// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/client_socket_pool_base.h" #include "base/compiler_specific.h" #include "base/format_macros.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/metrics/stats_counters.h" #include "base/stl_util.h" #include "base/strings/string_util.h" #include "base/time/time.h" #include "base/values.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" using base::TimeDelta; namespace net { namespace { // Indicate whether we should enable idle socket cleanup timer. When timer is // disabled, sockets are closed next time a socket request is made. bool g_cleanup_timer_enabled = true; // The timeout value, in seconds, used to clean up idle sockets that can't be // reused. // // Note: It's important to close idle sockets that have received data as soon // as possible because the received data may cause BSOD on Windows XP under // some conditions. See http://crbug.com/4606. const int kCleanupInterval = 10; // DO NOT INCREASE THIS TIMEOUT. // Indicate whether or not we should establish a new transport layer connection // after a certain timeout has passed without receiving an ACK. bool g_connect_backup_jobs_enabled = true; } // namespace ConnectJob::ConnectJob(const std::string& group_name, base::TimeDelta timeout_duration, RequestPriority priority, Delegate* delegate, const BoundNetLog& net_log) : group_name_(group_name), timeout_duration_(timeout_duration), priority_(priority), delegate_(delegate), net_log_(net_log), idle_(true) { DCHECK(!group_name.empty()); DCHECK(delegate); net_log.BeginEvent(NetLog::TYPE_SOCKET_POOL_CONNECT_JOB, NetLog::StringCallback("group_name", &group_name_)); } ConnectJob::~ConnectJob() { net_log().EndEvent(NetLog::TYPE_SOCKET_POOL_CONNECT_JOB); } scoped_ptr<StreamSocket> ConnectJob::PassSocket() { return socket_.Pass(); } int ConnectJob::Connect() { if (timeout_duration_ != base::TimeDelta()) timer_.Start(FROM_HERE, timeout_duration_, this, &ConnectJob::OnTimeout); idle_ = false; LogConnectStart(); int rv = ConnectInternal(); if (rv != ERR_IO_PENDING) { LogConnectCompletion(rv); delegate_ = NULL; } return rv; } void ConnectJob::SetSocket(scoped_ptr<StreamSocket> socket) { if (socket) { net_log().AddEvent(NetLog::TYPE_CONNECT_JOB_SET_SOCKET, socket->NetLog().source().ToEventParametersCallback()); } socket_ = socket.Pass(); } void ConnectJob::NotifyDelegateOfCompletion(int rv) { // The delegate will own |this|. Delegate* delegate = delegate_; delegate_ = NULL; LogConnectCompletion(rv); delegate->OnConnectJobComplete(rv, this); } void ConnectJob::ResetTimer(base::TimeDelta remaining_time) { timer_.Stop(); timer_.Start(FROM_HERE, remaining_time, this, &ConnectJob::OnTimeout); } void ConnectJob::LogConnectStart() { connect_timing_.connect_start = base::TimeTicks::Now(); net_log().BeginEvent(NetLog::TYPE_SOCKET_POOL_CONNECT_JOB_CONNECT); } void ConnectJob::LogConnectCompletion(int net_error) { connect_timing_.connect_end = base::TimeTicks::Now(); net_log().EndEventWithNetErrorCode( NetLog::TYPE_SOCKET_POOL_CONNECT_JOB_CONNECT, net_error); } void ConnectJob::OnTimeout() { // Make sure the socket is NULL before calling into |delegate|. SetSocket(scoped_ptr<StreamSocket>()); net_log_.AddEvent(NetLog::TYPE_SOCKET_POOL_CONNECT_JOB_TIMED_OUT); NotifyDelegateOfCompletion(ERR_TIMED_OUT); } namespace internal { ClientSocketPoolBaseHelper::Request::Request( ClientSocketHandle* handle, const CompletionCallback& callback, RequestPriority priority, bool ignore_limits, Flags flags, const BoundNetLog& net_log) : handle_(handle), callback_(callback), priority_(priority), ignore_limits_(ignore_limits), flags_(flags), net_log_(net_log) { if (ignore_limits_) DCHECK_EQ(priority_, MAXIMUM_PRIORITY); } ClientSocketPoolBaseHelper::Request::~Request() {} ClientSocketPoolBaseHelper::ClientSocketPoolBaseHelper( HigherLayeredPool* pool, int max_sockets, int max_sockets_per_group, base::TimeDelta unused_idle_socket_timeout, base::TimeDelta used_idle_socket_timeout, ConnectJobFactory* connect_job_factory) : idle_socket_count_(0), connecting_socket_count_(0), handed_out_socket_count_(0), max_sockets_(max_sockets), max_sockets_per_group_(max_sockets_per_group), use_cleanup_timer_(g_cleanup_timer_enabled), unused_idle_socket_timeout_(unused_idle_socket_timeout), used_idle_socket_timeout_(used_idle_socket_timeout), connect_job_factory_(connect_job_factory), connect_backup_jobs_enabled_(false), pool_generation_number_(0), pool_(pool), weak_factory_(this) { DCHECK_LE(0, max_sockets_per_group); DCHECK_LE(max_sockets_per_group, max_sockets); NetworkChangeNotifier::AddIPAddressObserver(this); } ClientSocketPoolBaseHelper::~ClientSocketPoolBaseHelper() { // Clean up any idle sockets and pending connect jobs. Assert that we have no // remaining active sockets or pending requests. They should have all been // cleaned up prior to |this| being destroyed. FlushWithError(ERR_ABORTED); DCHECK(group_map_.empty()); DCHECK(pending_callback_map_.empty()); DCHECK_EQ(0, connecting_socket_count_); CHECK(higher_pools_.empty()); NetworkChangeNotifier::RemoveIPAddressObserver(this); // Remove