// // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // mathutil.h: Math and bit manipulation functions. #ifndef LIBGLESV2_MATHUTIL_H_ #define LIBGLESV2_MATHUTIL_H_ #include "common/debug.h" #if defined(_WIN32) #include <intrin.h> #endif #include <limits> #include <algorithm> #include <string.h> namespace gl { const unsigned int Float32One = 0x3F800000; const unsigned short Float16One = 0x3C00; struct Vector4 { Vector4() {} Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} float x; float y; float z; float w; }; inline bool isPow2(int x) { return (x & (x - 1)) == 0 && (x != 0); } inline int log2(int x) { int r = 0; while ((x >> r) > 1) r++; return r; } inline unsigned int ceilPow2(unsigned int x) { if (x != 0) x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } inline int clampToInt(unsigned int x) { return static_cast<int>(std::min(x, static_cast<unsigned int>(std::numeric_limits<int>::max()))); } template <typename DestT, typename SrcT> inline DestT clampCast(SrcT value) { // This assumes SrcT can properly represent DestT::min/max // Unfortunately we can't use META_ASSERT without C++11 constexpr support ASSERT(static_cast<DestT>(static_cast<SrcT>(std::numeric_limits<DestT>::min())) == std::numeric_limits<DestT>::min()); ASSERT(static_cast<DestT>(static_cast<SrcT>(std::numeric_limits<DestT>::max())) == std::numeric_limits<DestT>::max()); SrcT lo = static_cast<SrcT>(std::numeric_limits<DestT>::min()); SrcT hi = static_cast<SrcT>(std::numeric_limits<DestT>::max()); return static_cast<DestT>(value > lo ? (value > hi ? hi : value) : lo); } template<typename T, typename MIN, typename MAX> inline T clamp(T x, MIN min, MAX max) { // Since NaNs fail all comparison tests, a NaN value will default to min return x > min ? (x > max ? max : x) : min; } inline float clamp01(float x) { return clamp(x, 0.0f, 1.0f); } template<const int n> inline unsigned int unorm(float x) { const unsigned int max = 0xFFFFFFFF >> (32 - n); if (x > 1) { return max; } else if (x < 0) { return 0; } else { return (unsigned int)(max * x + 0.5f); } } inline bool supportsSSE2() { #if defined(_WIN32) static bool checked = false; static bool supports = false; if (checked) { return supports; } int info[4]; __cpuid(info, 0); if (info[0] >= 1) { __cpuid(info, 1); supports = (info[3] >> 26) & 1; } checked = true; return supports; #else UNIMPLEMENTED(); return false; #endif } template <typename destType, typename sourceType> destType bitCast(const sourceType &source) { size_t copySize = std::min(sizeof(destType), sizeof(sourceType)); destType output; memcpy(&output, &source, copySize); return output; } inline unsigned short float32ToFloat16(float fp32) { unsigned int fp32i = (unsigned int&)fp32; unsigned int sign = (fp32i & 0x80000000) >> 16; unsigned int abs = fp32i & 0x7FFFFFFF; if(abs > 0x47FFEFFF) // Infinity { return sign | 0x7FFF; } else if(abs < 0x38800000) // Denormal { unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000; int e = 113 - (abs >> 23); if(e < 24) { abs = mantissa >> e; } else { abs = 0; } return sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13; } else { return sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13; } } float float16ToFloat32(unsigned short h); unsigned int convertRGBFloatsTo999E5(float red, float green, float blue); void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue); inline unsigned short float32ToFloat11(float fp32) { const unsigned int float32MantissaMask = 0x7FFFFF; const unsigned int float32ExponentMask = 0x7F800000; const unsigned int float32SignMask = 0x80000000; const unsigned int float32ValueMask = ~float32SignMask; const unsigned int float32ExponentFirstBit = 23; const unsigned int float32ExponentBias = 127; const unsigned short float11Max = 0x7BF; const unsigned short float11MantissaMask = 0x3F; const unsigned short float11ExponentMask = 0x7C0; const