// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/udp/udp_socket_win.h" #include <mstcpip.h> #include "base/callback.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/metrics/histogram.h" #include "base/metrics/sparse_histogram.h" #include "base/metrics/stats_counters.h" #include "base/rand_util.h" #include "net/base/io_buffer.h" #include "net/base/ip_endpoint.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" #include "net/base/net_util.h" #include "net/base/winsock_init.h" #include "net/base/winsock_util.h" #include "net/socket/socket_descriptor.h" #include "net/udp/udp_net_log_parameters.h" namespace { const int kBindRetries = 10; const int kPortStart = 1024; const int kPortEnd = 65535; } // namespace namespace net { // This class encapsulates all the state that has to be preserved as long as // there is a network IO operation in progress. If the owner UDPSocketWin // is destroyed while an operation is in progress, the Core is detached and it // lives until the operation completes and the OS doesn't reference any resource // declared on this class anymore. class UDPSocketWin::Core : public base::RefCounted<Core> { public: explicit Core(UDPSocketWin* socket); // Start watching for the end of a read or write operation. void WatchForRead(); void WatchForWrite(); // The UDPSocketWin is going away. void Detach() { socket_ = NULL; } // The separate OVERLAPPED variables for asynchronous operation. OVERLAPPED read_overlapped_; OVERLAPPED write_overlapped_; // The buffers used in Read() and Write(). scoped_refptr<IOBuffer> read_iobuffer_; scoped_refptr<IOBuffer> write_iobuffer_; // The address storage passed to WSARecvFrom(). SockaddrStorage recv_addr_storage_; private: friend class base::RefCounted<Core>; class ReadDelegate : public base::win::ObjectWatcher::Delegate { public: explicit ReadDelegate(Core* core) : core_(core) {} virtual ~ReadDelegate() {} // base::ObjectWatcher::Delegate methods: virtual void OnObjectSignaled(HANDLE object); private: Core* const core_; }; class WriteDelegate : public base::win::ObjectWatcher::Delegate { public: explicit WriteDelegate(Core* core) : core_(core) {} virtual ~WriteDelegate() {} // base::ObjectWatcher::Delegate methods: virtual void OnObjectSignaled(HANDLE object); private: Core* const core_; }; ~Core(); // The socket that created this object. UDPSocketWin* socket_; // |reader_| handles the signals from |read_watcher_|. ReadDelegate reader_; // |writer_| handles the signals from |write_watcher_|. WriteDelegate writer_; // |read_watcher_| watches for events from Read(). base::win::ObjectWatcher read_watcher_; // |write_watcher_| watches for events from Write(); base::win::ObjectWatcher write_watcher_; DISALLOW_COPY_AND_ASSIGN(Core); }; UDPSocketWin::Core::Core(UDPSocketWin* socket) : socket_(socket), reader_(this), writer_(this) { memset(&read_overlapped_, 0, sizeof(read_overlapped_)); memset(&write_overlapped_, 0, sizeof(write_overlapped_)); read_overlapped_.hEvent = WSACreateEvent(); write_overlapped_.hEvent = WSACreateEvent(); } UDPSocketWin::Core::~Core() { // Make sure the message loop is not watching this object anymore. read_watcher_.StopWatching(); write_watcher_.StopWatching(); WSACloseEvent(read_overlapped_.hEvent); memset(&read_overlapped_, 0xaf, sizeof(read_overlapped_)); WSACloseEvent(write_overlapped_.hEvent); memset(&write_overlapped_, 0xaf, sizeof(write_overlapped_)); } void UDPSocketWin::Core::WatchForRead() { // We grab an extra reference because there is an IO operation in progress. // Balanced in ReadDelegate::OnObjectSignaled(). AddRef(); read_watcher_.StartWatching(read_overlapped_.hEvent, &reader_); } void UDPSocketWin::Core::WatchForWrite() { // We grab an extra reference because there is an IO operation in progress. // Balanced in WriteDelegate::OnObjectSignaled(). AddRef(); write_watcher_.StartWatching(write_overlapped_.hEvent, &writer_); } void