from lower layer pools. for (std::set<LowerLayeredPool*>::iterator it = lower_pools_.begin(); it != lower_pools_.end(); ++it) { (*it)->RemoveHigherLayeredPool(pool_); } } ClientSocketPoolBaseHelper::CallbackResultPair::CallbackResultPair() : result(OK) { } ClientSocketPoolBaseHelper::CallbackResultPair::CallbackResultPair( const CompletionCallback& callback_in, int result_in) : callback(callback_in), result(result_in) { } ClientSocketPoolBaseHelper::CallbackResultPair::~CallbackResultPair() {} bool ClientSocketPoolBaseHelper::IsStalled() const { // If a lower layer pool is stalled, consider |this| stalled as well. for (std::set<LowerLayeredPool*>::const_iterator it = lower_pools_.begin(); it != lower_pools_.end(); ++it) { if ((*it)->IsStalled()) return true; } // If fewer than |max_sockets_| are in use, then clearly |this| is not // stalled. if ((handed_out_socket_count_ + connecting_socket_count_) < max_sockets_) return false; // So in order to be stalled, |this| must be using at least |max_sockets_| AND // |this| must have a request that is actually stalled on the global socket // limit. To find such a request, look for a group that has more requests // than jobs AND where the number of sockets is less than // |max_sockets_per_group_|. (If the number of sockets is equal to // |max_sockets_per_group_|, then the request is stalled on the group limit, // which does not count.) for (GroupMap::const_iterator it = group_map_.begin(); it != group_map_.end(); ++it) { if (it->second->IsStalledOnPoolMaxSockets(max_sockets_per_group_)) return true; } return false; } void ClientSocketPoolBaseHelper::AddLowerLayeredPool( LowerLayeredPool* lower_pool) { DCHECK(pool_); CHECK(!ContainsKey(lower_pools_, lower_pool)); lower_pools_.insert(lower_pool); lower_pool->AddHigherLayeredPool(pool_); } void ClientSocketPoolBaseHelper::AddHigherLayeredPool( HigherLayeredPool* higher_pool) { CHECK(higher_pool); CHECK(!ContainsKey(higher_pools_, higher_pool)); higher_pools_.insert(higher_pool); } void ClientSocketPoolBaseHelper::RemoveHigherLayeredPool( HigherLayeredPool* higher_pool) { CHECK(higher_pool); CHECK(ContainsKey(higher_pools_, higher_pool)); higher_pools_.erase(higher_pool); } int ClientSocketPoolBaseHelper::RequestSocket( const std::string& group_name, scoped_ptr<const Request> request) { CHECK(!request->callback().is_null()); CHECK(request->handle()); // Cleanup any timed-out idle sockets if no timer is used. if (!use_cleanup_timer_) CleanupIdleSockets(false); request->net_log().BeginEvent(NetLog::TYPE_SOCKET_POOL); Group* group = GetOrCreateGroup(group_name); int rv = RequestSocketInternal(group_name, *request); if (rv != ERR_IO_PENDING) { request->net_log().EndEventWithNetErrorCode(NetLog::TYPE_SOCKET_POOL, rv); CHECK(!request->handle()->is_initialized()); request.reset(); } else { group->InsertPendingRequest(request.Pass()); // Have to do this asynchronously, as closing sockets in higher level pools // call back in to |this|, which will cause all sorts of fun and exciting // re-entrancy issues if the socket pool is doing something else at the // time. if (group->IsStalledOnPoolMaxSockets(max_sockets_per_group_)) { base::MessageLoop::current()->PostTask( FROM_HERE, base::Bind( &ClientSocketPoolBaseHelper::TryToCloseSocketsInLayeredPools, weak_factory_.GetWeakPtr())); } } return rv; } void ClientSocketPoolBaseHelper::RequestSockets( const std::string& group_name, const Request& request, int num_sockets) { DCHECK(request.callback().is_null()); DCHECK(!request.handle()); // Cleanup any timed out idle sockets if no timer is used. if (!use_cleanup_timer_) CleanupIdleSockets(false); if (num_sockets > max_sockets_per_group_) { num_sockets = max_sockets_per_group_; } request.net_log().BeginEvent( NetLog::TYPE_SOCKET_POOL_CONNECTING_N_SOCKETS, NetLog::IntegerCallback("num_sockets", num_sockets)); Group* group = GetOrCreateGroup(group_name); // RequestSocketsInternal() may delete the group. bool deleted_group = false; int rv = OK; for (int num_iterations_left = num_sockets; group->NumActiveSocketSlots() < num_sockets && num_iterations_left > 0 ; num_iterations_left--) { rv = RequestSocketInternal(group_name, request); if (rv < 0 && rv != ERR_IO_PENDING) { // We're encountering a synchronous error. Give up. if (!ContainsKey(group_map_, group_name)) deleted_group = true; break; } if (!ContainsKey(group_map_, group_name)) { // Unexpected. The group should only be getting deleted on synchronous // error. NOTREACHED(); deleted_group = true; break; } } if (!deleted_group && group->IsEmpty()) RemoveGroup(group_name); if (rv == ERR_IO_PENDING) rv = OK; request.net_log().EndEventWithNetErrorCode( NetLog::TYPE_SOCKET_POOL_CONNECTING_N_SOCKETS, rv); } int ClientSocketPoolBaseHelper::RequestSocketInternal( const std::string& group_name, const Request& request) { ClientSocketHandle* const handle = request.handle(); const bool preconnecting = !handle; Group* group = GetOrCreateGroup(group_name); if (!