureDimension) + 1; mMaxCubeTextureLevel = log2(mMaxCubeTextureDimension) + 1; mMax3DTextureLevel = log2(mMax3DTextureDimension) + 1; mMax2DArrayTextureLevel = log2(mMax2DTextureDimension) + 1; mMaxTextureAnisotropy = mRenderer->getTextureMaxAnisotropy(); TRACE("Max2DTextureDimension=%d, MaxCubeTextureDimension=%d, Max3DTextureDimension=%d, Max2DArrayTextureLayers = %d, " "Max2DTextureLevel=%d, MaxCubeTextureLevel=%d, Max3DTextureLevel=%d, Max2DArrayTextureLevel=%d, " "MaxRenderbufferDimension=%d, MaxTextureAnisotropy=%f", mMax2DTextureDimension, mMaxCubeTextureDimension, mMax3DTextureDimension, mMax2DArrayTextureLayers, mMax2DTextureLevel, mMaxCubeTextureLevel, mMax3DTextureLevel, mMax2DArrayTextureLevel, mMaxRenderbufferDimension, mMaxTextureAnisotropy); mSupportsEventQueries = mRenderer->getEventQuerySupport(); mSupportsOcclusionQueries = mRenderer->getOcclusionQuerySupport(); mSupportsBGRATextures = mRenderer->getBGRATextureSupport(); mSupportsDXT1Textures = mRenderer->getDXT1TextureSupport(); mSupportsDXT3Textures = mRenderer->getDXT3TextureSupport(); mSupportsDXT5Textures = mRenderer->getDXT5TextureSupport(); mSupportsFloat32Textures = mRenderer->getFloat32TextureSupport(); mSupportsFloat32LinearFilter = mRenderer->getFloat32TextureFilteringSupport(); mSupportsFloat32RenderableTextures = mRenderer->getFloat32TextureRenderingSupport(); mSupportsFloat16Textures = mRenderer->getFloat16TextureSupport(); mSupportsFloat16LinearFilter = mRenderer->getFloat16TextureFilteringSupport(); mSupportsFloat16RenderableTextures = mRenderer->getFloat16TextureRenderingSupport(); mSupportsLuminanceTextures = mRenderer->getLuminanceTextureSupport(); mSupportsLuminanceAlphaTextures = mRenderer->getLuminanceAlphaTextureSupport(); mSupportsRGTextures = mRenderer->getRGTextureSupport(); mSupportsDepthTextures = mRenderer->getDepthTextureSupport(); mSupportsTextureFilterAnisotropy = mRenderer->getTextureFilterAnisotropySupport(); mSupports32bitIndices = mRenderer->get32BitIndexSupport(); mSupportsPBOs = mRenderer->getPBOSupport(); mNumCompressedTextureFormats = 0; if (supportsDXT1Textures()) { mNumCompressedTextureFormats += 2; } if (supportsDXT3Textures()) { mNumCompressedTextureFormats += 1; } if (supportsDXT5Textures()) { mNumCompressedTextureFormats += 1; } initExtensionString(); initRendererString(); mState.viewport.x = 0; mState.viewport.y = 0; mState.viewport.width = surface->getWidth(); mState.viewport.height = surface->getHeight(); mState.scissor.x = 0; mState.scissor.y = 0; mState.scissor.width = surface->getWidth(); mState.scissor.height = surface->getHeight(); mHasBeenCurrent = true; } // Wrap the existing swapchain resources into GL objects and assign them to the '0' names rx::SwapChain *swapchain = surface->getSwapChain(); Colorbuffer *colorbufferZero = new Colorbuffer(mRenderer, swapchain); DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(mRenderer, swapchain); Framebuffer *framebufferZero = new DefaultFramebuffer(mRenderer, colorbufferZero, depthStencilbufferZero); setFramebufferZero(framebufferZero); // Store the current client version in the renderer mRenderer->setCurrentClientVersion(mClientVersion); } // NOTE: this function should not assume that this context is current! void Context::markContextLost() { if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT) mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT; mContextLost = true; } bool Context::isContextLost() { return mContextLost; } void Context::setCap(GLenum cap, bool enabled) { switch (cap) { case GL_CULL_FACE: setCullFace(enabled); break; case GL_POLYGON_OFFSET_FILL: setPolygonOffsetFill(enabled); break; case GL_SAMPLE_ALPHA_TO_COVERAGE: setSampleAlphaToCoverage(enabled); break; case GL_SAMPLE_COVERAGE: setSampleCoverage(enabled); break; case GL_SCISSOR_TEST: setScissorTest(enabled); break; case GL_STENCIL_TEST: setStencilTest(enabled); break; case GL_DEPTH_TEST: setDepthTest(enabled); break; case GL_BLEND: setBlend(enabled); break; case GL_DITHER: setDither(enabled); break; case GL_PRIMITIVE_RESTART_FIXED_INDEX: UNIMPLEMENTED(); break; case GL_RASTERIZER_DISCARD: setRasterizerDiscard(enabled); break; default: UNREACHABLE(); } } bool Context::getCap(GLenum cap) { switch (cap) { case GL_CULL_FACE: return isCullFaceEnabled(); case GL_POLYGON_OFFSET_FILL: return isPolygonOffsetFillEnabled(); case GL_SAMPLE_ALPHA_TO_COVERAGE: return isSampleAlphaToCoverageEnabled(); case GL_SAMPLE_COVERAGE: return isSampleCoverageEnabled(); case GL_SCISSOR_TEST: return isScissorTestEnabled(); case GL_STENCIL_TEST: return isStencilTestEnabled(); case GL_DEPTH_TEST: return isDepthTestEnabled(); case GL_BLEND: return isBlendEnabled(); case GL_DITHER: return isDitherEnabled(); case GL_PRIMITIVE_RESTART_FIXED_INDEX: UNIMPLEMENTED(); return false; case GL_RASTERIZER_DISCARD: return isRasterizerDiscardEnabled(); default: UNREACHABLE(); return false; } } void Context::setClearColor(float red, float green, float blue, float alpha) { mState.colorClearValue.red = red; mState.colorClearValue.green = green; mState.colorClearValue.blue = blue; mState.colorClearValue.alpha = alpha; } void Context::setClearDepth(float depth) { mState.depthClearValue = depth; } void Context::setClearStencil(int stencil) { mState.stencilClearValue = stencil; } void Context::setRasterizerDiscard(bool enabled) { mState.rasterizer.rasterizerDiscard = enabled; } bool Context::isRasterizerDiscardEnabled() const { return mState.rasterizer.rasterizerDiscard; } void Context::setCullFace(bool enabled) { mState.rasterizer.cullFace = enabled; } bool Context::isCullFaceEnabled() const { return mState.rasterizer.cullFace; } void Context::setCullMode(GLenum mode) { mState.rasterizer.cullMode = mode; } void Context::setFrontFace(GLenum front) { mState.rasterizer.frontFace = front; } void Context::setDepthTest(bool enabled) { mState.depthStencil.depthTest = enabled; } bool Context::isDepthTestEnabled() const { return mState.depthStencil.depthTest; } void Context::setDepthFunc(GLenum depthFunc) { mState.depthStencil.depthFunc = depthFunc; } void Context::setDepthRange(float zNear, float zFar) { mState.zNear = zNear; mState.zFar = zFar; } void Context::setBlend(bool enabled) { mState.blend.blend = enabled; } bool Context::isBlendEnabled() const { return mState.blend.blend; } void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) { mState.blend.sourceBlendRGB = sourceRGB; mState.blend.destBlendRGB = destRGB; mState.blend.sourceBlendAlpha = sourceAlpha; mState.blend.destBlendAlpha = destAlpha; } void Context::setBlendColor(float red, float green, float blue, float alpha) { mState.blendColor.red = red; mState.blendColor.green = green; mState.blendColor.blue = blue; mState.blendColor.alpha = alpha; } void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) { mState.blend.blendEquationRGB = rgbEquation; mState.blend.blendEquationAlpha = alphaEquation; } void Context::setStencilTest(bool enabled) { mState.depthStencil.stencilTest = enabled; } bool Context::isStencilTestEnabled() const { return mState.depthStencil.stencilTest; } void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) { mState.depthStencil.stencilFunc = stencilFunc; mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; mState.depthStencil.stencilMask = stencilMask; } void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask) { mState.depthStencil.stencilBackFunc = stencilBackFunc; mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0; mState.depthStencil.stencilBackMask = stencilBackMask; } void Context::setStencilWritemask(GLuint stencilWritemask) { mState.depthStencil.stencilWritemask = stencilWritemask; } void Context::setStencilBackWritemask(GLuint stencilBackWritemask) { mState.depthStencil.stencilBackWritemask = stencilBackWritemask; } void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) { mState.depthStencil.stencilFail = stencilFail; mState.depthStencil.stencilPassDepthFail = stencilPassDepthFail; mState.depthStencil.stencilPassDepthPass = stencilPassDepthPass; } void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass) { mState.depthStencil.stencilBackFail = stencilBackFail; mState.depthStencil.stencilBackPassDepthFail = stencilBackPassDepthFail; mState.depthStencil.stencilBackPassDepthPass = stencilBackPassDepthPass; } void Context::setPolygonOffsetFill(bool enabled) { mState.rasterizer.polygonOffsetFill = enabled; } bool Context::isPolygonOffsetFillEnabled() const { return mState.rasterizer.polygonOffsetFill; } void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) { // An application can pass NaN values here, so handle this gracefully mState.rasterizer.polygonOffsetFactor = factor != factor ? 0.0f : factor; mState.rasterizer.polygonOffsetUnits = units != units ? 0.0f : units; } void Context::setSampleAlphaToCoverage(bool enabled) { mState.blend.sampleAlphaToCoverage = enabled; } bool Context::isSampleAlphaToCoverageEnabled() const { return mState.blend.sampleAlphaToCoverage; } void Context::setSampleCoverage(bool enabled) { mState.sampleCoverage = enabled; } bool Context::isSampleCoverageEnabled() const { return mState.sampleCoverage; } void Context::setSampleCoverageParams(GLclampf value, bool invert) { mState.sampleCoverageValue = value; mState.sampleCoverageInvert = invert; } void Context::setScissorTest(bool enabled) { mState.scissorTest = enabled; } bool Context::isScissorTestEnabled() const { return mState.scissorTest; } void Context::setDither(bool enabled) { mState.blend.dither = enabled; } bool Context::isDitherEnabled() const { return mState.blend.dither; } void Context::setLineWidth(GLfloat width) { mState.lineWidth = width; } void Context::setGenerateMipmapHint(GLenum hint) { mState.generateMipmapHint = hint; } void Context::setFragmentShaderDerivativeHint(GLenum hint) { mState.fragmentShaderDerivativeHint = hint; // TODO: Propagate the hint to shader translator so we can write // ddx, ddx_coarse, or ddx_fine depending on the hint. // Ignore for now. It is valid for implementations to ignore hint. } void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.viewport.x = x; mState.viewport.y = y; mState.viewport.width = width; mState.viewport.height = height; } void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.scissor.x = x; mState.scissor.y = y; mState.scissor.width = width; mState.scissor.height = height; } void Context::getScissorParams(GLint *x, GLint *y, GLsizei *width, GLsizei *height) { *x = mState.scissor.x; *y = mState.scissor.y; *width = mState.scissor.width; *height = mState.scissor.height; } void Context::setColorMask(bool red, bool green, bool blue, bool alpha) { mState.blend.colorMaskRed = red; mState.blend.colorMaskGreen = green; mState.blend.colorMaskBlue = blue; mState.blend.colorMaskAlpha = alpha; } void Context::setDepthMask(bool mask) { mState.depthStencil.depthMask = mask; } void Context::setActiveSampler(unsigned int active) { mState.activeSampler = active; } GLuint Context::getReadFramebufferHandle() const { return mState.readFramebuffer; } GLuint Context::getDrawFramebufferHandle() const { return mState.drawFramebuffer; } GLuint Context::getRenderbufferHandle() const { return mState.renderbuffer.id(); } GLuint Context::getVertexArrayHandle() const { return mState.vertexArray; } GLuint Context::getSamplerHandle(GLuint textureUnit) const { ASSERT(textureUnit < ArraySize(mState.samplers)); return mState.samplers[textureUnit]; } unsigned int Context::getActiveSampler() const { return mState.activeSampler; } GLuint Context::getArrayBufferHandle() const { return mState.arrayBuffer.id(); } bool Context::isQueryActive() const { for (State::ActiveQueryMap::const_iterator i = mState.activeQueries.begin(); i != mState.activeQueries.end(); i++) { if (i->second.get() != NULL) { return true; } } return false; } const Query *Context::getActiveQuery(GLenum target) const { // All query types should already exist in the activeQueries map ASSERT(mState.activeQueries.find(target) != mState.activeQueries.end()); return mState.activeQueries.at(target).get(); } GLuint Context::getActiveQueryId(GLenum target) const { const Query *query = getActiveQuery(target); return (query ? query->id() : 0u); } void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled) { getCurrentVertexArray()->enableAttribute(attribNum, enabled); } const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) const { return getCurrentVertexArray()->getVertexAttribute(attribNum); } const VertexAttribCurrentValueData &Context::getVertexAttribCurrentValue(unsigned int attribNum) const { ASSERT(attribNum < MAX_VERTEX_ATTRIBS); return mState.vertexAttribCurrentValues[attribNum]; } void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, bool pureInteger, GLsizei stride, const void *pointer) { getCurrentVertexArray()->setAttributeState(attribNum, boundBuffer, size, type, normalized, pureInteger, stride, pointer); } const void *Context::getVertexAttribPointer(unsigned int attribNum) const { return getCurrentVertexArray()->getVertexAttribute(attribNum).mPointer; } void Context::setPackAlignment(GLint alignment) { mState.pack.alignment = alignment; } GLint Context::getPackAlignment() const { return mState.pack.alignment; } void Context::setUnpackAlignment(GLint alignment) { mState.unpack.alignment = alignment; } GLint Context::getUnpackAlignment() const { return mState.unpack.alignment; } void Context::setPackReverseRowOrder(bool reverseRowOrder) { mState.pack.reverseRowOrder = reverseRowOrder; } bool Context::getPackReverseRowOrder() const { return mState.pack.reverseRowOrder; } const PixelUnpackState &Context::getUnpackState() const { return mState.unpack; } const PixelPackState &Context::getPackState() const { return mState.pack; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } GLsync Context::createFenceSync(GLenum condition) { GLuint handle = mResourceManager->createFenceSync(); gl::FenceSync *fenceSync = mResourceManager->getFenceSync(handle); ASSERT(fenceSync); fenceSync->set(condition); return reinterpret_cast<GLsync>(handle); } GLuint Context::createVertexArray() { GLuint handle = mVertexArrayHandleAllocator.allocate(); // Although the spec states VAO state is not initialized until the object is bound, // we create it immediately. The resulting behaviour is transparent to the application, // since it's not currently possible to access the state until the object is bound. mVertexArrayMap[handle] = new VertexArray(mRenderer, handle); return handle; } GLuint Context::createSampler() { return mResourceManager->createSampler(); } GLuint Context::createTransformFeedback() { GLuint handle = mTransformFeedbackAllocator.allocate(); TransformFeedback *transformFeedback = new TransformFeedback(handle); transformFeedback->addRef(); mTransformFeedbackMap[handle] = transformFeedback; return handle; } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { GLuint handle = mFramebufferHandleAllocator.allocate(); mFramebufferMap[handle] = NULL; return handle; } GLuint Context::createFenceNV() { GLuint handle = mFenceNVHandleAllocator.allocate(); mFenceNVMap[handle] = new FenceNV(mRenderer); return handle; } // Returns an unused query name GLuint Context::createQuery() { GLuint handle = mQueryHandleAllocator.allocate(); mQueryMap[handle] = NULL; return handle; } void Context::deleteBuffer(GLuint buffer) { if (mResourceManager->getBuffer(buffer)) { detachBuffer(buffer); } mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { if (mResourceManager->getTexture(texture)) { detachTexture(texture); } mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if (mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFenceSync(GLsync fenceSync) { // The spec specifies the underlying Fence object is not deleted until all current // wait commands finish. However, since the name becomes invalid, we cannot query the fence, // and since our API is currently designed for being called from a single thread, we can delete // the fence immediately. mResourceManager->deleteFenceSync(reinterpret_cast<GLuint>(fenceSync)); } void Context::deleteVertexArray(GLuint vertexArray) { auto vertexArrayObject = mVertexArrayMap.find(vertexArray); if (vertexArrayObject != mVertexArrayMap.end()) { detachVertexArray(vertexArray); mVertexArrayHandleAllocator.release(vertexArrayObject->first); delete vertexArrayObject->second; mVertexArrayMap.erase(vertexArrayObject); } } void Context::deleteSampler(GLuint sampler) { if (mResourceManager->getSampler(sampler)) { detachSampler(sampler); } mResourceManager->deleteSampler(sampler); } void Context::deleteTransformFeedback(GLuint transformFeedback) { TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(transformFeedback); if (iter != mTransformFeedbackMap.end()) { detachTransformFeedback(transformFeedback); mTransformFeedbackAllocator.release(transformFeedback); iter->second->release(); mTransformFeedbackMap.erase(iter); } } void Context::deleteFramebuffer(GLuint framebuffer) { FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); if (framebufferObject != mFramebufferMap.end()) { detachFramebuffer(framebuffer); mFramebufferHandleAllocator.release(framebufferObject->first); delete framebufferObject->second; mFramebufferMap.erase(framebufferObject); } } void Context::deleteFenceNV(GLuint fence) { FenceNVMap::iterator fenceObject = mFenceNVMap.find(fence); if (fenceObject != mFenceNVMap.end()) { mFenceNVHandleAllocator.release(fenceObject->first); delete fenceObject->second; mFenceNVMap.erase(fenceObject); } } void Context::deleteQuery(GLuint query) { QueryMap::iterator queryObject = mQueryMap.find(query); if (queryObject != mQueryMap.end()) { mQueryHandleAllocator.release(queryObject->first); if (queryObject->second) { queryObject->second->release(); } mQueryMap.erase(queryObject); } } Buffer *Context::getBuffer(GLuint handle) { return mResourceManager->getBuffer(handle); } Shader *Context::getShader(GLuint handle) const { return mResourceManager->getShader(handle); } Program *Context::getProgram(GLuint handle) const { return mResourceManager->getProgram(handle); } Texture *Context::getTexture(GLuint handle) { return mResourceManager->getTexture(handle); } FramebufferAttachment *Context::getRenderbuffer(GLuint handle) { return mResourceManager->getRenderbuffer(handle); } FenceSync *Context::getFenceSync(GLsync handle) const { return mResourceManager->getFenceSync(reinterpret_cast<GLuint>(handle)); } VertexArray *Context::getVertexArray(GLuint handle) const { auto vertexArray = mVertexArrayMap.find(handle); if (vertexArray == mVertexArrayMap.end()) { return NULL; } else { return vertexArray->second; } } Sampler *Context::getSampler(GLuint handle) const { return mResourceManager->getSampler(handle); } TransformFeedback *Context::getTransformFeedback(GLuint handle) const { if (handle == 0) { return mTransformFeedbackZero.get(); } else { TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(handle); return (iter != mTransformFeedbackMap.end()) ? iter->second : NULL; } } Framebuffer *Context::getReadFramebuffer() { return getFramebuffer(mState.readFramebuffer); } Framebuffer *Context::getDrawFramebuffer() { return mBoundDrawFramebuffer; } VertexArray *Context::getCurrentVertexArray() const { VertexArray *vao = getVertexArray(mState.vertexArray); ASSERT(vao != NULL); return vao; } TransformFeedback *Context::getCurrentTransformFeedback() const { return mState.transformFeedback.get(); } bool Context::isSampler(GLuint samplerName) const { return mResourceManager->isSampler(samplerName); } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.arrayBuffer.set(getBuffer(buffer)); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); getCurrentVertexArray()->setElementArrayBuffer(getBuffer(buffer)); } void Context::bindTexture2D(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); mState.samplerTexture[TEXTURE_2D][mState.activeSampler].set(getTexture(texture)); } void Context::bindTextureCubeMap(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE); mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].set(getTexture(texture)); } void Context::bindTexture3D(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_3D); mState.samplerTexture[TEXTURE_3D][mState.activeSampler].set(getTexture(texture)); } void Context::bindTexture2DArray(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_2D_ARRAY); mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].set(getTexture(texture)); } void Context::bindReadFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mRenderer); } mState.readFramebuffer = framebuffer; } void Context::bindDrawFramebuffer(GLuint framebuffer) { if (!getFramebuffer(framebuffer)) { mFramebufferMap[framebuffer] = new Framebuffer(mRenderer); } mState.drawFramebuffer = framebuffer; mBoundDrawFramebuffer = getFramebuffer(framebuffer); } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.renderbuffer.set(getRenderbuffer(renderbuffer)); } void Context::bindVertexArray(GLuint vertexArray) { if (!getVertexArray(vertexArray)) { mVertexArrayMap[vertexArray] = new VertexArray(mRenderer, vertexArray); } mState.vertexArray = vertexArray; } void Context::bindSampler(GLuint textureUnit, GLuint sampler) { ASSERT(textureUnit < ArraySize(mState.samplers)); mResourceManager->checkSamplerAllocation(sampler); mState.samplers[textureUnit] = sampler; } void Context::bindGenericUniformBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.genericUniformBuffer.set(getBuffer(buffer)); } void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); mState.uniformBuffers[index].set(getBuffer(buffer), offset, size); } void Context::bindGenericTransformFeedbackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.genericTransformFeedbackBuffer.set(getBuffer(buffer)); } void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); mState.transformFeedbackBuffers[index].set(getBuffer(buffer), offset, size); } void Context::bindCopyReadBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.copyReadBuffer.set(getBuffer(buffer)); } void Context::bindCopyWriteBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.copyWriteBuffer.set(getBuffer(buffer)); } void Context::bindPixelPackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.pack.pixelBuffer.set(getBuffer(buffer)); } void Context::bindPixelUnpackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.unpack.pixelBuffer.set(getBuffer(buffer)); } void