// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/crypto/strike_register.h" #include "base/logging.h" using std::pair; using std::set; using std::vector; namespace net { // static const uint32 StrikeRegister::kExternalNodeSize = 24; // static const uint32 StrikeRegister::kNil = (1 << 31) | 1; // static const uint32 StrikeRegister::kExternalFlag = 1 << 23; // InternalNode represents a non-leaf node in the critbit tree. See the comment // in the .h file for details. class StrikeRegister::InternalNode { public: void SetChild(unsigned direction, uint32 child) { data_[direction] = (data_[direction] & 0xff) | (child << 8); } void SetCritByte(uint8 critbyte) { data_[0] &= 0xffffff00; data_[0] |= critbyte; } void SetOtherBits(uint8 otherbits) { data_[1] &= 0xffffff00; data_[1] |= otherbits; } void SetNextPtr(uint32 next) { data_[0] = next; } uint32 next() const { return data_[0]; } uint32 child(unsigned n) const { return data_[n] >> 8; } uint8 critbyte() const { return data_[0]; } uint8 otherbits() const { return data_[1]; } // These bytes are organised thus: // <24 bits> left child // <8 bits> crit-byte // <24 bits> right child // <8 bits> other-bits uint32 data_[2]; }; // kCreationTimeFromInternalEpoch contains the number of seconds between the // start of the internal epoch and the creation time. This allows us // to consider times that are before the creation time. static const uint32 kCreationTimeFromInternalEpoch = 63115200.0; // 2 years. void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) { // We only have 23 bits of index available. CHECK_LT(max_entries, 1u << 23); CHECK_GT(max_entries, 1u); // There must be at least two entries. CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes. } StrikeRegister::StrikeRegister(unsigned max_entries, uint32 current_time, uint32 window_secs, const uint8 orbit[8], StartupType startup) : max_entries_(max_entries), window_secs_(window_secs), internal_epoch_(current_time > kCreationTimeFromInternalEpoch ? current_time - kCreationTimeFromInternalEpoch : 0), // The horizon is initially set |window_secs| into the future because, if // we just crashed, then we may have accepted nonces in the span // [current_time...current_time+window_secs) and so we conservatively // reject the whole timespan unless |startup| tells us otherwise. horizon_(ExternalTimeToInternal(current_time) + window_secs), horizon_valid_(startup == DENY_REQUESTS_AT_STARTUP) { memcpy(orbit_, orbit, sizeof(orbit_)); ValidateStrikeRegisterConfig(max_entries); internal_nodes_ = new InternalNode[max_entries]; external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]); Reset(); } StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; } void StrikeRegister::Reset() { // Thread a free list through all of the internal nodes. internal_node_free_head_ = 0; for (unsigned i = 0; i < max_entries_ - 1; i++) internal_nodes_[i].SetNextPtr(i + 1); internal_nodes_[max_entries_ - 1].SetNextPtr(kNil); // Also thread a free list through the external nodes. external_node_free_head_ = 0; for (unsigned i = 0; i < max_entries_ - 1; i++) external_node_next_ptr(i) = i + 1; external_node_next_ptr(max_entries_ - 1) = kNil; // This is the root of the tree. internal_node_head_ = kNil; } bool StrikeRegister::Insert(const uint8 nonce[32], const uint32 current_time_external) { const uint32 current_time = ExternalTimeToInternal(current_time_external); // Check to see if the orbit is correct. if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) { return false; } const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce)); // We have dropped one or more nonces with a time value of |horizon_|, so // we have to reject anything with a timestamp less than or equal to that. if (horizon_valid_ && nonce_time <= horizon_) { return false; } // Check that the timestamp is in the current window. if ((current_time > window_secs_ && nonce_time < (current_time - window_secs_)) || nonce_time > (current_time + window_secs_)) { return false; } // We strip the orbit out of the nonce. uint8 value[24]; memcpy(value, &nonce_time, sizeof(nonce_time)); memcpy(value + sizeof(nonce_time), nonce + sizeof(nonce_time) + sizeof(orbit_), sizeof(value) - sizeof(nonce_time)); // Find the best match to |value| in the crit-bit tree. The best match is // simply the value which /could/ match |value|, if any does, so we still // need a memcmp to check. uint32 best_match_index = BestMatch(value); if (best_match_index == kNil) { // Empty tree. Just insert the new value at the root. uint32 index = GetFreeExternalNode(); memcpy(external_node(index), value, sizeof(value)); internal_node_head_ = (index | kExternalFlag) << 8; return true; } const uint8* best_match = external_node(best_match_index); if (memcmp(best_match, value, sizeof(value)) == 0) { // We found the value in the tree. return false; } // We are going to insert a new entry into the tree, so get the nodes now. uint32 internal_node_index = GetFreeInternalNode(); uint32 external_node_index = GetFreeExternalNode(); // If we just evicted the best match, then we have to try and match again. // We know that we didn't just empty the tree because we require that // max_entries_ >= 2. Also, we know that it doesn't match because, if it // did, it would have been returned previously. if (external_node_index == best_match_index) { best_match_index = BestMatch(value); best_match = external_node(best_match_index); } // Now we need to find the first bit where we differ from |best_match|. unsigned differing_byte; uint8 new_other_bits; for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) { new_other_bits = value[differing_byte] ^ best_match[differing_byte]; if (new_other_bits) { break; } } // Once we have the