UDPSocketWin::Core::ReadDelegate::OnObjectSignaled(HANDLE object) { DCHECK_EQ(object, core_->read_overlapped_.hEvent); if (core_->socket_) core_->socket_->DidCompleteRead(); core_->Release(); } void UDPSocketWin::Core::WriteDelegate::OnObjectSignaled(HANDLE object) { DCHECK_EQ(object, core_->write_overlapped_.hEvent); if (core_->socket_) core_->socket_->DidCompleteWrite(); core_->Release(); } //----------------------------------------------------------------------------- UDPSocketWin::UDPSocketWin(DatagramSocket::BindType bind_type, const RandIntCallback& rand_int_cb, net::NetLog* net_log, const net::NetLog::Source& source) : socket_(INVALID_SOCKET), addr_family_(0), socket_options_(SOCKET_OPTION_MULTICAST_LOOP), multicast_interface_(0), multicast_time_to_live_(1), bind_type_(bind_type), rand_int_cb_(rand_int_cb), recv_from_address_(NULL), net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_UDP_SOCKET)) { EnsureWinsockInit(); net_log_.BeginEvent(NetLog::TYPE_SOCKET_ALIVE, source.ToEventParametersCallback()); if (bind_type == DatagramSocket::RANDOM_BIND) DCHECK(!rand_int_cb.is_null()); } UDPSocketWin::~UDPSocketWin() { Close(); net_log_.EndEvent(NetLog::TYPE_SOCKET_ALIVE); } void UDPSocketWin::Close() { DCHECK(CalledOnValidThread()); if (!is_connected()) return; // Zero out any pending read/write callback state. read_callback_.Reset(); recv_from_address_ = NULL; write_callback_.Reset(); base::TimeTicks start_time = base::TimeTicks::Now(); closesocket(socket_); UMA_HISTOGRAM_TIMES("Net.UDPSocketWinClose", base::TimeTicks::Now() - start_time); socket_ = INVALID_SOCKET; addr_family_ = 0; core_->Detach(); core_ = NULL; } int UDPSocketWin::GetPeerAddress(IPEndPoint* address) const { DCHECK(CalledOnValidThread()); DCHECK(address); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; // TODO(szym): Simplify. http://crbug.com/126152 if (!remote_address_.get()) { SockaddrStorage storage; if (getpeername(socket_, storage.addr, &storage.addr_len)) return MapSystemError(WSAGetLastError()); scoped_ptr<IPEndPoint> address(new IPEndPoint()); if (!address->FromSockAddr(storage.addr, storage.addr_len)) return ERR_ADDRESS_INVALID; remote_address_.reset(address.release()); } *address = *remote_address_; return OK; } int UDPSocketWin::GetLocalAddress(IPEndPoint* address) const { DCHECK(CalledOnValidThread()); DCHECK(address); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; // TODO(szym): Simplify. http://crbug.com/126152 if (!local_address_.get()) { SockaddrStorage storage; if (getsockname(socket_, storage.addr, &storage.addr_len)) return MapSystemError(WSAGetLastError()); scoped_ptr<IPEndPoint> address(new IPEndPoint()); if (!address->FromSockAddr(storage.addr, storage.addr_len)) return ERR_ADDRESS_INVALID; local_address_.reset(address.release()); net_log_.AddEvent(NetLog::TYPE_UDP_LOCAL_ADDRESS, CreateNetLogUDPConnectCallback(local_address_.get())); } *address = *local_address_; return OK; } int UDPSocketWin::Read(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return RecvFrom(buf, buf_len, NULL, callback); } int UDPSocketWin::RecvFrom(IOBuffer* buf, int buf_len, IPEndPoint* address, const CompletionCallback& callback) { DCHECK(CalledOnValidThread()); DCHECK_NE(INVALID_SOCKET, socket_); DCHECK(read_callback_.is_null()); DCHECK(!recv_from_address_); DCHECK(!callback.is_null()); // Synchronous operation not supported. DCHECK_GT(buf_len, 0); int nread = InternalRecvFrom(buf, buf_len, address); if (nread != ERR_IO_PENDING) return nread; read_callback_ = callback; recv_from_address_ = address; return ERR_IO_PENDING; } int UDPSocketWin::Write(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { return SendToOrWrite(buf, buf_len, NULL, callback); } int UDPSocketWin::SendTo(IOBuffer* buf, int buf_len, const IPEndPoint& address, const CompletionCallback& callback) { return SendToOrWrite(buf, buf_len, &address, callback); } int