(request.flags() & NO_IDLE_SOCKETS)) { // Try to reuse a socket. if (AssignIdleSocketToRequest(request, group)) return OK; } // If there are more ConnectJobs than pending requests, don't need to do // anything. Can just wait for the extra job to connect, and then assign it // to the request. if (!preconnecting && group->TryToUseUnassignedConnectJob()) return ERR_IO_PENDING; // Can we make another active socket now? if (!group->HasAvailableSocketSlot(max_sockets_per_group_) && !request.ignore_limits()) { // TODO(willchan): Consider whether or not we need to close a socket in a // higher layered group. I don't think this makes sense since we would just // reuse that socket then if we needed one and wouldn't make it down to this // layer. request.net_log().AddEvent( NetLog::TYPE_SOCKET_POOL_STALLED_MAX_SOCKETS_PER_GROUP); return ERR_IO_PENDING; } if (ReachedMaxSocketsLimit() && !request.ignore_limits()) { // NOTE(mmenke): Wonder if we really need different code for each case // here. Only reason for them now seems to be preconnects. if (idle_socket_count() > 0) { // There's an idle socket in this pool. Either that's because there's // still one in this group, but we got here due to preconnecting bypassing // idle sockets, or because there's an idle socket in another group. bool closed = CloseOneIdleSocketExceptInGroup(group); if (preconnecting && !closed) return ERR_PRECONNECT_MAX_SOCKET_LIMIT; } else { // We could check if we really have a stalled group here, but it requires // a scan of all groups, so just flip a flag here, and do the check later. request.net_log().AddEvent(NetLog::TYPE_SOCKET_POOL_STALLED_MAX_SOCKETS); return ERR_IO_PENDING; } } // We couldn't find a socket to reuse, and there's space to allocate one, // so allocate and connect a new one. scoped_ptr<ConnectJob> connect_job( connect_job_factory_->NewConnectJob(group_name, request, this)); int rv = connect_job->Connect(); if (rv == OK) { LogBoundConnectJobToRequest(connect_job->net_log().source(), request); if (!preconnecting) { HandOutSocket(connect_job->PassSocket(), ClientSocketHandle::UNUSED, connect_job->connect_timing(), handle, base::TimeDelta(), group, request.net_log()); } else { AddIdleSocket(connect_job->PassSocket(), group); } } else if (rv == ERR_IO_PENDING) { // If we don't have any sockets in this group, set a timer for potentially // creating a new one. If the SYN is lost, this backup socket may complete // before the slow socket, improving end user latency. if (connect_backup_jobs_enabled_ && group->IsEmpty()) { group->StartBackupJobTimer(group_name, this); } connecting_socket_count_++; group->AddJob(connect_job.Pass(), preconnecting); } else { LogBoundConnectJobToRequest(connect_job->net_log().source(), request); scoped_ptr<StreamSocket> error_socket; if (!preconnecting) { DCHECK(handle); connect_job->GetAdditionalErrorState(handle); error_socket = connect_job->PassSocket(); } if (error_socket) { HandOutSocket(error_socket.Pass(), ClientSocketHandle::UNUSED, connect_job->connect_timing(), handle, base::TimeDelta(), group, request.net_log()); } else if (group->IsEmpty()) { RemoveGroup(group_name); } } return rv; } bool ClientSocketPoolBaseHelper::AssignIdleSocketToRequest( const Request& request, Group* group) { std::list<IdleSocket>* idle_sockets = group->mutable_idle_sockets(); std::list<IdleSocket>::iterator idle_socket_it = idle_sockets->end(); // Iterate through the idle sockets forwards (oldest to newest) // * Delete any disconnected ones. // * If we find a used idle socket, assign to |idle_socket|. At the end, // the |idle_socket_it| will be set to the newest used idle socket. for (std::list<IdleSocket>::iterator it = idle_sockets->begin(); it != idle_sockets->end();) { if (!it->IsUsable()) { DecrementIdleCount(); delete it->socket; it = idle_sockets->erase(it); continue; } if (it->socket->WasEverUsed()) { // We found one we can reuse! idle_socket_it = it; } ++it; } // If we haven't found an idle socket, that means there are no used idle // sockets. Pick the oldest (first) idle socket (FIFO). if (idle_socket_it == idle_sockets->end() && !idle_sockets->empty()) idle_socket_it = idle_sockets->begin(); if (idle_socket_it != idle_sockets->end()) { DecrementIdleCount(); base::TimeDelta idle_time = base::TimeTicks::Now() - idle_socket_it->start_time; IdleSocket idle_socket = *idle_socket_it; idle_sockets->erase(idle_socket_it); // TODO(davidben): If |idle_time| is under some low watermark, consider // treating as UNUSED rather than UNUSED_IDLE. This will avoid // HttpNetworkTransaction retrying on some errors. ClientSocketHandle::SocketReuseType reuse_type = idle_socket.socket->WasEverUsed() ? ClientSocketHandle::REUSED_IDLE : ClientSocketHandle::UNUSED_IDLE; HandOutSocket( scoped_ptr<StreamSocket>(idle_socket.socket), reuse_type, LoadTimingInfo::ConnectTiming(), request.handle(), idle_time, group, request.net_log()); return