// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/quic_fec_group.h" #include <limits> #include "base/basictypes.h" #include "base/logging.h" using base::StringPiece; using std::numeric_limits; using std::set; namespace net { namespace { const QuicPacketSequenceNumber kNoSequenceNumber = kuint64max; } // namespace QuicFecGroup::QuicFecGroup() : min_protected_packet_(kNoSequenceNumber), max_protected_packet_(kNoSequenceNumber), payload_parity_len_(0), effective_encryption_level_(NUM_ENCRYPTION_LEVELS) { } QuicFecGroup::~QuicFecGroup() {} bool QuicFecGroup::Update(EncryptionLevel encryption_level, const QuicPacketHeader& header, StringPiece decrypted_payload) { if (received_packets_.count(header.packet_sequence_number) != 0) { return false; } if (min_protected_packet_ != kNoSequenceNumber && max_protected_packet_ != kNoSequenceNumber && (header.packet_sequence_number < min_protected_packet_ || header.packet_sequence_number > max_protected_packet_)) { DLOG(ERROR) << "FEC group does not cover received packet: " << header.packet_sequence_number; return false; } if (!UpdateParity(decrypted_payload)) { return false; } received_packets_.insert(header.packet_sequence_number); if (encryption_level < effective_encryption_level_) { effective_encryption_level_ = encryption_level; } return true; } bool QuicFecGroup::UpdateFec( EncryptionLevel encryption_level, QuicPacketSequenceNumber fec_packet_sequence_number, const QuicFecData& fec) { if (min_protected_packet_ != kNoSequenceNumber) { return false; } SequenceNumberSet::const_iterator it = received_packets_.begin(); while (it != received_packets_.end()) { if ((*it < fec.fec_group) || (*it >= fec_packet_sequence_number)) { DLOG(ERROR) << "FEC group does not cover received packet: " << *it; return false; } ++it; } if (!UpdateParity(fec.redundancy)) { return false; } min_protected_packet_ = fec.fec_group; max_protected_packet_ = fec_packet_sequence_number - 1; if (encryption_level < effective_encryption_level_) { effective_encryption_level_ = encryption_level; } return true; } bool QuicFecGroup::CanRevive() const { // We can revive if we're missing exactly 1 packet. return NumMissingPackets() == 1; } bool QuicFecGroup::IsFinished() const { // We are finished if we are not missing any packets. return NumMissingPackets() == 0; } size_t QuicFecGroup::Revive(QuicPacketHeader* header, char* decrypted_payload, size_t decrypted_payload_len) { if (!CanRevive()) { return 0; } // Identify the packet sequence number to be resurrected. QuicPacketSequenceNumber missing = kNoSequenceNumber; for (QuicPacketSequenceNumber i = min_protected_packet_; i <= max_protected_packet_; ++i) { // Is this packet missing? if (received_packets_.count(i) == 0) { missing = i; break; } } DCHECK_NE(kNoSequenceNumber, missing); DCHECK_LE(payload_parity_len_, decrypted_payload_len); if (payload_parity_len_ > decrypted_payload_len) { return 0; } for (size_t i = 0; i < payload_parity_len_; ++i) { decrypted_payload[i] = payload_parity_[i]; } header->packet_sequence_number = missing; header->entropy_flag = false; // Unknown entropy. received_packets_.insert(missing); return payload_parity_len_; } bool QuicFecGroup::ProtectsPacketsBefore(QuicPacketSequenceNumber num) const { if (max_protected_packet_ != kNoSequenceNumber) { return max_protected_packet_ < num; } // Since we might not yet have received the FEC packet, we must check // the packets we have received. return *received_packets_.begin() < num; } bool QuicFecGroup::UpdateParity(StringPiece payload) { DCHECK_LE(payload.size(), kMaxPacketSize); if (payload.size() > kMaxPacketSize) { DLOG(ERROR) << "Illegal payload size: " << payload.size(); return false; } if (payload_parity_len_ < payload.size()) { payload_parity_len_ = payload.size(); } DCHECK_LE(payload.size(), kMaxPacketSize); if (received_packets_.empty() && min_protected_packet_ == kNoSequenceNumber) { // Initialize the parity to the value of this payload memcpy(payload_parity_, payload.data(), payload.size()); if (payload.size() < kMaxPacketSize) { // TODO(rch): expand as needed. memset(payload_parity_ + payload.size(), 0, kMaxPacketSize - payload.size()); } return true; } // Update the parity by XORing in the data (padding with 0s if necessary). for (size_t i = 0; i < kMaxPacketSize; ++i) { uint8 byte = i < payload.size() ? payload[i] : 0x00; payload_parity_[i] ^= byte; } return true; } size_t QuicFecGroup::NumMissingPackets() const { if (min_protected_packet_ == kNoSequenceNumber) return numeric_limits<size_t>::max(); return (max_protected_packet_ - min_protected_packet_ + 1) - received_packets_.size(); } } // namespace net