Context::useProgram(GLuint program) { GLuint priorProgram = mState.currentProgram; mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged. if (priorProgram != program) { Program *newProgram = mResourceManager->getProgram(program); Program *oldProgram = mResourceManager->getProgram(priorProgram); mCurrentProgramBinary.set(NULL); if (newProgram) { newProgram->addRef(); mCurrentProgramBinary.set(newProgram->getProgramBinary()); } if (oldProgram) { oldProgram->release(); } } } void Context::linkProgram(GLuint program) { Program *programObject = mResourceManager->getProgram(program); bool linked = programObject->link(); // if the current program was relinked successfully we // need to install the new executables if (linked && program == mState.currentProgram) { mCurrentProgramBinary.set(programObject->getProgramBinary()); } } void Context::setProgramBinary(GLuint program, const void *binary, GLint length) { Program *programObject = mResourceManager->getProgram(program); bool loaded = programObject->setProgramBinary(binary, length); // if the current program was reloaded successfully we // need to install the new executables if (loaded && program == mState.currentProgram) { mCurrentProgramBinary.set(programObject->getProgramBinary()); } } void Context::bindTransformFeedback(GLuint transformFeedback) { TransformFeedback *transformFeedbackObject = getTransformFeedback(transformFeedback); mState.transformFeedback.set(transformFeedbackObject); } void Context::beginQuery(GLenum target, GLuint query) { Query *queryObject = getQuery(query, true, target); ASSERT(queryObject); // set query as active for specified target mState.activeQueries[target].set(queryObject); // begin query queryObject->begin(); } void Context::endQuery(GLenum target) { Query *queryObject = mState.activeQueries[target].get(); ASSERT(queryObject); queryObject->end(); mState.activeQueries[target].set(NULL); } void Context::setFramebufferZero(Framebuffer *buffer) { delete mFramebufferMap[0]; mFramebufferMap[0] = buffer; if (mState.drawFramebuffer == 0) { mBoundDrawFramebuffer = buffer; } } void Context::setRenderbufferStorage(GLsizei width, GLsizei height, GLenum internalformat, GLsizei samples) { const bool color = gl::IsColorRenderingSupported(internalformat, this); const bool depth = gl::IsDepthRenderingSupported(internalformat, this); const bool stencil = gl::IsStencilRenderingSupported(internalformat, this); RenderbufferStorage *renderbuffer = NULL; if (color) { renderbuffer = new gl::Colorbuffer(mRenderer,width, height, internalformat, samples); } else if (depth && stencil) { renderbuffer = new gl::DepthStencilbuffer(mRenderer, width, height, samples); } else if (depth) { renderbuffer = new gl::Depthbuffer(mRenderer, width, height, samples); } else if (stencil) { renderbuffer = new gl::Stencilbuffer(mRenderer, width, height, samples); } else { UNREACHABLE(); return; } FramebufferAttachment *renderbufferObject = mState.renderbuffer.get(); renderbufferObject->setStorage(renderbuffer); } Framebuffer *Context::getFramebuffer(unsigned int handle) const { FramebufferMap::const_iterator framebuffer = mFramebufferMap.find(handle); if (framebuffer == mFramebufferMap.end()) { return NULL; } else { return framebuffer->second; } } FenceNV *Context::getFenceNV(unsigned int handle) { FenceNVMap::iterator fence = mFenceNVMap.find(handle); if (fence == mFenceNVMap.end()) { return NULL; } else { return fence->second; } } Query *Context::getQuery(unsigned int handle, bool create, GLenum type) { QueryMap::iterator query = mQueryMap.find(handle); if (query == mQueryMap.end()) { return NULL; } else { if (!query->second && create) { query->second = new Query(mRenderer, type, handle); query->second->addRef(); } return query->second; } } Buffer *Context::getTargetBuffer(GLenum target) const { switch (target) { case GL_ARRAY_BUFFER: return mState.arrayBuffer.get(); case GL_COPY_READ_BUFFER: return mState.copyReadBuffer.get(); case GL_COPY_WRITE_BUFFER: return mState.copyWriteBuffer.get(); case GL_ELEMENT_ARRAY_BUFFER: return getCurrentVertexArray()->getElementArrayBuffer(); case GL_PIXEL_PACK_BUFFER: return mState.pack.pixelBuffer.get(); case GL_PIXEL_UNPACK_BUFFER: return mState.unpack.pixelBuffer.get(); case GL_TRANSFORM_FEEDBACK_BUFFER: return mState.genericTransformFeedbackBuffer.get(); case GL_UNIFORM_BUFFER: return mState.genericUniformBuffer.get(); default: UNREACHABLE(); return NULL; } } Buffer *Context::getArrayBuffer() { return mState.arrayBuffer.get(); } Buffer *Context::getElementArrayBuffer() const { return getCurrentVertexArray()->getElementArrayBuffer(); } ProgramBinary *Context::getCurrentProgramBinary() { return mCurrentProgramBinary.get(); } Texture *Context::getTargetTexture(GLenum target) const { if (!ValidTextureTarget(this, target)) { return NULL; } switch (target) { case GL_TEXTURE_2D: return getTexture2D(); case GL_TEXTURE_CUBE_MAP: return getTextureCubeMap(); case GL_TEXTURE_3D: return getTexture3D(); case GL_TEXTURE_2D_ARRAY: return getTexture2DArray(); default: return NULL; } } GLuint Context::getTargetFramebufferHandle(GLenum target) const { if (!ValidFramebufferTarget(target)) { return GL_INVALID_INDEX; } if (target == GL_READ_FRAMEBUFFER_ANGLE) { return mState.readFramebuffer; } else { return mState.drawFramebuffer; } } Framebuffer *Context::getTargetFramebuffer(GLenum target) const { GLuint framebufferHandle = getTargetFramebufferHandle(target); return (framebufferHandle == GL_INVALID_INDEX ? NULL : getFramebuffer(framebufferHandle)); } Texture2D *Context::getTexture2D() const { return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); } TextureCubeMap *Context::getTextureCubeMap() const { return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE)); } Texture3D *Context::getTexture3D() const { return static_cast<Texture3D*>(getSamplerTexture(mState.activeSampler, TEXTURE_3D)); } Texture2DArray *Context::getTexture2DArray() const { return static_cast<Texture2DArray*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D_ARRAY)); } Buffer *Context::getGenericUniformBuffer() { return mState.genericUniformBuffer.get(); } Buffer *Context::getGenericTransformFeedbackBuffer() { return mState.genericTransformFeedbackBuffer.get(); } Buffer *Context::getCopyReadBuffer() { return mState.copyReadBuffer.get(); } Buffer *Context::getCopyWriteBuffer() { return mState.copyWriteBuffer.get(); } Buffer *Context::getPixelPackBuffer() { return mState.pack.pixelBuffer.get(); } Buffer *Context::getPixelUnpackBuffer() { return mState.unpack.pixelBuffer.get(); } Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const { GLuint texid = mState.samplerTexture[type][sampler].id(); if (texid == 0) // Special case: 0 refers to different initial textures based on the target { switch (type) { default: UNREACHABLE(); case TEXTURE_2D: return mTexture2DZero.get(); case TEXTURE_CUBE: return mTextureCubeMapZero.get(); case TEXTURE_3D: return mTexture3DZero.get(); case TEXTURE_2D_ARRAY: return mTexture2DArrayZero.get(); } } return mState.samplerTexture[type][sampler].get(); } void Context::getBooleanv(GLenum pname, GLboolean *params) { switch (pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; case GL_DEPTH_WRITEMASK: *params = mState.depthStencil.depthMask; break; case GL_COLOR_WRITEMASK: params[0] = mState.blend.colorMaskRed; params[1] = mState.blend.colorMaskGreen; params[2] = mState.blend.colorMaskBlue; params[3] = mState.blend.colorMaskAlpha; break; case GL_CULL_FACE: *params = mState.rasterizer.cullFace; break; case GL_POLYGON_OFFSET_FILL: *params = mState.rasterizer.polygonOffsetFill; break; case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.blend.sampleAlphaToCoverage; break; case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break; case GL_SCISSOR_TEST: *params = mState.scissorTest; break; case GL_STENCIL_TEST: *params = mState.depthStencil.stencilTest; break; case GL_DEPTH_TEST: *params = mState.depthStencil.depthTest; break; case GL_BLEND: *params = mState.blend.blend; break; case GL_DITHER: *params = mState.blend.dither; break; case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break; case GL_TRANSFORM_FEEDBACK_ACTIVE: *params = getCurrentTransformFeedback()->isStarted(); break; case GL_TRANSFORM_FEEDBACK_PAUSED: *params = getCurrentTransformFeedback()->isPaused(); break; default: UNREACHABLE(); break; } } void Context::getFloatv(GLenum pname, GLfloat *params) { // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. switch (pname) { case GL_LINE_WIDTH: *params = mState.lineWidth; break; case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; case GL_POLYGON_OFFSET_FACTOR: *params = mState.rasterizer.polygonOffsetFactor; break; case GL_POLYGON_OFFSET_UNITS: *params = mState.rasterizer.polygonOffsetUnits; break; case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN; params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN; params[1] = getMaximumPointSize(); break; case GL_DEPTH_RANGE: params[0] = mState.zNear; params[1] = mState.zFar; break; case GL_COLOR_CLEAR_VALUE: params[0] = mState.colorClearValue.red; params[1] = mState.colorClearValue.green; params[2] = mState.colorClearValue.blue; params[3] = mState.colorClearValue.alpha; break; case GL_BLEND_COLOR: params[0] = mState.blendColor.red; params[1] = mState.blendColor.green; params[2] = mState.blendColor.blue; params[3] = mState.blendColor.alpha; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: ASSERT(supportsTextureFilterAnisotropy()); *params = mMaxTextureAnisotropy; break; default: UNREACHABLE(); break; } } void Context::getIntegerv(GLenum pname, GLint *params) { if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) { unsigned int colorAttachment = (pname - GL_DRAW_BUFFER0_EXT); ASSERT(colorAttachment < mRenderer->getMaxRenderTargets()); Framebuffer *framebuffer = getDrawFramebuffer(); *params = framebuffer->getDrawBufferState(colorAttachment); return; } // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. You may find it in // Context::getFloatv. switch (pname) { case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mRenderer->getMaxVertexUniformVectors(); break; case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mRenderer->getMaxVertexUniformVectors() * 4; break; case GL_MAX_VARYING_VECTORS: *params = mRenderer->getMaxVaryingVectors(); break; case GL_MAX_VARYING_COMPONENTS: *params = mRenderer->getMaxVaryingVectors() * 4; break; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxCombinedTextureImageUnits(); break; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxVertexTextureImageUnits(); break; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mRenderer->getMaxFragmentUniformVectors(); break; case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mRenderer->getMaxFragmentUniformVectors() * 4; break; case GL_MAX_RENDERBUFFER_SIZE: *params = getMaximumRenderbufferDimension(); break; case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mRenderer->getMaxRenderTargets(); break; case GL_MAX_DRAW_BUFFERS_EXT: *params = mRenderer->getMaxRenderTargets(); break; case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break; case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break; case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.id(); break; case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = getCurrentVertexArray()->getElementArrayBufferId(); break; //case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mState.drawFramebuffer; break; case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mState.readFramebuffer; break; case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.id(); break; case GL_VERTEX_ARRAY_BINDING: *params = mState.vertexArray; break; case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break; case GL_PACK_ALIGNMENT: *params = mState.pack.alignment; break; case GL_PACK_REVERSE_ROW_ORDER_ANGLE: *params = mState.pack.reverseRowOrder; break; case GL_UNPACK_ALIGNMENT: *params = mState.unpack.alignment; break; case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; break; case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; case GL_STENCIL_FUNC: *params = mState.depthStencil.stencilFunc; break; case GL_STENCIL_REF: *params = mState.stencilRef; break; case GL_STENCIL_VALUE_MASK: *params = clampToInt(mState.depthStencil.stencilMask); break; case GL_STENCIL_BACK_FUNC: *params = mState.depthStencil.stencilBackFunc; break; case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break; case GL_STENCIL_BACK_VALUE_MASK: *params = clampToInt(mState.depthStencil.stencilBackMask); break; case GL_STENCIL_FAIL: *params = mState.depthStencil.stencilFail; break; case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilPassDepthFail; break; case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilPassDepthPass; break; case GL_STENCIL_BACK_FAIL: *params = mState.depthStencil.stencilBackFail; break; case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilBackPassDepthFail; break; case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilBackPassDepthPass; break; case GL_DEPTH_FUNC: *params = mState.depthStencil.depthFunc; break; case GL_BLEND_SRC_RGB: *params = mState.blend.sourceBlendRGB; break; case GL_BLEND_SRC_ALPHA: *params = mState.blend.sourceBlendAlpha; break; case GL_BLEND_DST_RGB: *params = mState.blend.destBlendRGB; break; case GL_BLEND_DST_ALPHA: *params = mState.blend.destBlendAlpha; break; case GL_BLEND_EQUATION_RGB: *params = mState.blend.blendEquationRGB; break; case GL_BLEND_EQUATION_ALPHA: *params = mState.blend.blendEquationAlpha; break; case GL_STENCIL_WRITEMASK: *params = clampToInt(mState.depthStencil.stencilWritemask); break; case GL_STENCIL_BACK_WRITEMASK: *params = clampToInt(mState.depthStencil.stencilBackWritemask); break; case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = getMaximum2DTextureDimension(); break; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = getMaximumCubeTextureDimension(); break; case GL_MAX_3D_TEXTURE_SIZE: *params = getMaximum3DTextureDimension(); break; case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = getMaximum2DArrayTextureLayers(); break; case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = getUniformBufferOffsetAlignment(); break; case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = getMaximumCombinedUniformBufferBindings(); break; case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mRenderer->getMaxVertexShaderUniformBuffers(); break; case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mRenderer->getMaxFragmentShaderUniformBuffers(); break; case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = getMaximumCombinedUniformBufferBindings(); break; case GL_MAJOR_VERSION: *params = mClientVersion; break; case GL_MINOR_VERSION: *params = 0; break; case GL_MAX_ELEMENTS_INDICES: *params = mRenderer->getMaxRecommendedElementsIndices(); break; case GL_MAX_ELEMENTS_VERTICES: *params = mRenderer->getMaxRecommendedElementsVertices(); break; case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mRenderer->getMaxTransformFeedbackInterleavedComponents(); break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mRenderer->getMaxTransformFeedbackBuffers(); break; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mRenderer->getMaxTransformFeedbackSeparateComponents(); break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: params[0] = mNumCompressedTextureFormats; break; case GL_MAX_SAMPLES_ANGLE: *params = static_cast<GLint>(getMaxSupportedSamples()); break; case GL_SAMPLE_BUFFERS: case GL_SAMPLES: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE) { switch (pname) { case GL_SAMPLE_BUFFERS: if (framebuffer->getSamples() != 0) { *params = 1; } else { *params = 0; } break; case GL_SAMPLES: *params = framebuffer->getSamples(); break; } } else { *params = 0; } } break; case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: { GLenum internalFormat, format, type; getCurrentReadFormatType(&internalFormat, &format, &type); if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT) *params = format; else *params = type; } break; case GL_MAX_VIEWPORT_DIMS: { params[0] = mMaxViewportDimension; params[1] = mMaxViewportDimension; } break; case GL_COMPRESSED_TEXTURE_FORMATS: { if (supportsDXT1Textures()) { *params++ = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; *params++ = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; } if (supportsDXT3Textures()) { *params++ = GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE; } if (supportsDXT5Textures()) { *params++ = GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE; } } break; case GL_VIEWPORT: params[0] = mState.viewport.x; params[1] = mState.viewport.y; params[2] = mState.viewport.width; params[3] = mState.viewport.height; break; case GL_SCISSOR_BOX: params[0] = mState.scissor.x; params[1] = mState.scissor.y; params[2] = mState.scissor.width; params[3] = mState.scissor.height; break; case GL_CULL_FACE_MODE: *params = mState.rasterizer.cullMode; break; case GL_FRONT_FACE: *params = mState.rasterizer.frontFace; break; case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); gl::FramebufferAttachment *colorbuffer = framebuffer->getFirstColorbuffer(); if (colorbuffer) { switch (pname) { case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; } } else { *params = 0; } } break; case GL_DEPTH_BITS: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); gl::FramebufferAttachment *depthbuffer = framebuffer->getDepthbuffer(); if (depthbuffer) { *params = depthbuffer->getDepthSize(); } else { *params = 0; } } break; case GL_STENCIL_BITS: { gl::Framebuffer *framebuffer = getDrawFramebuffer(); gl::FramebufferAttachment *stencilbuffer = framebuffer->getStencilbuffer(); if (stencilbuffer) { *params = stencilbuffer->getStencilSize(); } else { *params = 0; } } break; case GL_TEXTURE_BINDING_2D: ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits()); *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].id(); break; case GL_TEXTURE_BINDING_CUBE_MAP: ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits()); *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].id(); break; case GL_TEXTURE_BINDING_3D: ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits()); *params = mState.samplerTexture[TEXTURE_3D][mState.activeSampler].id(); break; case GL_TEXTURE_BINDING_2D_ARRAY: ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits()); *params = mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].id(); break; case GL_RESET_NOTIFICATION_STRATEGY_EXT: *params = mResetStrategy; break; case GL_NUM_PROGRAM_BINARY_FORMATS_OES: *params = 1; break; case GL_PROGRAM_BINARY_FORMATS_OES: *params = GL_PROGRAM_BINARY_ANGLE; break; case GL_UNIFORM_BUFFER_BINDING: *params = mState.genericUniformBuffer.id(); break; case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: *params = mState.genericTransformFeedbackBuffer.id(); break; case GL_COPY_READ_BUFFER_BINDING: *params = mState.copyReadBuffer.id(); break; case GL_COPY_WRITE_BUFFER_BINDING: *params = mState.copyWriteBuffer.id(); break; case GL_PIXEL_PACK_BUFFER_BINDING: *params = mState.pack.pixelBuffer.id(); break; case GL_PIXEL_UNPACK_BUFFER_BINDING: *params = mState.unpack.pixelBuffer.id(); break; case GL_NUM_EXTENSIONS: *params = static_cast<GLint>(getNumExtensions()); break; default: UNREACHABLE(); break; } } void Context::getInteger64v(GLenum pname, GLint64 *params) { switch (pname) { case GL_MAX_ELEMENT_INDEX: *params = static_cast<GLint64>(std::numeric_limits<unsigned int>::max()); break; case GL_MAX_UNIFORM_BLOCK_SIZE: *params = static_cast<GLint64>(mRenderer->getMaxUniformBufferSize()); break; case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: { GLint64 uniformBufferComponents = static_cast<GLint64>(mRenderer->getMaxVertexShaderUniformBuffers()) * static_cast<GLint64>(mRenderer->getMaxUniformBufferSize() / 4); GLint64 defaultBufferComponents = static_cast<GLint64>(mRenderer->getMaxVertexUniformVectors() * 4); *params = uniformBufferComponents + defaultBufferComponents; } break; case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: { GLint64 uniformBufferComponents = static_cast<GLint64>(mRenderer->getMaxFragmentShaderUniformBuffers()) * static_cast<GLint64>(mRenderer->getMaxUniformBufferSize() / 4); GLint64 defaultBufferComponents = static_cast<GLint64>(mRenderer->getMaxVertexUniformVectors() * 4); *params = uniformBufferComponents + defaultBufferComponents; } break; case GL_MAX_SERVER_WAIT_TIMEOUT: // We do not wait for server fence objects internally, so report a max timeout of zero. *params = 0; break; default: UNREACHABLE(); break; } } bool Context::getIndexedIntegerv(GLenum target, GLuint index, GLint *data) { switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS) { *data = mState.transformFeedbackBuffers[index].id(); } break; case GL_UNIFORM_BUFFER_BINDING: if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS) { *data = mState.uniformBuffers[index].id(); } break; default: return false; } return true; } bool Context::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data) { switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER_START: if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS) { *data = mState.transformFeedbackBuffers[index].getOffset(); } break; case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS) { *data = mState.transformFeedbackBuffers[index].getSize(); } break; case GL_UNIFORM_BUFFER_START: if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS) { *data = mState.uniformBuffers[index].getOffset(); } break; case GL_UNIFORM_BUFFER_SIZE: if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS) { *data = mState.uniformBuffers[index].getSize(); } break; default: return false; } return true; } bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) { if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) { *type = GL_INT; *numParams = 1; return true; } // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch (pname) { case GL_COMPRESSED_TEXTURE_FORMATS: { *type = GL_INT; *numParams = mNumCompressedTextureFormats; } return true; case GL_SHADER_BINARY_FORMATS: { *type = GL_INT; *numParams = 0; } return true; case GL_MAX_VERTEX_ATTRIBS: case GL_MAX_VERTEX_UNIFORM_VECTORS: case GL_MAX_VARYING_VECTORS: case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: case GL_MAX_TEXTURE_IMAGE_UNITS: case GL_MAX_FRAGMENT_UNIFORM_VECTORS: case GL_MAX_RENDERBUFFER_SIZE: case GL_MAX_COLOR_ATTACHMENTS_EXT: case GL_MAX_DRAW_BUFFERS_EXT: case GL_NUM_SHADER_BINARY_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: //case GL_FRAMEBUFFER_BINDING: // equivalent to DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: case GL_READ_FRAMEBUFFER_BINDING_ANGLE: case GL_RENDERBUFFER_BINDING: case GL_CURRENT_PROGRAM: case GL_PACK_ALIGNMENT: case GL_PACK_REVERSE_ROW_ORDER_ANGLE: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_STENCIL_BACK_FUNC: case GL_STENCIL_BACK_VALUE_MASK: case GL_STENCIL_BACK_REF: case GL_STENCIL_BACK_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB: case GL_BLEND_SRC_ALPHA: case GL_BLEND_DST_RGB: case GL_BLEND_DST_ALPHA: case GL_BLEND_EQUATION_RGB: case GL_BLEND_EQUATION_ALPHA: case GL_STENCIL_WRITEMASK: case GL_STENCIL_BACK_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_RESET_NOTIFICATION_STRATEGY_EXT: case GL_NUM_PROGRAM_BINARY_FORMATS_OES: case GL_PROGRAM_BINARY_FORMATS_OES: { *type = GL_INT; *numParams = 1; } return true; case GL_MAX_SAMPLES_ANGLE: { if (getMaxSupportedSamples() != 0) { *type = GL_INT; *numParams = 1; } else { return false; } } return true; case GL_PIXEL_PACK_BUFFER_BINDING: case GL_PIXEL_UNPACK_BUFFER_BINDING: { if (supportsPBOs()) { *type = GL_INT; *numParams = 1; } else { return false; } } return true; case GL_MAX_VIEWPORT_DIMS: { *type = GL_INT; *numParams = 2; } return true; case GL_VIEWPORT: case GL_SCISSOR_BOX: { *type = GL_INT; *numParams = 4; } return true; case GL_SHADER_COMPILER: case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: case GL_CONTEXT_ROBUST_ACCESS_EXT: { *type = GL_BOOL; *numParams = 1; } return true; case GL_COLOR_WRITEMASK: { *type = GL_BOOL; *numParams = 4; } return true; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: { *type = GL_FLOAT; *numParams = 1; } return true; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: { *type = GL_FLOAT; *numParams = 2; } return true; case GL_COLOR_CLEAR_VALUE: case GL_BLEND_COLOR: { *type = GL_FLOAT; *numParams = 4; } return true; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: if (!supportsTextureFilterAnisotropy()) { return false; } *type = GL_FLOAT; *numParams = 1; return true; } if (mClientVersion < 3) { return false; } // Check for ES3.0+ parameter names switch (pname) { case GL_MAX_UNIFORM_BUFFER_BINDINGS: case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: case GL_UNIFORM_BUFFER_BINDING: case GL_TRANSFORM_FEEDBACK_BINDING: case GL_COPY_READ_BUFFER_BINDING: case GL_COPY_WRITE_BUFFER_BINDING: case GL_TEXTURE_BINDING_3D: case GL_TEXTURE_BINDING_2D_ARRAY: case GL_MAX_3D_TEXTURE_SIZE: case GL_MAX_ARRAY_TEXTURE_LAYERS: case GL_MAX_VERTEX_UNIFORM_BLOCKS: case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: case GL_MAX_COMBINED_UNIFORM_BLOCKS: case GL_MAX_VARYING_COMPONENTS: case GL_VERTEX_ARRAY_BINDING: case GL_MAX_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: case GL_NUM_EXTENSIONS: case GL_MAJOR_VERSION: case GL_MINOR_VERSION: case GL_MAX_ELEMENTS_INDICES: case GL_MAX_ELEMENTS_VERTICES: case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: { *type = GL_INT; *numParams = 1; } return true; case GL_MAX_ELEMENT_INDEX: case GL_MAX_UNIFORM_BLOCK_SIZE: case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: case GL_MAX_SERVER_WAIT_TIMEOUT: { *type = GL_INT_64_ANGLEX; *numParams = 1; } return true; case GL_TRANSFORM_FEEDBACK_ACTIVE: case GL_TRANSFORM_FEEDBACK_PAUSED: { *type = GL_BOOL; *numParams = 1; } return true; } return false; } bool Context::getIndexedQueryParameterInfo(GLenum target, GLenum *type, unsigned int *numParams) { if (mClientVersion < 3) { return false; } switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: case GL_UNIFORM_BUFFER_BINDING: { *type = GL_INT; *numParams = 1; } return true; case GL_TRANSFORM_FEEDBACK_BUFFER_START: case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: case GL_UNIFORM_BUFFER_START: case GL_UNIFORM_BUFFER_SIZE: { *type = GL_INT_64_ANGLEX; *numParams = 1; } } return false; } // Applies the render target surface, depth stencil surface, viewport rectangle and // scissor rectangle to the renderer bool Context::applyRenderTarget(GLenum drawMode, bool ignoreViewport) { Framebuffer *framebufferObject = getDrawFramebuffer(); if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE) { return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION, false); } mRenderer->applyRenderTarget(framebufferObject); if (!mRenderer->setViewport(mState.viewport, mState.zNear, mState.zFar, drawMode, mState.rasterizer.frontFace, ignoreViewport)) { return false; } mRenderer->setScissorRectangle(mState.scissor, mState.scissorTest); return true; } // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device void Context::applyState(GLenum drawMode) { Framebuffer *framebufferObject = getDrawFramebuffer(); int samples = framebufferObject->getSamples(); mState.rasterizer.pointDrawMode = (drawMode == GL_POINTS); mState.rasterizer.multiSample = (samples != 0); mRenderer->setRasterizerState(mState.rasterizer); unsigned int mask = 0; if (mState.sampleCoverage) { if (mState.sampleCoverageValue != 0) { float threshold = 0.5f; for (int i = 0; i < samples; ++i) { mask <<= 1; if ((i + 1) * mState.sampleCoverageValue >= threshold) { threshold += 1.0f; mask |= 1; } } } if (mState.sampleCoverageInvert) { mask = ~mask; } } else { mask = 0xFFFFFFFF; } mRenderer->setBlendState(framebufferObject, mState.blend, mState.blendColor, mask); mRenderer->setDepthStencilState(mState.depthStencil, mState.stencilRef, mState.stencilBackRef, mState.rasterizer.frontFace == GL_CCW); } // Applies the shaders and shader constants to the Direct3D 9 device void Context::applyShaders(ProgramBinary *programBinary, bool transformFeedbackActive) { const VertexAttribute *vertexAttributes = getCurrentVertexArray()->getVertexAttributes(); VertexFormat inputLayout[gl::MAX_VERTEX_ATTRIBS]; VertexFormat::GetInputLayout(inputLayout, programBinary, vertexAttributes, mState.vertexAttribCurrentValues); mRenderer->applyShaders(programBinary, mState.rasterizer.rasterizerDiscard, transformFeedbackActive, inputLayout); programBinary->applyUniforms(); } size_t Context::getCurrentTexturesAndSamplerStates(ProgramBinary *programBinary, SamplerType type, Texture **outTextures, TextureType *outTextureTypes, SamplerState *outSamplers) { size_t samplerRange = programBinary->getUsedSamplerRange(type); for (size_t i = 0; i < samplerRange; i++) { outTextureTypes[i] = programBinary->getSamplerTextureType(type, i); GLint textureUnit = programBinary->getSamplerMapping(type, i); // OpenGL texture image unit index if (textureUnit != -1) { outTextures[i] = getSamplerTexture(textureUnit, outTextureTypes[i]); outTextures[i]->getSamplerState(&outSamplers[i]); if (mState.samplers[textureUnit] != 0) { Sampler *samplerObject = getSampler(mState.samplers[textureUnit]); samplerObject->getState(&outSamplers[i]); } } else { outTextures[i] = NULL; } } return samplerRange; } void Context::generateSwizzles(Texture *textures[], size_t count) { for (size_t i = 0; i < count; i++) { if (textures[i] && textures[i]->isSwizzled()) { mRenderer->generateSwizzle(textures[i]); } } } // For each Direct3D sampler of either the pixel or vertex stage, // looks up the corresponding OpenGL texture image unit and texture type, // and sets the texture and its addressing/filtering state (or NULL when inactive). void Context::applyTextures(SamplerType shaderType, Texture *textures[], TextureType *textureTypes, SamplerState *samplers, size_t textureCount, const FramebufferTextureSerialArray& framebufferSerials, size_t framebufferSerialCount) { // Range of Direct3D samplers of given sampler type size_t samplerCount = (shaderType == SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : mRenderer->getMaxVertexTextureImageUnits(); for (size_t samplerIndex = 0; samplerIndex < textureCount; samplerIndex++) { Texture *texture = textures[samplerIndex]; const SamplerState &sampler = samplers[samplerIndex]; TextureType textureType = textureTypes[samplerIndex]; if (texture) { // TODO: std::binary_search may become unavailable using older versions of GCC if (texture->isSamplerComplete(sampler) && !std::binary_search(framebufferSerials.begin(), framebufferSerials.begin() + framebufferSerialCount, texture->getTextureSerial())) { mRenderer->setSamplerState(shaderType, samplerIndex, sampler); mRenderer->setTexture(shaderType, samplerIndex, texture); texture->resetDirty(); } else { Texture *incompleteTexture = getIncompleteTexture(textureType); mRenderer->setTexture(shaderType, samplerIndex, incompleteTexture); incompleteTexture->resetDirty(); } } else { mRenderer->setTexture(shaderType, samplerIndex, NULL); } } for (size_t samplerIndex = textureCount; samplerIndex < samplerCount; samplerIndex++) { mRenderer->setTexture(shaderType, samplerIndex, NULL); } } bool Context::applyUniformBuffers() { Program *programObject = getProgram(mState.currentProgram); ProgramBinary *programBinary = programObject->getProgramBinary(); std::vector<gl::Buffer*> boundBuffers; for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < programBinary->getActiveUniformBlockCount(); uniformBlockIndex++) { GLuint blockBinding = programObject->getUniformBlockBinding(uniformBlockIndex); const OffsetBindingPointer<Buffer>& boundBuffer = mState.uniformBuffers[blockBinding]; if (boundBuffer.id() == 0) { // undefined behaviour return false; } else { gl::Buffer *uniformBuffer = boundBuffer.get(); ASSERT(uniformBuffer); boundBuffers.push_back(uniformBuffer); } } return programBinary->applyUniformBuffers(boundBuffers); } bool Context::applyTransformFeedbackBuffers() { TransformFeedback *curTransformFeedback = getCurrentTransformFeedback(); if (curTransformFeedback && curTransformFeedback->isStarted() && !curTransformFeedback->isPaused()) { Buffer *transformFeedbackBuffers[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS]; GLintptr transformFeedbackOffsets[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS]; for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { transformFeedbackBuffers[i] = mState.transformFeedbackBuffers[i].get(); transformFeedbackOffsets[i] = mState.transformFeedbackBuffers[i].getOffset(); } mRenderer->applyTransformFeedbackBuffers(transformFeedbackBuffers, transformFeedbackOffsets); return true; } else { return false; } } void Context::markTransformFeedbackUsage() { for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++) { Buffer *buffer = mState.transformFeedbackBuffers[i].get(); if (buffer) { buffer->markTransformFeedbackUsage(); } } } void Context::clear(GLbitfield mask) { if (isRasterizerDiscardEnabled()) { return; } ClearParameters clearParams = { 0 }; for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = false; } clearParams.colorFClearValue = mState.colorClearValue; clearParams.colorClearType = GL_FLOAT; clearParams.colorMaskRed = mState.blend.colorMaskRed; clearParams.colorMaskGreen = mState.blend.colorMaskGreen; clearParams.colorMaskBlue = mState.blend.colorMaskBlue; clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; clearParams.clearDepth = false; clearParams.depthClearValue = mState.depthClearValue; clearParams.clearStencil = false; clearParams.stencilClearValue = mState.stencilClearValue; clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; clearParams.scissorEnabled = mState.scissorTest; clearParams.scissor = mState.scissor; Framebuffer *framebufferObject = getDrawFramebuffer(); if (mask & GL_COLOR_BUFFER_BIT) { if (framebufferObject->hasEnabledColorAttachment()) { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = true; } } } if (mask & GL_DEPTH_BUFFER_BIT) { if (mState.depthStencil.depthMask && framebufferObject->getDepthbufferType() != GL_NONE) { clearParams.clearDepth = true; } } if (mask & GL_STENCIL_BUFFER_BIT) { if (framebufferObject->getStencilbufferType() != GL_NONE) { rx::RenderTarget *depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil(); if (!depthStencil) { ERR("Depth stencil pointer unexpectedly null."); return; } if (gl::GetStencilBits(depthStencil->getActualFormat(), mClientVersion) > 0) { clearParams.clearStencil = true; } } } if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, framebufferObject); } void Context::clearBufferfv(GLenum buffer, int drawbuffer, const float *values) { if (isRasterizerDiscardEnabled()) { return; } // glClearBufferfv can be called to clear the color buffer or depth buffer ClearParameters clearParams = { 0 }; if (buffer == GL_COLOR) { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i)); } clearParams.colorFClearValue = ColorF(values[0], values[1], values[2], values[3]); clearParams.colorClearType = GL_FLOAT; } else { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = false; } clearParams.colorFClearValue = mState.colorClearValue; clearParams.colorClearType = GL_FLOAT; } clearParams.colorMaskRed = mState.blend.colorMaskRed; clearParams.colorMaskGreen = mState.blend.colorMaskGreen; clearParams.colorMaskBlue = mState.blend.colorMaskBlue; clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; if (buffer == GL_DEPTH) { clearParams.clearDepth = true; clearParams.depthClearValue = values[0]; } else { clearParams.clearDepth = false; clearParams.depthClearValue = mState.depthClearValue; } clearParams.clearStencil = false; clearParams.stencilClearValue = mState.stencilClearValue; clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; clearParams.scissorEnabled = mState.scissorTest; clearParams.scissor = mState.scissor; if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, getDrawFramebuffer()); } void Context::clearBufferuiv(GLenum buffer, int drawbuffer, const unsigned int *values) { if (isRasterizerDiscardEnabled()) { return; } // glClearBufferuv can only be called to clear a color buffer ClearParameters clearParams = { 0 }; for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i)); } clearParams.colorUIClearValue = ColorUI(values[0], values[1], values[2], values[3]); clearParams.colorClearType = GL_UNSIGNED_INT; clearParams.colorMaskRed = mState.blend.colorMaskRed; clearParams.colorMaskGreen = mState.blend.colorMaskGreen; clearParams.colorMaskBlue = mState.blend.colorMaskBlue; clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; clearParams.clearDepth = false; clearParams.depthClearValue = mState.depthClearValue; clearParams.clearStencil = false; clearParams.stencilClearValue = mState.stencilClearValue; clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; clearParams.scissorEnabled = mState.scissorTest; clearParams.scissor = mState.scissor; if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, getDrawFramebuffer()); } void Context::clearBufferiv(GLenum buffer, int drawbuffer, const int *values) { if (isRasterizerDiscardEnabled()) { return; } // glClearBufferfv can be called to clear the color buffer or stencil buffer ClearParameters clearParams = { 0 }; if (buffer == GL_COLOR) { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i)); } clearParams.colorIClearValue = ColorI(values[0], values[1], values[2], values[3]); clearParams.colorClearType = GL_INT; } else { for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = false; } clearParams.colorFClearValue = mState.colorClearValue; clearParams.colorClearType = GL_FLOAT; } clearParams.colorMaskRed = mState.blend.colorMaskRed; clearParams.colorMaskGreen = mState.blend.colorMaskGreen; clearParams.colorMaskBlue = mState.blend.colorMaskBlue; clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; clearParams.clearDepth = false; clearParams.depthClearValue = mState.depthClearValue; if (buffer == GL_STENCIL) { clearParams.clearStencil = true; clearParams.stencilClearValue = values[1]; } else { clearParams.clearStencil = false; clearParams.stencilClearValue = mState.stencilClearValue; } clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; clearParams.scissorEnabled = mState.scissorTest; clearParams.scissor = mState.scissor; if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, getDrawFramebuffer()); } void Context::clearBufferfi(GLenum buffer, int drawbuffer, float depth, int stencil) { if (isRasterizerDiscardEnabled()) { return; } // glClearBufferfi can only be called to clear a depth stencil buffer ClearParameters clearParams = { 0 }; for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++) { clearParams.clearColor[i] = false; } clearParams.colorFClearValue = mState.colorClearValue; clearParams.colorClearType = GL_FLOAT; clearParams.colorMaskRed = mState.blend.colorMaskRed; clearParams.colorMaskGreen = mState.blend.colorMaskGreen; clearParams.colorMaskBlue = mState.blend.colorMaskBlue; clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; clearParams.clearDepth = true; clearParams.depthClearValue = depth; clearParams.clearStencil = true; clearParams.stencilClearValue = stencil; clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; clearParams.scissorEnabled = mState.scissorTest; clearParams.scissor = mState.scissor; if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport { return; } mRenderer->clear(clearParams, getDrawFramebuffer()); } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels) { gl::Framebuffer *framebuffer = getReadFramebuffer(); bool isSized = IsSizedInternalFormat(format, mClientVersion); GLenum sizedInternalFormat = (isSized ? format : GetSizedInternalFormat(format, type, mClientVersion)); GLuint outputPitch = GetRowPitch(sizedInternalFormat, type, mClientVersion, width, mState.pack.alignment); mRenderer->readPixels(framebuffer, x, y, width, height, format, type, outputPitch, mState.pack, pixels); } void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances) { if (!mState.currentProgram) { return gl::error(GL_INVALID_OPERATION); } ProgramBinary *programBinary = getCurrentProgramBinary(); programBinary->applyUniforms(); Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers); Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS]; TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS]; SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS]; size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers); generateSwizzles(vsTextures, vsTextureCount); generateSwizzles(psTextures, psTextureCount); if (!mRenderer->applyPrimitiveType(mode, count)) { return; } if (!applyRenderTarget(mode, false)) { return; } applyState(mode); GLenum err = mRenderer->applyVertexBuffer(programBinary, getCurrentVertexArray()->getVertexAttributes(), mState.vertexAttribCurrentValues, first, count, instances); if (err != GL_NO_ERROR) { return gl::error(err); } bool transformFeedbackActive = applyTransformFeedbackBuffers(); applyShaders(programBinary, transformFeedbackActive); FramebufferTextureSerialArray frameBufferSerials; size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials); applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount); applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount); if (!applyUniformBuffers()) { return; } if (!programBinary->validateSamplers(NULL)) { return gl::error(GL_INVALID_OPERATION); } if (!skipDraw(mode)) { mRenderer->drawArrays(mode, count, instances, transformFeedbackActive); if (transformFeedbackActive) { markTransformFeedbackUsage(); } } } void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances) { if (!mState.currentProgram) { return gl::error(GL_INVALID_OPERATION); } VertexArray *vao = getCurrentVertexArray(); if (!indices && !vao->getElementArrayBuffer()) { return gl::error(GL_INVALID_OPERATION); } ProgramBinary *programBinary = getCurrentProgramBinary(); programBinary->applyUniforms(); Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS]; size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers); Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS]; TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS]; SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS]; size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers); generateSwizzles(vsTextures, vsTextureCount); generateSwizzles(psTextures, psTextureCount); if (!mRenderer->applyPrimitiveType(mode, count)) { return; } if (!applyRenderTarget(mode, false)) { return; } applyState(mode); rx::TranslatedIndexData indexInfo; GLenum err = mRenderer->applyIndexBuffer(indices, vao->getElementArrayBuffer(), count, mode, type, &indexInfo); if (err != GL_NO_ERROR) { return gl::error(err); } GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; err = mRenderer->applyVertexBuffer(programBinary, vao->getVertexAttributes(), mState.vertexAttribCurrentValues, indexInfo.minIndex, vertexCount, instances); if (err != GL_NO_ERROR) { return gl::error(err); } bool transformFeedbackActive = applyTransformFeedbackBuffers(); // Transform feedback is not allowed for DrawElements, this error should have been caught at the API validation // layer. ASSERT(!transformFeedbackActive); applyShaders(programBinary, transformFeedbackActive); FramebufferTextureSerialArray frameBufferSerials; size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials); applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount); applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount); if (!applyUniformBuffers()) { return; } if (!programBinary->validateSamplers(NULL)) { return gl::error(GL_INVALID_OPERATION); } if (!skipDraw(mode)) { mRenderer->drawElements(mode, count, type, indices, vao->getElementArrayBuffer(), indexInfo, instances); } } // Implements glFlush when block is false, glFinish when block is true void Context::sync(bool block) { mRenderer->sync(block); } void Context::recordInvalidEnum() { mInvalidEnum = true; } void Context::recordInvalidValue() { mInvalidValue = true; } void Context::recordInvalidOperation() { mInvalidOperation = true; } void Context::recordOutOfMemory() { mOutOfMemory = true; } void Context::recordInvalidFramebufferOperation() { mInvalidFramebufferOperation = true; } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if (mInvalidEnum) { mInvalidEnum = false; return GL_INVALID_ENUM; } if (mInvalidValue) { mInvalidValue = false; return GL_INVALID_VALUE; } if (mInvalidOperation) { mInvalidOperation = false; return GL_INVALID_OPERATION; } if (mOutOfMemory) { mOutOfMemory = false; return GL_OUT_OF_MEMORY; } if (mInvalidFramebufferOperation) { mInvalidFramebufferOperation = false; return GL_INVALID_FRAMEBUFFER_OPERATION; } return GL_NO_ERROR; } GLenum Context::getResetStatus() { if (mResetStatus == GL_NO_ERROR && !mContextLost) { // mResetStatus will be set by the markContextLost callback // in the case a notification is sent mRenderer->testDeviceLost(true); } GLenum status = mResetStatus; if (mResetStatus != GL_NO_ERROR) { ASSERT(mContextLost); if (mRenderer->testDeviceResettable()) { mResetStatus = GL_NO_ERROR; } } return status; } bool Context::isResetNotificationEnabled() { return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); } int Context::getClientVersion() const { return mClientVersion; } int Context::getMajorShaderModel() const { return mMajorShaderModel; } float Context::getMaximumPointSize() const { return mMaximumPointSize; } unsigned int Context::getMaximumCombinedTextureImageUnits() const { return mRenderer->getMaxCombinedTextureImageUnits(); } unsigned int Context::getMaximumCombinedUniformBufferBindings() const { return mRenderer->getMaxVertexShaderUniformBuffers() + mRenderer->getMaxFragmentShaderUniformBuffers(); } int Context::getMaxSupportedSamples() const { return mRenderer->getMaxSupportedSamples(); } GLsizei Context::getMaxSupportedFormatSamples(GLenum internalFormat) const { return mRenderer->getMaxSupportedFormatSamples(internalFormat); } GLsizei Context::getNumSampleCounts(GLenum internalFormat) const { return mRenderer->getNumSampleCounts(internalFormat); } void Context::getSampleCounts(GLenum internalFormat, GLsizei bufSize, GLint *params) const { mRenderer->getSampleCounts(internalFormat, bufSize, params); } unsigned int Context::getMaxTransformFeedbackBufferBindings() const { return mRenderer->getMaxTransformFeedbackBuffers(); } GLintptr Context::getUniformBufferOffsetAlignment() const { // setting a large alignment forces uniform buffers to bind with zero offset return static_cast<GLintptr>(std::numeric_limits<GLint>::max()); } unsigned int Context::getMaximumRenderTargets() const { return mRenderer->getMaxRenderTargets(); } bool Context::supportsEventQueries() const { return mSupportsEventQueries; } bool Context::supportsOcclusionQueries() const { return mSupportsOcclusionQueries; } bool Context::supportsBGRATextures() const { return mSupportsBGRATextures; } bool Context::supportsDXT1Textures() const { return mSupportsDXT1Textures; } bool Context::supportsDXT3Textures() const { return mSupportsDXT3Textures; } bool Context::supportsDXT5Textures() const { return mSupportsDXT5Textures; } bool Context::supportsFloat32Textures() const { return mSupportsFloat32Textures; } bool Context::supportsFloat32LinearFilter() const { return mSupportsFloat32LinearFilter; } bool Context::supportsFloat32RenderableTextures() const { return mSupportsFloat32RenderableTextures; } bool Context::supportsFloat16Textures() const { return mSupportsFloat16Textures; } bool Context::supportsFloat16LinearFilter() const { return mSupportsFloat16LinearFilter; } bool Context::supportsFloat16RenderableTextures() const { return mSupportsFloat16RenderableTextures; } int Context::getMaximumRenderbufferDimension() const { return mMaxRenderbufferDimension; } int Context::getMaximum2DTextureDimension() const { return mMax2DTextureDimension; } int Context::getMaximumCubeTextureDimension() const { return mMaxCubeTextureDimension; } int Context::getMaximum3DTextureDimension() const { return mMax3DTextureDimension; } int Context::getMaximum2DArrayTextureLayers() const { return mMax2DArrayTextureLayers; } int Context::getMaximum2DTextureLevel() const { return mMax2DTextureLevel; } int Context::getMaximumCubeTextureLevel() const { return mMaxCubeTextureLevel; } int Context::getMaximum3DTextureLevel() const { return mMax3DTextureLevel; } int Context::getMaximum2DArrayTextureLevel() const { return mMax2DArrayTextureLevel; } bool Context::supportsLuminanceTextures() const { return mSupportsLuminanceTextures; } bool Context::supportsLuminanceAlphaTextures() const { return mSupportsLuminanceAlphaTextures; } bool Context::supportsRGTextures() const { return mSupportsRGTextures; } bool Context::supportsDepthTextures() const { return mSupportsDepthTextures; } bool Context::supports32bitIndices() const { return mSupports32bitIndices; } bool Context::supportsNonPower2Texture() const { return mSupportsNonPower2Texture; } bool Context::supportsInstancing() const { return mSupportsInstancing; } bool Context::supportsTextureFilterAnisotropy() const { return mSupportsTextureFilterAnisotropy; } bool Context::supportsPBOs() const { return mSupportsPBOs; } float Context::getTextureMaxAnisotropy() const { return mMaxTextureAnisotropy; } void Context::getCurrentReadFormatType(GLenum *internalFormat, GLenum *format, GLenum *type) { Framebuffer *framebuffer = getReadFramebuffer(); ASSERT(framebuffer && framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE); FramebufferAttachment *attachment = framebuffer->getReadColorbuffer(); ASSERT(attachment); *internalFormat = attachment->getActualFormat(); *format = gl::GetFormat(attachment->getActualFormat(), mClientVersion); *type = gl::GetType(attachment->getActualFormat(), mClientVersion); } void Context::detachBuffer(GLuint buffer) { // [OpenGL ES 2.0.24] section 2.9 page 22: // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. if (mState.arrayBuffer.id() == buffer) { mState.arrayBuffer.set(NULL); } // mark as freed among the vertex array objects for (auto vaoIt = mVertexArrayMap.begin(); vaoIt != mVertexArrayMap.end(); vaoIt++) { vaoIt->second->detachBuffer(buffer); } } void Context::detachTexture(GLuint texture) { // [OpenGL ES 2.0.24] section 3.8 page 84: // If a texture object is deleted, it is as if all texture units which are bound to that texture object are // rebound to texture object zero for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { if (mState.samplerTexture[type][sampler].id() == texture) { mState.samplerTexture[type][sampler].set(NULL); } } } // [OpenGL ES 2.0.24] section 4.4 page 112: // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is // as if Texture2DAttachment had been called, with a texture of 0, for each attachment point to which this // image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if (readFramebuffer) { readFramebuffer->detachTexture(texture); } if (drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachTexture(texture); } } void Context::detachFramebuffer(GLuint framebuffer) { // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if (mState.readFramebuffer == framebuffer) { bindReadFramebuffer(0); } if (mState.drawFramebuffer == framebuffer) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { // [OpenGL ES 2.0.24] section 4.4 page 109: // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer // had been executed with the target RENDERBUFFER and name of zero. if (mState.renderbuffer.id() == renderbuffer) { bindRenderbuffer(0); } // [OpenGL ES 2.0.24] section 4.4 page 111: // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment // point to which this image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if (readFramebuffer) { readFramebuffer->detachRenderbuffer(renderbuffer); } if (drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachRenderbuffer(renderbuffer); } } void Context::detachVertexArray(GLuint vertexArray) { // [OpenGL ES 3.0.2] section 2.10 page 43: // If a vertex array object that is currently bound is deleted, the binding // for that object reverts to zero and the default vertex array becomes current. if (mState.vertexArray == vertexArray) { bindVertexArray(0); } } void Context::detachTransformFeedback(GLuint transformFeedback) { if (mState.transformFeedback.id() == transformFeedback) { bindTransformFeedback(0); } } void Context::detachSampler(GLuint sampler) { // [OpenGL ES 3.0.2] section 3.8.2 pages 123-124: // If a sampler object that is currently bound to one or more texture units is // deleted, it is as though BindSampler is called once for each texture unit to // which the sampler is bound, with unit set to the texture unit and sampler set to zero. for (unsigned int textureUnit = 0; textureUnit < ArraySize(mState.samplers); textureUnit++) { if (mState.samplers[textureUnit] == sampler) { mState.samplers[textureUnit] = 0; } } } Texture *Context::getIncompleteTexture(TextureType type) { Texture *t = mIncompleteTextures[type].get(); if (t == NULL) { const GLubyte color[] = { 0, 0, 0, 255 }; const PixelUnpackState incompleteUnpackState(1); switch (type) { default: UNREACHABLE(); // default falls through to TEXTURE_2D case TEXTURE_2D: { Texture2D *incomplete2d = new Texture2D(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incomplete2d; } break; case TEXTURE_CUBE: { TextureCubeMap *incompleteCube = new TextureCubeMap(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incompleteCube; } break; case TEXTURE_3D: { Texture3D *incomplete3d = new Texture3D(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); incomplete3d->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incomplete3d; } break; case TEXTURE_2D_ARRAY: { Texture2DArray *incomplete2darray = new Texture2DArray(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); incomplete2darray->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color); t = incomplete2darray; } break; } mIncompleteTextures[type].set(t); } return t; } bool Context::skipDraw(GLenum drawMode) { if (drawMode == GL_POINTS) { // ProgramBinary assumes non-point rendering if gl_PointSize isn't written, // which affects varying interpolation. Since the value of gl_PointSize is // undefined when not written, just skip drawing to avoid unexpected results. if (!getCurrentProgramBinary()->usesPointSize()) { // This is stictly speaking not an error, but developers should be // notified of risking undefined behavior. ERR("Point rendering without writing to gl_PointSize."); return true; } } else if (IsTriangleMode(drawMode)) { if (mState.rasterizer.cullFace && mState.rasterizer.cullMode == GL_FRONT_AND_BACK) { return true; } } return false; } void Context::setVertexAttribf(GLuint index, const GLfloat values[4]) { ASSERT(index < gl::MAX_VERTEX_ATTRIBS); mState.vertexAttribCurrentValues[index].setFloatValues(values); } void Context::setVertexAttribu(GLuint index, const GLuint values[4]) { ASSERT(index < gl::MAX_VERTEX_ATTRIBS); mState.vertexAttribCurrentValues[index].setUnsignedIntValues(values); } void Context::setVertexAttribi(GLuint index, const GLint values[4]) { ASSERT(index < gl::MAX_VERTEX_ATTRIBS); mState.vertexAttribCurrentValues[index].setIntValues(values); } void Context::setVertexAttribDivisor(GLuint index, GLuint divisor) { getCurrentVertexArray()->setVertexAttribDivisor(index, divisor); } void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast<GLenum>(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast<GLenum>(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast<GLenum>(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast<GLenum>(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast<GLenum>(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast<GLfloat>(param)); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast<GLfloat>(param)); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(static_cast<GLenum>(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(static_cast<GLenum>(param)); break; default: UNREACHABLE(); break; } } void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(uiround<GLenum>(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(uiround<GLenum>(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(uiround<GLenum>(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(uiround<GLenum>(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(uiround<GLenum>(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(uiround<GLenum>(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(uiround<GLenum>(param)); break; default: UNREACHABLE(); break; } } GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: return static_cast<GLint>(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast<GLint>(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast<GLint>(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast<GLint>(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast<GLint>(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return uiround<GLint>(samplerObject->getMinLod()); case GL_TEXTURE_MAX_LOD: return uiround<GLint>(samplerObject->getMaxLod()); case GL_TEXTURE_COMPARE_MODE: return static_cast<GLint>(samplerObject->getComparisonMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLint>(samplerObject->getComparisonFunc()); default: UNREACHABLE(); return 0; } } GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch (pname) { case GL_TEXTURE_MIN_FILTER: return static_cast<GLfloat>(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast<GLfloat>(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast<GLfloat>(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast<GLfloat>(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast<GLfloat>(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod(); case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod(); case GL_TEXTURE_COMPARE_MODE: return static_cast<GLfloat>(samplerObject->getComparisonMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLfloat>(samplerObject->getComparisonFunc()); default: UNREACHABLE(); return 0; } } // keep list sorted in following order // OES extensions // EXT extensions // Vendor extensions void Context::initExtensionString() { // Do not report extension in GLES 3 contexts for now if (mClientVersion == 2) { // OES extensions if (supports32bitIndices()) { mExtensionStringList.push_back("GL_OES_element_index_uint"); } mExtensionStringList.push_back("GL_OES_packed_depth_stencil"); mExtensionStringList.push_back("GL_OES_get_program_binary"); mExtensionStringList.push_back("GL_OES_rgb8_rgba8"); if (supportsPBOs()) { mExtensionStringList.push_back("NV_pixel_buffer_object"); mExtensionStringList.push_back("GL_OES_mapbuffer"); mExtensionStringList.push_back("GL_EXT_map_buffer_range"); } if (mRenderer->getDerivativeInstructionSupport()) { mExtensionStringList.push_back("GL_OES_standard_derivatives"); } if (supportsFloat16Textures()) { mExtensionStringList.push_back("GL_OES_texture_half_float"); } if (supportsFloat16LinearFilter()) { mExtensionStringList.push_back("GL_OES_texture_half_float_linear"); } if (supportsFloat32Textures()) { mExtensionStringList.push_back("GL_OES_texture_float"); } if (supportsFloat32LinearFilter()) { mExtensionStringList.push_back("GL_OES_texture_float_linear"); } if (supportsRGTextures()) { mExtensionStringList.push_back("GL_EXT_texture_rg"); } if (supportsNonPower2Texture()) { mExtensionStringList.push_back("GL_OES_texture_npot"); } // Multi-vendor (EXT) extensions if (supportsOcclusionQueries()) { mExtensionStringList.push_back("GL_EXT_occlusion_query_boolean"); } mExtensionStringList.push_back("GL_EXT_read_format_bgra"); mExtensionStringList.push_back("GL_EXT_robustness"); mExtensionStringList.push_back("GL_EXT_shader_texture_lod"); if (supportsDXT1Textures()) { mExtensionStringList.push_back("GL_EXT_texture_compression_dxt1"); } if (supportsTextureFilterAnisotropy()) { mExtensionStringList.push_back("GL_EXT_texture_filter_anisotropic"); } if (supportsBGRATextures()) { mExtensionStringList.push_back("GL_EXT_texture_format_BGRA8888"); } if (mRenderer->getMaxRenderTargets() > 1) { mExtensionStringList.push_back("GL_EXT_draw_buffers"); } mExtensionStringList.push_back("GL_EXT_texture_storage"); mExtensionStringList.push_back("GL_EXT_frag_depth"); mExtensionStringList.push_back("GL_EXT_blend_minmax"); // ANGLE-specific extensions if (supportsDepthTextures()) { mExtensionStringList.push_back("GL_ANGLE_depth_texture"); } mExtensionStringList.push_back("GL_ANGLE_framebuffer_blit"); if (getMaxSupportedSamples() != 0) { mExtensionStringList.push_back("GL_ANGLE_framebuffer_multisample"); } if (supportsInstancing()) { mExtensionStringList.push_back("GL_ANGLE_instanced_arrays"); } mExtensionStringList.push_back("GL_ANGLE_pack_reverse_row_order"); if (supportsDXT3Textures()) { mExtensionStringList.push_back("GL_ANGLE_texture_compression_dxt3"); } if (supportsDXT5Textures()) { mExtensionStringList.push_back("GL_ANGLE_texture_compression_dxt5"); } mExtensionStringList.push_back("GL_ANGLE_texture_usage"); mExtensionStringList.push_back("GL_ANGLE_translated_shader_source"); // Other vendor-specific extensions if (supportsEventQueries()) { mExtensionStringList.push_back("GL_NV_fence"); } } if (mClientVersion == 3) { mExtensionStringList.push_back("GL_EXT_color_buffer_float"); mExtensionStringList.push_back("GL_EXT_read_format_bgra"); if (supportsBGRATextures()) { mExtensionStringList.push_back("GL_EXT_texture_format_BGRA8888"); } } // Join the extension strings to one long string for use with GetString std::stringstream strstr; for (unsigned int extensionIndex = 0; extensionIndex < mExtensionStringList.size(); extensionIndex++) { strstr << mExtensionStringList[extensionIndex]; strstr << " "; } mCombinedExtensionsString = makeStaticString(strstr.str()); } const char *Context::getCombinedExtensionsString() const { return mCombinedExtensionsString; } const char *Context::getExtensionString(const GLuint index) const { ASSERT(index < mExtensionStringList.size()); return mExtensionStringList[index].c_str(); } unsigned int Context::getNumExtensions() const { return mExtensionStringList.size(); } void Context::initRendererString() { std::ostringstream rendererString; rendererString << "ANGLE ("; rendererString << mRenderer->getRendererDescription(); rendererString << ")"; mRendererString = makeStaticString(rendererString.str()); } const char *Context::getRendererString() const { return mRendererString; } size_t Context::getBoundFramebufferTextureSerials(FramebufferTextureSerialArray *outSerialArray) { size_t serialCount = 0; Framebuffer *drawFramebuffer = getDrawFramebuffer(); for (unsigned int i = 0; i < IMPLEMENTATION_MAX_DRAW_BUFFERS; i++) { FramebufferAttachment *attachment = drawFramebuffer->getColorbuffer(i); if (attachment && attachment->isTexture()) { (*outSerialArray)[serialCount++] = attachment->getTextureSerial(); } } FramebufferAttachment *depthStencilAttachment = drawFramebuffer->getDepthOrStencilbuffer(); if (depthStencilAttachment && depthStencilAttachment->isTexture()) { (*outSerialArray)[serialCount++] = depthStencilAttachment->getTextureSerial(); } std::sort(outSerialArray->begin(), outSerialArray->begin() + serialCount); return serialCount; } void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); bool blitRenderTarget = false; bool blitDepth = false; bool blitStencil = false; if ((mask & GL_COLOR_BUFFER_BIT) && readFramebuffer->getReadColorbuffer() && drawFramebuffer->getFirstColorbuffer()) { blitRenderTarget = true; } if ((mask & GL_STENCIL_BUFFER_BIT) && readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) { blitStencil = true; } if ((mask & GL_DEPTH_BUFFER_BIT) && readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) { blitDepth = true; } gl::Rectangle srcRect(srcX0, srcY0, srcX1 - srcX0, srcY1 - srcY0); gl::Rectangle dstRect(dstX0, dstY0, dstX1 - dstX0, dstY1 - dstY0); if (blitRenderTarget || blitDepth || blitStencil) { const gl::Rectangle *scissor = mState.scissorTest ? &mState.scissor : NULL; mRenderer->blitRect(readFramebuffer, srcRect, drawFramebuffer, dstRect, scissor, blitRenderTarget, blitDepth, blitStencil, filter); } } void Context::invalidateFrameBuffer(GLenum target, GLsizei numAttachments, const GLenum* attachments, GLint x, GLint y, GLsizei width, GLsizei height) { Framebuffer *frameBuffer = NULL; switch (target) { case GL_FRAMEBUFFER: case GL_DRAW_FRAMEBUFFER: frameBuffer = getDrawFramebuffer(); break; case GL_READ_FRAMEBUFFER: frameBuffer = getReadFramebuffer(); break; default: UNREACHABLE(); } if (frameBuffer && frameBuffer->completeness() == GL_FRAMEBUFFER_COMPLETE) { for (int i = 0; i < numAttachments; ++i) { rx::RenderTarget *renderTarget = NULL; if (attachments[i] >= GL_COLOR_ATTACHMENT0 && attachments[i] <= GL_COLOR_ATTACHMENT15) { gl::FramebufferAttachment *attachment = frameBuffer->getColorbuffer(attachments[i] - GL_COLOR_ATTACHMENT0); if (attachment) { renderTarget = attachment->getRenderTarget(); } } else if (attachments[i] == GL_COLOR) { gl::FramebufferAttachment *attachment = frameBuffer->getColorbuffer(0); if (attachment) { renderTarget = attachment->getRenderTarget(); } } else { gl::FramebufferAttachment *attachment = NULL; switch (attachments[i]) { case GL_DEPTH_ATTACHMENT: case GL_DEPTH: attachment = frameBuffer->getDepthbuffer(); break; case GL_STENCIL_ATTACHMENT: case GL_STENCIL: attachment = frameBuffer->getStencilbuffer(); break; case GL_DEPTH_STENCIL_ATTACHMENT: attachment = frameBuffer->getDepthOrStencilbuffer(); break; default: UNREACHABLE(); } if (attachment) { renderTarget = attachment->getDepthStencil(); } } if (renderTarget) { renderTarget->invalidate(x, y, width, height); } } } } bool Context::hasMappedBuffer(GLenum target) const { if (target == GL_ARRAY_BUFFER) { for (unsigned int attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; attribIndex++) { const gl::VertexAttribute &vertexAttrib = getVertexAttribState(attribIndex); gl::Buffer *boundBuffer = vertexAttrib.mBoundBuffer.get(); if (vertexAttrib.mArrayEnabled && boundBuffer && boundBuffer->mapped()) { return true; } } } else if (target == GL_ELEMENT_ARRAY_BUFFER) { Buffer *elementBuffer = getElementArrayBuffer(); return (elementBuffer && elementBuffer->mapped()); } else if (target == GL_TRANSFORM_FEEDBACK_BUFFER) { UNIMPLEMENTED(); } else UNREACHABLE(); return false; } } extern "C" { gl::Context *glCreateContext(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) { return new gl::Context(clientVersion, shareContext, renderer, notifyResets, robustAccess); } void glDestroyContext(gl::Context *context) { delete context; if (context == gl::getContext()) { gl::makeCurrent(NULL, NULL, NULL); } } void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface) { gl::makeCurrent(context, display, surface); } gl::Context *glGetCurrentContext() { return gl::getContext(); } }