true; } return false; } // static void ClientSocketPoolBaseHelper::LogBoundConnectJobToRequest( const NetLog::Source& connect_job_source, const Request& request) { request.net_log().AddEvent(NetLog::TYPE_SOCKET_POOL_BOUND_TO_CONNECT_JOB, connect_job_source.ToEventParametersCallback()); } void ClientSocketPoolBaseHelper::CancelRequest( const std::string& group_name, ClientSocketHandle* handle) { PendingCallbackMap::iterator callback_it = pending_callback_map_.find(handle); if (callback_it != pending_callback_map_.end()) { int result = callback_it->second.result; pending_callback_map_.erase(callback_it); scoped_ptr<StreamSocket> socket = handle->PassSocket(); if (socket) { if (result != OK) socket->Disconnect(); ReleaseSocket(handle->group_name(), socket.Pass(), handle->id()); } return; } CHECK(ContainsKey(group_map_, group_name)); Group* group = GetOrCreateGroup(group_name); // Search pending_requests for matching handle. scoped_ptr<const Request> request = group->FindAndRemovePendingRequest(handle); if (request) { request->net_log().AddEvent(NetLog::TYPE_CANCELLED); request->net_log().EndEvent(NetLog::TYPE_SOCKET_POOL); // We let the job run, unless we're at the socket limit and there is // not another request waiting on the job. if (group->jobs().size() > group->pending_request_count() && ReachedMaxSocketsLimit()) { RemoveConnectJob(*group->jobs().begin(), group); CheckForStalledSocketGroups(); } } } bool ClientSocketPoolBaseHelper::HasGroup(const std::string& group_name) const { return ContainsKey(group_map_, group_name); } void ClientSocketPoolBaseHelper::CloseIdleSockets() { CleanupIdleSockets(true); DCHECK_EQ(0, idle_socket_count_); } int ClientSocketPoolBaseHelper::IdleSocketCountInGroup( const std::string& group_name) const { GroupMap::const_iterator i = group_map_.find(group_name); CHECK(i != group_map_.end()); return i->second->idle_sockets().size(); } LoadState ClientSocketPoolBaseHelper::GetLoadState( const std::string& group_name, const ClientSocketHandle* handle) const { if (ContainsKey(pending_callback_map_, handle)) return LOAD_STATE_CONNECTING; if (!ContainsKey(group_map_, group_name)) { NOTREACHED() << "ClientSocketPool does not contain group: " << group_name << " for handle: " << handle; return LOAD_STATE_IDLE; } // Can't use operator[] since it is non-const. const Group& group = *group_map_.find(group_name)->second; if (group.HasConnectJobForHandle(handle)) { // Just return the state of the farthest along ConnectJob for the first // group.jobs().size() pending requests. LoadState max_state = LOAD_STATE_IDLE; for (ConnectJobSet::const_iterator job_it = group.jobs().begin(); job_it != group.jobs().end(); ++job_it) { max_state = std::max(max_state, (*job_it)->GetLoadState()); } return max_state; } if (group.IsStalledOnPoolMaxSockets(max_sockets_per_group_)) return LOAD_STATE_WAITING_FOR_STALLED_SOCKET_POOL; return LOAD_STATE_WAITING_FOR_AVAILABLE_SOCKET; } base::DictionaryValue* ClientSocketPoolBaseHelper::GetInfoAsValue( const std::string& name, const std::string& type) const { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetString("name", name); dict->SetString("type", type); dict->SetInteger("handed_out_socket_count", handed_out_socket_count_); dict->SetInteger("connecting_socket_count", connecting_socket_count_); dict->SetInteger("idle_socket_count", idle_socket_count_); dict->SetInteger("max_socket_count", max_sockets_); dict->SetInteger("max_sockets_per_group", max_sockets_per_group_); dict->SetInteger("pool_generation_number", pool_generation_number_); if (group_map_.empty()) return dict; base::DictionaryValue* all_groups_dict = new base::DictionaryValue(); for (GroupMap::const_iterator it = group_map_.begin(); it != group_map_.end(); it++) { const Group* group = it->second; base::DictionaryValue* group_dict = new base::DictionaryValue(); group_dict->SetInteger("pending_request_count", group->pending_request_count()); if (group->has_pending_requests()) { group_dict->SetString( "top_pending_priority", RequestPriorityToString(group->TopPendingPriority())); } group_dict->SetInteger("active_socket_count", group->active_socket_count()); base::ListValue* idle_socket_list = new base::ListValue(); std::list<IdleSocket>::const_iterator idle_socket; for (idle_socket = group->idle_sockets().begin(); idle_socket != group->idle_sockets().end(); idle_socket++) { int source_id = idle_socket->socket->NetLog().source().id; idle_socket_list->Append(new base::FundamentalValue(source_id)); } group_dict->Set("idle_sockets", idle_socket_list); base::ListValue* connect_jobs_list = new base::ListValue(); std::set<ConnectJob*>::const_iterator job = group->jobs().begin(); for (job = group->jobs().begin(); job != group->jobs().end(); job++) { int source_id = (*job)->net_log().source().id; connect_jobs_list->Append(new