UDPSocketWin::SendToOrWrite(IOBuffer* buf, int buf_len, const IPEndPoint* address, const CompletionCallback& callback) { DCHECK(CalledOnValidThread()); DCHECK_NE(INVALID_SOCKET, socket_); DCHECK(write_callback_.is_null()); DCHECK(!callback.is_null()); // Synchronous operation not supported. DCHECK_GT(buf_len, 0); DCHECK(!send_to_address_.get()); int nwrite = InternalSendTo(buf, buf_len, address); if (nwrite != ERR_IO_PENDING) return nwrite; if (address) send_to_address_.reset(new IPEndPoint(*address)); write_callback_ = callback; return ERR_IO_PENDING; } int UDPSocketWin::Connect(const IPEndPoint& address) { net_log_.BeginEvent(NetLog::TYPE_UDP_CONNECT, CreateNetLogUDPConnectCallback(&address)); int rv = InternalConnect(address); if (rv != OK) Close(); net_log_.EndEventWithNetErrorCode(NetLog::TYPE_UDP_CONNECT, rv); return rv; } int UDPSocketWin::InternalConnect(const IPEndPoint& address) { DCHECK(!is_connected()); DCHECK(!remote_address_.get()); int addr_family = address.GetSockAddrFamily(); int rv = CreateSocket(addr_family); if (rv < 0) return rv; if (bind_type_ == DatagramSocket::RANDOM_BIND) { // Construct IPAddressNumber of appropriate size (IPv4 or IPv6) of 0s, // representing INADDR_ANY or in6addr_any. size_t addr_size = addr_family == AF_INET ? kIPv4AddressSize : kIPv6AddressSize; IPAddressNumber addr_any(addr_size); rv = RandomBind(addr_any); } // else connect() does the DatagramSocket::DEFAULT_BIND if (rv < 0) { UMA_HISTOGRAM_SPARSE_SLOWLY("Net.UdpSocketRandomBindErrorCode", -rv); Close(); return rv; } SockaddrStorage storage; if (!address.ToSockAddr(storage.addr, &storage.addr_len)) return ERR_ADDRESS_INVALID; rv = connect(socket_, storage.addr, storage.addr_len); if (rv < 0) { // Close() may change the last error. Map it beforehand. int result = MapSystemError(WSAGetLastError()); Close(); return result; } remote_address_.reset(new IPEndPoint(address)); return rv; } int UDPSocketWin::Bind(const IPEndPoint& address) { DCHECK(!is_connected()); int rv = CreateSocket(address.GetSockAddrFamily()); if (rv < 0) return rv; rv = SetSocketOptions(); if (rv < 0) { Close(); return rv; } rv = DoBind(address); if (rv < 0) { Close(); return rv; } local_address_.reset(); return rv; } int UDPSocketWin::CreateSocket(int addr_family) { addr_family_ = addr_family; socket_ = CreatePlatformSocket(addr_family_, SOCK_DGRAM, IPPROTO_UDP); if (socket_ == INVALID_SOCKET) return MapSystemError(WSAGetLastError()); core_ = new Core(this); return OK; } int UDPSocketWin::SetReceiveBufferSize(int32 size) { DCHECK(CalledOnValidThread()); int rv = setsockopt(socket_, SOL_SOCKET, SO_RCVBUF, reinterpret_cast<const char*>(&size), sizeof(size)); if (rv != 0) return MapSystemError(WSAGetLastError()); // According to documentation, setsockopt may succeed, but we need to check // the results via getsockopt to be sure it works on Windows. int32 actual_size = 0; int option_size = sizeof(actual_size); rv = getsockopt(socket_, SOL_SOCKET, SO_RCVBUF, reinterpret_cast<char*>(&actual_size), &option_size); if (rv != 0) return MapSystemError(WSAGetLastError()); if (actual_size >= size) return OK; UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableReceiveBuffer", actual_size, 1000, 1000000, 50); return ERR_SOCKET_RECEIVE_BUFFER_SIZE_UNCHANGEABLE; } int UDPSocketWin::SetSendBufferSize(int32 size) { DCHECK(CalledOnValidThread()); int rv = setsockopt(socket_, SOL_SOCKET, SO_SNDBUF, reinterpret_cast<const char*>(&size), sizeof(size)); if (rv != 0) return MapSystemError(WSAGetLastError()); // According to documentation, setsockopt may succeed, but we need to check // the results via getsockopt to be sure it works on Windows. int32 actual_size = 0; int option_size = sizeof(actual_size); rv = getsockopt(socket_, SOL_SOCKET, SO_SNDBUF, reinterpret_cast<char*>(&actual_size), &option_size); if (rv != 0) return MapSystemError(WSAGetLastError()); if (actual_size >= size) return OK; UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableSendBuffer", actual_size, 1000, 1000000, 50); return ERR_SOCKET_SEND_BUFFER_SIZE_UNCHANGEABLE; } void UDPSocketWin::AllowAddressReuse() { DCHECK(CalledOnValidThread()); DCHECK(!is_connected()); socket_options_ |= SOCKET_OPTION_REUSE_ADDRESS; } void UDPSocketWin::AllowBroadcast() { DCHECK(CalledOnValidThread()); DCHECK(!is_connected()); socket_options_ |= SOCKET_OPTION_BROADCAST; } void UDPSocketWin::DoReadCallback(int rv) { DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(!read_callback_.is_null()); // since Run may result in Read being called, clear read_callback_ up front. CompletionCallback c = read_callback_; read_callback_.Reset(); c.Run(rv); } void UDPSocketWin::DoWriteCallback(int rv) { DCHECK_NE(rv, ERR_IO_PENDING); DCHECK(!write_callback_.is_null()); // since Run may result in Write being called, clear write_callback_ up front. CompletionCallback c = write_callback_; write_callback_.Reset(); c.Run(rv); } void UDPSocketWin::DidCompleteRead() { DWORD num_bytes, flags; BOOL ok = WSAGetOverlappedResult(socket_, &core_->read_overlapped_, &num_bytes, FALSE, &flags); WSAResetEvent(core_->read_overlapped_.hEvent); int result = ok ? num_bytes : MapSystemError(WSAGetLastError()); // Convert address. if (recv_from_address_ && result >= 0) { if (!ReceiveAddressToIPEndpoint(recv_from_address_)) result = ERR_ADDRESS_INVALID; } LogRead(result, core_->read_iobuffer_->data()); core_->read_iobuffer_ = NULL; recv_from_address_ = NULL; DoReadCallback(result); } void UDPSocketWin::LogRead(int result, const char* bytes) const { if (result < 0) { net_log_.AddEventWithNetErrorCode(NetLog::TYPE_UDP_RECEIVE_ERROR, result); return; } if (net_log_.IsLogging()) { // Get address for logging, if |address| is NULL. IPEndPoint address; bool is_address_valid = ReceiveAddressToIPEndpoint(&address); net_log_.AddEvent( NetLog::TYPE_UDP_BYTES_RECEIVED, CreateNetLogUDPDataTranferCallback( result, bytes, is_address_valid ? &address : NULL)); } base::StatsCounter read_bytes("udp.read_bytes"); read_bytes.Add(result); } void UDPSocketWin::DidCompleteWrite() { DWORD num_bytes, flags; BOOL ok = WSAGetOverlappedResult(socket_, &core_->write_overlapped_, &num_bytes, FALSE, &flags); WSAResetEvent(core_->write_overlapped_.hEvent); int result = ok ? num_bytes : MapSystemError(WSAGetLastError()); LogWrite(result, core_->write_iobuffer_->data(), send_to_address_.get()); send_to_address_.reset(); core_->write_iobuffer_ = NULL; DoWriteCallback(result); } void UDPSocketWin::LogWrite(int result, const char* bytes, const IPEndPoint* address) const { if (result < 0) { net_log_.AddEventWithNetErrorCode(NetLog::TYPE_UDP_SEND_ERROR, result); return; } if (net_log_.IsLogging()) { net_log_.AddEvent( NetLog::TYPE_UDP_BYTES_SENT, CreateNetLogUDPDataTranferCallback(result, bytes, address)); } base::StatsCounter write_bytes("udp.write_bytes"); write_bytes.Add(result); } int UDPSocketWin::InternalRecvFrom(IOBuffer* buf, int buf_len, IPEndPoint* address) { DCHECK(!core_->read_iobuffer_); SockaddrStorage& storage = core_->recv_addr_storage_; storage.addr_len = sizeof(storage.addr_storage); WSABUF read_buffer; read_buffer.buf = buf->data(); read_buffer.len = buf_len; DWORD flags = 0; DWORD num; CHECK_NE(INVALID_SOCKET, socket_); AssertEventNotSignaled(core_->read_overlapped_.hEvent); int rv = WSARecvFrom(socket_, &read_buffer, 1, &num, &flags, storage.addr, &storage.addr_len, &core_->read_overlapped_, NULL); if (rv == 0) { if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) { int result = num; // Convert address. if (address && result >= 0) { if (!ReceiveAddressToIPEndpoint(address)) result = ERR_ADDRESS_INVALID; } LogRead(result, buf->data()); return result; } } else { int os_error = WSAGetLastError(); if (os_error != WSA_IO_PENDING) { int result = MapSystemError(os_error); LogRead(result, NULL); return result; } } core_->WatchForRead(); core_->read_iobuffer_ = buf; return ERR_IO_PENDING; } int UDPSocketWin::InternalSendTo(IOBuffer* buf, int buf_len, const IPEndPoint* address) { DCHECK(!core_->write_iobuffer_); SockaddrStorage storage; struct sockaddr* addr = storage.addr; // Convert address. if (!address) { addr = NULL; storage.addr_len = 0; } else { if (!address->ToSockAddr(addr, &storage.addr_len)) { int result = ERR_ADDRESS_INVALID; LogWrite(result, NULL, NULL); return result; } } WSABUF write_buffer; write_buffer.buf = buf->data(); write_buffer.len = buf_len; DWORD flags = 0; DWORD num; AssertEventNotSignaled(core_->write_overlapped_.hEvent); int rv = WSASendTo(socket_, &write_buffer, 1, &num, flags, addr, storage.addr_len, &core_->write_overlapped_, NULL); if (rv == 0) { if (ResetEventIfSignaled(core_->write_overlapped_.hEvent)) { int result = num; LogWrite(result, buf->data(), address); return result; } } else { int os_error = WSAGetLastError(); if (os_error != WSA_IO_PENDING) { int result = MapSystemError(os_error); LogWrite(result, NULL, NULL); return result; } } core_->WatchForWrite(); core_->write_iobuffer_ = buf; return ERR_IO_PENDING; } int UDPSocketWin::SetSocketOptions() { BOOL true_value = 1; if (socket_options_ & SOCKET_OPTION_REUSE_ADDRESS) { int rv = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, reinterpret_cast<const char*>(&true_value), sizeof(true_value)); if (rv < 0) return MapSystemError(WSAGetLastError()); } if (socket_options_ & SOCKET_OPTION_BROADCAST) { int rv = setsockopt(socket_, SOL_SOCKET, SO_BROADCAST, reinterpret_cast<const char*>(&true_value), sizeof(true_value)); if (rv < 0) return MapSystemError(WSAGetLastError()); } if (!(socket_options_ & SOCKET_OPTION_MULTICAST_LOOP)) { DWORD loop = 0; int protocol_level = addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6; int option = addr_family_ == AF_INET ? IP_MULTICAST_LOOP: IPV6_MULTICAST_LOOP; int rv = setsockopt(socket_, protocol_level, option, reinterpret_cast<const char*>(&loop), sizeof(loop)); if (rv < 0) return MapSystemError(WSAGetLastError()); } if (multicast_time_to_live_ != 1) { DWORD hops = multicast_time_to_live_; int protocol_level = addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6; int option = addr_family_ == AF_INET ? IP_MULTICAST_TTL: IPV6_MULTICAST_HOPS; int rv = setsockopt(socket_, protocol_level, option, reinterpret_cast<const char*>(&hops), sizeof(hops)); if (rv < 0) return MapSystemError(WSAGetLastError()); } if (multicast_interface_ != 0) { switch (addr_family_) { case AF_INET: { in_addr address; address.s_addr = htonl(multicast_interface_); int rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_IF, reinterpret_cast<const char*>(&address), sizeof(address)); if (rv) return MapSystemError(WSAGetLastError()); break; } case AF_INET6: { uint32 interface_index = multicast_interface_; int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_IF, reinterpret_cast<const char*>(&interface_index), sizeof(interface_index)); if (rv) return MapSystemError(WSAGetLastError()); break; } default: NOTREACHED() << "Invalid address family"; return ERR_ADDRESS_INVALID; } } return OK; } int UDPSocketWin::DoBind(const IPEndPoint& address) { SockaddrStorage storage; if (!address.ToSockAddr(storage.addr, &storage.addr_len)) return ERR_ADDRESS_INVALID; int rv = bind(socket_, storage.addr, storage.addr_len); if (rv == 0) return OK; int last_error = WSAGetLastError(); UMA_HISTOGRAM_SPARSE_SLOWLY("Net.UdpSocketBindErrorFromWinOS", last_error); // Map some codes that are special to bind() separately. // * WSAEACCES: If a port is already bound to a socket, WSAEACCES may be // returned instead of WSAEADDRINUSE, depending on whether the socket // option SO_REUSEADDR or SO_EXCLUSIVEADDRUSE is set and whether the // conflicting socket is owned by a different user