unsigned short float11BitMask = 0x7FF; const unsigned int float11ExponentBias = 14; const unsigned int float32Maxfloat11 = 0x477E0000; const unsigned int float32Minfloat11 = 0x38800000; const unsigned int float32Bits = bitCast<unsigned int>(fp32); const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; unsigned int float32Val = float32Bits & float32ValueMask; if ((float32Val & float32ExponentMask) == float32ExponentMask) { // INF or NAN if ((float32Val & float32MantissaMask) != 0) { return float11ExponentMask | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & float11MantissaMask); } else if (float32Sign) { // -INF is clamped to 0 since float11 is positive only return 0; } else { return float11ExponentMask; } } else if (float32Sign) { // float11 is positive only, so clamp to zero return 0; } else if (float32Val > float32Maxfloat11) { // The number is too large to be represented as a float11, set to max return float11Max; } else { if (float32Val < float32Minfloat11) { // The number is too small to be represented as a normalized float11 // Convert it to a denormalized value. const unsigned int shift = (float32ExponentBias - float11ExponentBias) - (float32Val >> float32ExponentFirstBit); float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; } else { // Rebias the exponent to represent the value as a normalized float11 float32Val += 0xC8000000; } return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; } } inline unsigned short float32ToFloat10(float fp32) { const unsigned int float32MantissaMask = 0x7FFFFF; const unsigned int float32ExponentMask = 0x7F800000; const unsigned int float32SignMask = 0x80000000; const unsigned int float32ValueMask = ~float32SignMask; const unsigned int float32ExponentFirstBit = 23; const unsigned int float32ExponentBias = 127; const unsigned short float10Max = 0x3DF; const unsigned short float10MantissaMask = 0x1F; const unsigned short float10ExponentMask = 0x3E0; const unsigned short float10BitMask = 0x3FF; const unsigned int float10ExponentBias = 14; const unsigned int float32Maxfloat10 = 0x477C0000; const unsigned int float32Minfloat10 = 0x38800000; const unsigned int float32Bits = bitCast<unsigned int>(fp32); const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; unsigned int float32Val = float32Bits & float32ValueMask; if ((float32Val & float32ExponentMask) == float32ExponentMask) { // INF or NAN if ((float32Val & float32MantissaMask) != 0) { return float10ExponentMask | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & float10MantissaMask); } else if (float32Sign) { // -INF is clamped to 0 since float11 is positive only return 0; } else { return float10ExponentMask; } } else if (float32Sign) { // float10 is positive only, so clamp to zero return 0; } else if (float32Val > float32Maxfloat10) { // The number is too large to be represented as a float11, set to max return float10Max; } else { if (float32Val < float32Minfloat10) { // The number is too small to be represented as a normalized float11 // Convert it to a denormalized value. const unsigned int shift = (float32ExponentBias - float10ExponentBias) - (float32Val >> float32ExponentFirstBit); float32Val = ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; } else { // Rebias the exponent to represent the value as a normalized float11 float32Val += 0xC8000000; } return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; } } inline float float11ToFloat32(unsigned short fp11) { unsigned short exponent = (fp11 >> 6) & 0x1F; unsigned short mantissa = fp11 & 0x3F; if (exponent == 0x1F) { // INF or NAN return bitCast<float>(0x7f800000 | (mantissa << 17)); } else { if (exponent != 0) { // normalized } else if (mantissa != 0) { // The value is denormalized exponent = 1; do { exponent--; mantissa <<= 1; } while ((mantissa & 0x40) == 0); mantissa = mantissa & 0x3F; } else // The value is zero { exponent = -112; } return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17)); } } inline float float10ToFloat32(unsigned short fp11) { unsigned short exponent = (fp11 >> 5) & 0x1F; unsigned short mantissa = fp11 & 0x1F; if (exponent == 0x1F) { // INF or NAN return bitCast<float>(0x7f800000 | (mantissa << 17)); } else { if (exponent != 0) { // normalized } else if (mantissa != 0) { // The value is denormalized exponent = 1; do { exponent--; mantissa <<= 1; } while ((mantissa & 0x20) == 0); mantissa = mantissa & 0x1F; } else // The value is zero { exponent = -112; } return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18)); } } template <typename T> inline float normalizedToFloat(T input) { META_ASSERT(std::numeric_limits<T>::is_integer); const float inverseMax = 1.0f / std::numeric_limits<T>::max(); return input * inverseMax; } template <unsigned int inputBitCount, typename T> inline float normalizedToFloat(T input) { META_ASSERT(std::numeric_limits<T>::is_integer); META_ASSERT(inputBitCount < (sizeof(T) * 8)); const float inverseMax = 1.0f / ((1 << inputBitCount) - 1); return input * inverseMax; } template <typename T> inline T floatToNormalized(float input) { return std::numeric_limits<T>::max() * input + 0.5f; } template <unsigned int outputBitCount, typename T> inline T floatToNormalized(float input) { META_ASSERT(outputBitCount < (sizeof(T) * 8)); return ((1 << outputBitCount) - 1) * input + 0.5f; } template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> inline T getShiftedData(T input) { META_ASSERT(inputBitCount + inputBitStart <= (sizeof(T) * 8)); const T mask = (1 << inputBitCount) - 1; return (input >> inputBitStart) & mask; } template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> inline T shiftData(T input) { META_ASSERT(inputBitCount + inputBitStart <= (sizeof(T) * 8)); const T mask = (1 << inputBitCount) - 1; return (input & mask) << inputBitStart; } inline unsigned char average(unsigned char a, unsigned char b) { return ((a ^ b) >> 1) + (a & b); } inline signed char average(signed char a, signed char b) { return ((short)a + (short)b) / 2; } inline unsigned short average(unsigned short a, unsigned short b) { return ((a ^ b) >> 1) + (a & b); } inline signed short average(signed short a, signed short b) { return ((int)a + (int)b) / 2; } inline unsigned int average(unsigned int a, unsigned int b) { return ((a ^ b) >> 1) + (a & b); } inline signed int average(signed int a, signed int b) { return ((long long)a + (long long)b) / 2; } inline float average(float a, float b) { return (a + b) * 0.5f; } inline unsigned short averageHalfFloat(unsigned short a, unsigned short b) { return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f); } inline unsigned int averageFloat11(unsigned int a, unsigned int b) { return float32ToFloat11((float11ToFloat32(a) + float11ToFloat32(b)) * 0.5f); } inline unsigned int averageFloat10(unsigned int a, unsigned int b) { return float32ToFloat10((float10ToFloat32(a) + float10ToFloat32(b)) * 0.5f); } } namespace rx { struct Range { Range() {} Range(int lo, int hi) : start(lo), end(hi) { ASSERT(lo <= hi); } int start; int end; }; template <typename T> T roundUp(const T value, const T alignment) { return value + alignment - 1 - (value - 1) % alignment; } template <class T> inline bool IsUnsignedAdditionSafe(T lhs, T rhs) { META_ASSERT(!std::numeric_limits<T>::is_signed); return (rhs <= std::numeric_limits<T>::max() - lhs); } template <class T> inline bool IsUnsignedMultiplicationSafe(T lhs, T rhs) { META_ASSERT(!std::numeric_limits<T>::is_signed); return (lhs == T(0) || rhs == T(0) || (rhs <= std::numeric_limits<T>::max() / lhs)); } template <class SmallIntT, class BigIntT> inline bool IsIntegerCastSafe(BigIntT bigValue) { return (static_cast<BigIntT>(static_cast<SmallIntT>(bigValue)) == bigValue); } } #endif // LIBGLESV2_MATHUTIL_H_