base::FundamentalValue(source_id)); } group_dict->Set("connect_jobs", connect_jobs_list); group_dict->SetBoolean("is_stalled", group->IsStalledOnPoolMaxSockets( max_sockets_per_group_)); group_dict->SetBoolean("backup_job_timer_is_running", group->BackupJobTimerIsRunning()); all_groups_dict->SetWithoutPathExpansion(it->first, group_dict); } dict->Set("groups", all_groups_dict); return dict; } bool ClientSocketPoolBaseHelper::IdleSocket::IsUsable() const { if (socket->WasEverUsed()) return socket->IsConnectedAndIdle(); return socket->IsConnected(); } bool ClientSocketPoolBaseHelper::IdleSocket::ShouldCleanup( base::TimeTicks now, base::TimeDelta timeout) const { bool timed_out = (now - start_time) >= timeout; if (timed_out) return true; return !IsUsable(); } void ClientSocketPoolBaseHelper::CleanupIdleSockets(bool force) { if (idle_socket_count_ == 0) return; // Current time value. Retrieving it once at the function start rather than // inside the inner loop, since it shouldn't change by any meaningful amount. base::TimeTicks now = base::TimeTicks::Now(); GroupMap::iterator i = group_map_.begin(); while (i != group_map_.end()) { Group* group = i->second; std::list<IdleSocket>::iterator j = group->mutable_idle_sockets()->begin(); while (j != group->idle_sockets().end()) { base::TimeDelta timeout = j->socket->WasEverUsed() ? used_idle_socket_timeout_ : unused_idle_socket_timeout_; if (force || j->ShouldCleanup(now, timeout)) { delete j->socket; j = group->mutable_idle_sockets()->erase(j); DecrementIdleCount(); } else { ++j; } } // Delete group if no longer needed. if (group->IsEmpty()) { RemoveGroup(i++); } else { ++i; } } } ClientSocketPoolBaseHelper::Group* ClientSocketPoolBaseHelper::GetOrCreateGroup( const std::string& group_name) { GroupMap::iterator it = group_map_.find(group_name); if (it != group_map_.end()) return it->second; Group* group = new Group; group_map_[group_name] = group; return group; } void ClientSocketPoolBaseHelper::RemoveGroup(const std::string& group_name) { GroupMap::iterator it = group_map_.find(group_name); CHECK(it != group_map_.end()); RemoveGroup(it); } void ClientSocketPoolBaseHelper::RemoveGroup(GroupMap::iterator it) { delete it->second; group_map_.erase(it); } // static bool ClientSocketPoolBaseHelper::connect_backup_jobs_enabled() { return g_connect_backup_jobs_enabled; } // static bool ClientSocketPoolBaseHelper::set_connect_backup_jobs_enabled(bool enabled) { bool old_value = g_connect_backup_jobs_enabled; g_connect_backup_jobs_enabled = enabled; return old_value; } void ClientSocketPoolBaseHelper::EnableConnectBackupJobs() { connect_backup_jobs_enabled_ = g_connect_backup_jobs_enabled; } void ClientSocketPoolBaseHelper::IncrementIdleCount() { if (++idle_socket_count_ == 1 && use_cleanup_timer_) StartIdleSocketTimer(); } void ClientSocketPoolBaseHelper::DecrementIdleCount() { if (--idle_socket_count_ == 0) timer_.Stop(); } // static bool ClientSocketPoolBaseHelper::cleanup_timer_enabled() { return g_cleanup_timer_enabled; } // static bool ClientSocketPoolBaseHelper::set_cleanup_timer_enabled(bool enabled) { bool old_value = g_cleanup_timer_enabled; g_cleanup_timer_enabled = enabled; return old_value; } void ClientSocketPoolBaseHelper::StartIdleSocketTimer() { timer_.Start(FROM_HERE, TimeDelta::FromSeconds(kCleanupInterval), this, &ClientSocketPoolBaseHelper::OnCleanupTimerFired); } void ClientSocketPoolBaseHelper::ReleaseSocket(const std::string& group_name, scoped_ptr<StreamSocket> socket, int id) { GroupMap::iterator i = group_map_.find(group_name); CHECK(i != group_map_.end()); Group* group = i->second; CHECK_GT(handed_out_socket_count_, 0); handed_out_socket_count_--; CHECK_GT(group->active_socket_count(), 0); group->DecrementActiveSocketCount(); const bool can_reuse = socket->IsConnectedAndIdle() && id == pool_generation_number_; if (can_reuse) { // Add it to the idle list. AddIdleSocket(socket.Pass(), group); OnAvailableSocketSlot(group_name, group); } else { socket.reset(); } CheckForStalledSocketGroups(); } void ClientSocketPoolBaseHelper::CheckForStalledSocketGroups() { // If we have idle sockets, see if we can give one to the top-stalled group. std::string top_group_name; Group* top_group = NULL; if (!FindTopStalledGroup(&top_group, &top_group_name)) { // There may still be a stalled group in a lower level pool. for (std::set<LowerLayeredPool*>::iterator it = lower_pools_.begin(); it != lower_pools_.end(); ++it) { if ((*it)->IsStalled()) { CloseOneIdleSocket(); break; } } return; } if (ReachedMaxSocketsLimit()) { if (idle_socket_count() > 0) { CloseOneIdleSocket(); } else { // We can't activate more sockets since we're already at our global // limit. return; } } // Note: we don't loop on waking stalled groups. If the stalled group is at // its limit, may be left with other stalled groups that could be // woken. This isn't optimal, but there is no starvation, so to avoid // the looping we leave it at this. OnAvailableSocketSlot(top_group_name, top_group); } // Search for the highest priority pending request, amongst the groups that // are not at the |max_sockets_per_group_| limit. Note: for requests with // the same priority, the winner is based on group hash ordering (and not // insertion order). bool ClientSocketPoolBaseHelper::FindTopStalledGroup( Group** group, std::string* group_name) const { CHECK((group && group_name) || (!group && !group_name)); Group* top_group = NULL; const std::string* top_group_name = NULL; bool has_stalled_group = false; for (GroupMap::const_iterator i = group_map_.begin(); i != group_map_.end(); ++i) { Group* curr_group = i->second; if (!curr_group->has_pending_requests()) continue; if (curr_group->IsStalledOnPoolMaxSockets(max_sockets_per_group_)) { if (!group) return true; has_stalled_group = true; bool has_higher_priority = !top_group || curr_group->TopPendingPriority() > top_group->TopPendingPriority(); if (has_higher_priority) { top_group = curr_group; top_group_name = &i->first; } } } if (top_group) { CHECK(group); *group = top_group; *group_name = *top_group_name; } else { CHECK(!has_stalled_group); } return has_stalled_group; } void ClientSocketPoolBaseHelper::OnConnectJobComplete( int result, ConnectJob* job) { DCHECK_NE(ERR_IO_PENDING, result); const std::string group_name = job->group_name(); GroupMap::iterator group_it = group_map_.find(group_name); CHECK(group_it != group_map_.end()); Group* group = group_it->second; scoped_ptr<StreamSocket> socket = job->PassSocket(); // Copies of these are needed because |job| may be deleted before they are // accessed. BoundNetLog job_log = job->net_log(); LoadTimingInfo::ConnectTiming connect_timing = job->connect_timing(); // RemoveConnectJob(job, _) must be called by all branches below; // otherwise, |job| will be leaked. if (result == OK) { DCHECK(socket.get()); RemoveConnectJob(job, group); scoped_ptr<const Request> request = group->PopNextPendingRequest(); if (request) { LogBoundConnectJobToRequest(job_log.source(), *request); HandOutSocket( socket.Pass(), ClientSocketHandle::UNUSED, connect_timing, request->handle(), base::TimeDelta(), group, request->net_log()); request->net_log().EndEvent(NetLog::TYPE_SOCKET_POOL); InvokeUserCallbackLater(request->handle(), request->callback(), result); } else { AddIdleSocket(socket.Pass(), group); OnAvailableSocketSlot(group_name, group); CheckForStalledSocketGroups(); } } else { // If we got a socket, it must contain error information so pass that // up so that the caller can retrieve it. bool handed_out_socket = false; scoped_ptr<const Request> request = group->PopNextPendingRequest(); if (request) { LogBoundConnectJobToRequest(job_log.source(), *request); job->GetAdditionalErrorState(request->handle()); RemoveConnectJob(job, group); if (socket.get()) { handed_out_socket = true; HandOutSocket(socket.Pass(), ClientSocketHandle::UNUSED, connect_timing, request->handle(), base::TimeDelta(), group, request->net_log()); } request->net_log().EndEventWithNetErrorCode( NetLog::TYPE_SOCKET_POOL, result); InvokeUserCallbackLater(request->handle(), request->callback(), result); } else { RemoveConnectJob(job, group); } if (!handed_out_socket) { OnAvailableSocketSlot(group_name, group); CheckForStalledSocketGroups(); } } } void ClientSocketPoolBaseHelper::OnIPAddressChanged() { FlushWithError(ERR_NETWORK_CHANGED); } void ClientSocketPoolBaseHelper::FlushWithError(int error) { pool_generation_number_++; CancelAllConnectJobs(); CloseIdleSockets(); CancelAllRequestsWithError(error); } void ClientSocketPoolBaseHelper::RemoveConnectJob(ConnectJob* job, Group* group) { CHECK_GT(connecting_socket_count_, 0); connecting_socket_count_--; DCHECK(group); group->RemoveJob(job); } void ClientSocketPoolBaseHelper::OnAvailableSocketSlot( const std::string& group_name, Group* group) { DCHECK(ContainsKey(group_map_, group_name)); if (group->IsEmpty()) { RemoveGroup(group_name); } else if (group->has_pending_requests()) { ProcessPendingRequest(group_name, group); } } void ClientSocketPoolBaseHelper::ProcessPendingRequest( const std::string& group_name, Group* group) { const Request* next_request = group->GetNextPendingRequest(); DCHECK(next_request); int rv = RequestSocketInternal(group_name, *next_request); if (rv != ERR_IO_PENDING) { scoped_ptr<const Request> request = group->PopNextPendingRequest(); DCHECK(request); if (group->IsEmpty()) RemoveGroup(group_name); request->net_log().EndEventWithNetErrorCode(NetLog::TYPE_SOCKET_POOL, rv); InvokeUserCallbackLater(request->handle(), request->callback(), rv); } } void ClientSocketPoolBaseHelper::HandOutSocket( scoped_ptr<StreamSocket> socket, ClientSocketHandle::SocketReuseType reuse_type, const LoadTimingInfo::ConnectTiming& connect_timing, ClientSocketHandle* handle, base::TimeDelta idle_time, Group* group, const BoundNetLog& net_log) { DCHECK(socket); handle->SetSocket(socket.Pass()); handle->set_reuse_type(reuse_type); handle->set_idle_time(idle_time); handle->set_pool_id(pool_generation_number_); handle->set_connect_timing(connect_timing); if (handle->is_reused()) { net_log.AddEvent( NetLog::TYPE_SOCKET_POOL_REUSED_AN_EXISTING_SOCKET, NetLog::IntegerCallback( "idle_ms", static_cast<int>(idle_time.InMilliseconds()))); } net_log.AddEvent( NetLog::TYPE_SOCKET_POOL_BOUND_TO_SOCKET, handle->socket()->NetLog().source().ToEventParametersCallback()); handed_out_socket_count_++; group->IncrementActiveSocketCount(); } void ClientSocketPoolBaseHelper::AddIdleSocket( scoped_ptr<StreamSocket> socket, Group* group) { DCHECK(socket); IdleSocket idle_socket; idle_socket.socket = socket.release(); idle_socket.start_time = base::TimeTicks::Now(); group->mutable_idle_sockets()->push_back(idle_socket); IncrementIdleCount(); } void ClientSocketPoolBaseHelper::CancelAllConnectJobs() { for (GroupMap::iterator i = group_map_.begin(); i != group_map_.end();) { Group* group = i->second; connecting_socket_count_ -= group->jobs().size(); group->RemoveAllJobs(); // Delete group if no longer needed. if (group->IsEmpty()) { // RemoveGroup() will call .erase() which will invalidate the iterator, // but i will already have been incremented to a valid iterator before // RemoveGroup() is called. RemoveGroup(i++); } else { ++i; } } DCHECK_EQ(0, connecting_socket_count_); } void ClientSocketPoolBaseHelper::CancelAllRequestsWithError(int error) { for (GroupMap::iterator i = group_map_.begin(); i != group_map_.end();) { Group* group = i->second; while (true) { scoped_ptr<const Request> request = group->PopNextPendingRequest(); if (!request) break; InvokeUserCallbackLater(request->handle(), request->callback(), error); } // Delete group if no longer needed. if (group->IsEmpty()) { // RemoveGroup() will call .erase() which will invalidate the iterator, // but i will already have been incremented to a valid iterator before // RemoveGroup() is called. RemoveGroup(i++); } else { ++i; } } } bool ClientSocketPoolBaseHelper::ReachedMaxSocketsLimit() const { // Each connecting socket will eventually connect and be handed out. int total = handed_out_socket_count_ + connecting_socket_count_ + idle_socket_count(); // There can be more sockets than the limit since some requests can ignore // the limit if (total < max_sockets_) return false; return true; } bool ClientSocketPoolBaseHelper::CloseOneIdleSocket() { if (idle_socket_count() == 0) return false; return CloseOneIdleSocketExceptInGroup(NULL); } bool ClientSocketPoolBaseHelper::CloseOneIdleSocketExceptInGroup( const Group* exception_group) { CHECK_GT(idle_socket_count(), 0); for (GroupMap::iterator i = group_map_.begin(); i != group_map_.end(); ++i) { Group* group = i->second; if (exception_group == group) continue; std::list<IdleSocket>* idle_sockets = group->mutable_idle_sockets(); if (!idle_sockets->empty()) { delete idle_sockets->front().socket; idle_sockets->pop_front(); DecrementIdleCount(); if (group->IsEmpty()) RemoveGroup(i); return true; } } return false; } bool ClientSocketPoolBaseHelper::CloseOneIdleConnectionInHigherLayeredPool() { // This pool doesn't have any idle sockets. It's possible that a pool at a // higher layer is holding one of this sockets active, but it's actually idle. // Query the higher layers. for (std::set<HigherLayeredPool*>::const_iterator it = higher_pools_.begin(); it != higher_pools_.end(); ++it) { if ((*it)->CloseOneIdleConnection()) return true; } return false; } void ClientSocketPoolBaseHelper::InvokeUserCallbackLater( ClientSocketHandle* handle, const CompletionCallback& callback, int rv) { CHECK(!ContainsKey(pending_callback_map_, handle)); pending_callback_map_[handle] = CallbackResultPair(callback, rv); base::MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&ClientSocketPoolBaseHelper::InvokeUserCallback, weak_factory_.GetWeakPtr(), handle)); } void ClientSocketPoolBaseHelper::InvokeUserCallback( ClientSocketHandle* handle) { PendingCallbackMap::iterator it = pending_callback_map_.find(handle); // Exit if the request has already been cancelled. if (it == pending_callback_map_.end()) return; CHECK(!handle->is_initialized()); CompletionCallback callback = it->second.callback; int result = it->second.result; pending_callback_map_.erase(it); callback.Run(result); } void ClientSocketPoolBaseHelper::TryToCloseSocketsInLayeredPools() { while (IsStalled()) { // Closing a socket will result in calling back into |this| to use the freed // socket slot, so nothing else is needed. if (!CloseOneIdleConnectionInHigherLayeredPool()) return; } } ClientSocketPoolBaseHelper::Group::Group() : unassigned_job_count_(0), pending_requests_(NUM_PRIORITIES), active_socket_count_(0) {} ClientSocketPoolBaseHelper::Group::~Group() { DCHECK_EQ(0u, unassigned_job_count_); } void ClientSocketPoolBaseHelper::Group::StartBackupJobTimer( const std::string& group_name, ClientSocketPoolBaseHelper* pool) { // Only allow one timer to run at a time. if (BackupJobTimerIsRunning()) return; // Unretained here is okay because |backup_job_timer_| is // automatically cancelled when it's