account. See the MSDN // page "Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE" for the gory details. if (last_error == WSAEACCES || last_error == WSAEADDRNOTAVAIL) return ERR_ADDRESS_IN_USE; return MapSystemError(last_error); } int UDPSocketWin::RandomBind(const IPAddressNumber& address) { DCHECK(bind_type_ == DatagramSocket::RANDOM_BIND && !rand_int_cb_.is_null()); for (int i = 0; i < kBindRetries; ++i) { int rv = DoBind(IPEndPoint(address, rand_int_cb_.Run(kPortStart, kPortEnd))); if (rv == OK || rv != ERR_ADDRESS_IN_USE) return rv; } return DoBind(IPEndPoint(address, 0)); } bool UDPSocketWin::ReceiveAddressToIPEndpoint(IPEndPoint* address) const { SockaddrStorage& storage = core_->recv_addr_storage_; return address->FromSockAddr(storage.addr, storage.addr_len); } int UDPSocketWin::JoinGroup( const IPAddressNumber& group_address) const { DCHECK(CalledOnValidThread()); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; switch (group_address.size()) { case kIPv4AddressSize: { if (addr_family_ != AF_INET) return ERR_ADDRESS_INVALID; ip_mreq mreq; mreq.imr_interface.s_addr = htonl(multicast_interface_); memcpy(&mreq.imr_multiaddr, &group_address[0], kIPv4AddressSize); int rv = setsockopt(socket_, IPPROTO_IP, IP_ADD_MEMBERSHIP, reinterpret_cast<const char*>(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } case kIPv6AddressSize: { if (addr_family_ != AF_INET6) return ERR_ADDRESS_INVALID; ipv6_mreq mreq; mreq.ipv6mr_interface = multicast_interface_; memcpy(&mreq.ipv6mr_multiaddr, &group_address[0], kIPv6AddressSize); int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, reinterpret_cast<const char*>(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } default: NOTREACHED() << "Invalid address family"; return ERR_ADDRESS_INVALID; } } int UDPSocketWin::LeaveGroup( const IPAddressNumber& group_address) const { DCHECK(CalledOnValidThread()); if (!is_connected()) return ERR_SOCKET_NOT_CONNECTED; switch (group_address.size()) { case kIPv4AddressSize: { if (addr_family_ != AF_INET) return ERR_ADDRESS_INVALID; ip_mreq mreq; mreq.imr_interface.s_addr = htonl(multicast_interface_); memcpy(&mreq.imr_multiaddr, &group_address[0], kIPv4AddressSize); int rv = setsockopt(socket_, IPPROTO_IP, IP_DROP_MEMBERSHIP, reinterpret_cast<const char*>(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } case kIPv6AddressSize: { if (addr_family_ != AF_INET6) return ERR_ADDRESS_INVALID; ipv6_mreq mreq; mreq.ipv6mr_interface = multicast_interface_; memcpy(&mreq.ipv6mr_multiaddr, &group_address[0], kIPv6AddressSize); int rv = setsockopt(socket_, IPPROTO_IPV6, IP_DROP_MEMBERSHIP, reinterpret_cast<const char*>(&mreq), sizeof(mreq)); if (rv) return MapSystemError(WSAGetLastError()); return OK; } default: NOTREACHED() << "Invalid address family"; return ERR_ADDRESS_INVALID; } } int UDPSocketWin::SetMulticastInterface(uint32 interface_index) { DCHECK(CalledOnValidThread()); if (is_connected()) return ERR_SOCKET_IS_CONNECTED; multicast_interface_ = interface_index; return OK; } int UDPSocketWin::SetMulticastTimeToLive(int time_to_live) { DCHECK(CalledOnValidThread()); if (is_connected()) return ERR_SOCKET_IS_CONNECTED; if (time_to_live < 0 || time_to_live > 255) return ERR_INVALID_ARGUMENT; multicast_time_to_live_ = time_to_live; return OK; } int UDPSocketWin::SetMulticastLoopbackMode(bool loopback) { DCHECK(CalledOnValidThread()); if (is_connected()) return ERR_SOCKET_IS_CONNECTED; if (loopback) socket_options_ |= SOCKET_OPTION_MULTICAST_LOOP; else socket_options_ &= ~SOCKET_OPTION_MULTICAST_LOOP; return OK; } // TODO(hubbe): Implement differentiated services for windows. // Note: setsockopt(IP_TOS) does not work on windows XP and later. int UDPSocketWin::SetDiffServCodePoint(DiffServCodePoint dscp) { return ERR_NOT_IMPLEMENTED; } void UDPSocketWin::DetachFromThread() { base::NonThreadSafe::DetachFromThread(); } } // namespace net