destroyed. backup_job_timer_.Start( FROM_HERE, pool->ConnectRetryInterval(), base::Bind(&Group::OnBackupJobTimerFired, base::Unretained(this), group_name, pool)); } bool ClientSocketPoolBaseHelper::Group::BackupJobTimerIsRunning() const { return backup_job_timer_.IsRunning(); } bool ClientSocketPoolBaseHelper::Group::TryToUseUnassignedConnectJob() { SanityCheck(); if (unassigned_job_count_ == 0) return false; --unassigned_job_count_; return true; } void ClientSocketPoolBaseHelper::Group::AddJob(scoped_ptr<ConnectJob> job, bool is_preconnect) { SanityCheck(); if (is_preconnect) ++unassigned_job_count_; jobs_.insert(job.release()); } void ClientSocketPoolBaseHelper::Group::RemoveJob(ConnectJob* job) { scoped_ptr<ConnectJob> owned_job(job); SanityCheck(); std::set<ConnectJob*>::iterator it = jobs_.find(job); if (it != jobs_.end()) { jobs_.erase(it); } else { NOTREACHED(); } size_t job_count = jobs_.size(); if (job_count < unassigned_job_count_) unassigned_job_count_ = job_count; // If we've got no more jobs for this group, then we no longer need a // backup job either. if (jobs_.empty()) backup_job_timer_.Stop(); } void ClientSocketPoolBaseHelper::Group::OnBackupJobTimerFired( std::string group_name, ClientSocketPoolBaseHelper* pool) { // If there are no more jobs pending, there is no work to do. // If we've done our cleanups correctly, this should not happen. if (jobs_.empty()) { NOTREACHED(); return; } // If our old job is waiting on DNS, or if we can't create any sockets // right now due to limits, just reset the timer. if (pool->ReachedMaxSocketsLimit() || !HasAvailableSocketSlot(pool->max_sockets_per_group_) || (*jobs_.begin())->GetLoadState() == LOAD_STATE_RESOLVING_HOST) { StartBackupJobTimer(group_name, pool); return; } if (pending_requests_.empty()) return; scoped_ptr<ConnectJob> backup_job = pool->connect_job_factory_->NewConnectJob( group_name, *pending_requests_.FirstMax().value(), pool); backup_job->net_log().AddEvent(NetLog::TYPE_BACKUP_CONNECT_JOB_CREATED); SIMPLE_STATS_COUNTER("socket.backup_created"); int rv = backup_job->Connect(); pool->connecting_socket_count_++; ConnectJob* raw_backup_job = backup_job.get(); AddJob(backup_job.Pass(), false); if (rv != ERR_IO_PENDING) pool->OnConnectJobComplete(rv, raw_backup_job); } void ClientSocketPoolBaseHelper::Group::SanityCheck() { DCHECK_LE(unassigned_job_count_, jobs_.size()); } void ClientSocketPoolBaseHelper::Group::RemoveAllJobs() { SanityCheck(); // Delete active jobs. STLDeleteElements(&jobs_); unassigned_job_count_ = 0; // Stop backup job timer. backup_job_timer_.Stop(); } const ClientSocketPoolBaseHelper::Request* ClientSocketPoolBaseHelper::Group::GetNextPendingRequest() const { return pending_requests_.empty() ? NULL : pending_requests_.FirstMax().value(); } bool ClientSocketPoolBaseHelper::Group::HasConnectJobForHandle( const ClientSocketHandle* handle) const { // Search the first |jobs_.size()| pending requests for |handle|. // If it's farther back in the deque than that, it doesn't have a // corresponding ConnectJob. size_t i = 0; for (RequestQueue::Pointer pointer = pending_requests_.FirstMax(); !pointer.is_null() && i < jobs_.size(); pointer = pending_requests_.GetNextTowardsLastMin(pointer), ++i) { if (pointer.value()->handle() == handle) return true; } return false; } void ClientSocketPoolBaseHelper::Group::InsertPendingRequest( scoped_ptr<const Request> request) { // This value must be cached before we release |request|. RequestPriority priority = request->priority(); if (request->ignore_limits()) { // Put requests with ignore_limits == true (which should have // priority == MAXIMUM_PRIORITY) ahead of other requests with // MAXIMUM_PRIORITY. DCHECK_EQ(priority, MAXIMUM_PRIORITY); pending_requests_.InsertAtFront(request.release(), priority); } else { pending_requests_.Insert(request.release(), priority); } } scoped_ptr<const ClientSocketPoolBaseHelper::Request> ClientSocketPoolBaseHelper::Group::PopNextPendingRequest() { if (pending_requests_.empty()) return scoped_ptr<const ClientSocketPoolBaseHelper::Request>(); return RemovePendingRequest(pending_requests_.FirstMax()); } scoped_ptr<const ClientSocketPoolBaseHelper::Request> ClientSocketPoolBaseHelper::Group::FindAndRemovePendingRequest( ClientSocketHandle* handle) { for (RequestQueue::Pointer pointer = pending_requests_.FirstMax(); !pointer.is_null(); pointer = pending_requests_.GetNextTowardsLastMin(pointer)) { if (pointer.value()->handle() == handle) { scoped_ptr<const Request> request = RemovePendingRequest(pointer); return request.Pass(); } } return scoped_ptr<const ClientSocketPoolBaseHelper::Request>(); } scoped_ptr<const ClientSocketPoolBaseHelper::Request> ClientSocketPoolBaseHelper::Group::RemovePendingRequest( const RequestQueue::Pointer& pointer) { scoped_ptr<const Request> request(pointer.value()); pending_requests_.Erase(pointer); // If there are no more requests, kill the backup timer. if (pending_requests_.empty()) backup_job_timer_.Stop(); return request.Pass(); } } // namespace internal } // namespace net