XOR the of first differing byte in new_other_bits we need // to find the most significant differing bit. We could do this with a simple // for loop, testing bits 7..0. Instead we fold the bits so that we end up // with a byte where all the bits below the most significant one, are set. new_other_bits |= new_other_bits >> 1; new_other_bits |= new_other_bits >> 2; new_other_bits |= new_other_bits >> 4; // Now this bit trick results in all the bits set, except the original // most-significant one. new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255; // Consider the effect of ORing against |new_other_bits|. If |value| did not // have the critical bit set, the result is the same as |new_other_bits|. If // it did, the result is all ones. unsigned newdirection; if ((new_other_bits | value[differing_byte]) == 0xff) { newdirection = 1; } else { newdirection = 0; } memcpy(external_node(external_node_index), value, sizeof(value)); InternalNode* inode = &internal_nodes_[internal_node_index]; inode->SetChild(newdirection, external_node_index | kExternalFlag); inode->SetCritByte(differing_byte); inode->SetOtherBits(new_other_bits); // |where_index| is a pointer to the uint32 which needs to be updated in // order to insert the new internal node into the tree. The internal nodes // store the child indexes in the top 24-bits of a 32-bit word and, to keep // the code simple, we define that |internal_node_head_| is organised the // same way. DCHECK_EQ(internal_node_head_ & 0xff, 0u); uint32* where_index = &internal_node_head_; while (((*where_index >> 8) & kExternalFlag) == 0) { InternalNode* node = &internal_nodes_[*where_index >> 8]; if (node->critbyte() > differing_byte) { break; } if (node->critbyte() == differing_byte && node->otherbits() > new_other_bits) { break; } if (node->critbyte() == differing_byte && node->otherbits() == new_other_bits) { CHECK(false); } uint8 c = value[node->critbyte()]; const int direction = (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8; where_index = &node->data_[direction]; } inode->SetChild(newdirection ^ 1, *where_index >> 8); *where_index = (*where_index & 0xff) | (internal_node_index << 8); return true; } const uint8* StrikeRegister::orbit() const { return orbit_; } void StrikeRegister::Validate() { set<uint32> free_internal_nodes; for (uint32 i = internal_node_free_head_; i != kNil; i = internal_nodes_[i].next()) { CHECK_LT(i, max_entries_); CHECK_EQ(free_internal_nodes.count(i), 0u); free_internal_nodes.insert(i); } set<uint32> free_external_nodes; for (uint32 i = external_node_free_head_; i != kNil; i = external_node_next_ptr(i)) { CHECK_LT(i, max_entries_); CHECK_EQ(free_external_nodes.count(i), 0u); free_external_nodes.insert(i); } set<uint32> used_external_nodes; set<uint32> used_internal_nodes; if (internal_node_head_ != kNil && ((internal_node_head_ >> 8) & kExternalFlag) == 0) { vector<pair<unsigned, bool> > bits; ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes, free_external_nodes, &used_internal_nodes, &used_external_nodes); } } // static uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) { return static_cast<uint32>(d[0]) << 24 | static_cast<uint32>(d[1]) << 16 | static_cast<uint32>(d[2]) << 8 | static_cast<uint32>(d[3]); } uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) { return external_time - internal_epoch_; } uint32 StrikeRegister::BestMatch(const uint8 v[24]) const { if (internal_node_head_ == kNil) { return kNil; } uint32 next = internal_node_head_ >> 8; while ((next & kExternalFlag) == 0) { InternalNode* node = &internal_nodes_[next]; uint8 b = v[node->critbyte()]; unsigned direction = (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8; next = node->child(direction); } return next & ~kExternalFlag; } uint32& StrikeRegister::external_node_next_ptr(unsigned i) { return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]); } uint8* StrikeRegister::external_node(unsigned i) { return &external_nodes_[i * kExternalNodeSize]; } uint32 StrikeRegister::GetFreeExternalNode() { uint32 index = external_node_free_head_; if (index == kNil) { DropNode(); return GetFreeExternalNode(); } external_node_free_head_ = external_node_next_ptr(index); return index; } uint32 StrikeRegister::GetFreeInternalNode() { uint32 index = internal_node_free_head_; if (index == kNil) { DropNode(); return GetFreeInternalNode(); } internal_node_free_head_ = internal_nodes_[index].next(); return index; } void StrikeRegister::DropNode() { // DropNode should never be called on an empty tree. DCHECK(internal_node_head_ != kNil); // An internal node in a crit-bit tree always has exactly two children. // This means that, if we are removing an external node (which is one of // those children), then we also need to remove an internal node. In order // to do that we keep pointers to the parent (wherep) and grandparent // (whereq) when walking down the tree. uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_, *whereq = NULL; while ((p & kExternalFlag) == 0) { whereq = wherep; InternalNode* inode = &internal_nodes_[p]; // We always go left, towards the smallest element, exploiting the fact // that the timestamp is big-endian and at the start of the value. wherep = &inode->data_[0]; p = (*wherep) >> 8; } const uint32 ext_index = p & ~kExternalFlag; const uint8* ext_node = external_node(ext_index); horizon_ = TimeFromBytes(ext_node); if (!whereq) { // We are removing the last element in a tree. internal_node_head_ = kNil; FreeExternalNode(ext_index); return; } // |wherep| points to the left child pointer in the parent so we can add // one and dereference to get the right child. const uint32 other_child = wherep[1]; FreeInternalNode((*whereq) >> 8); *whereq = (*whereq & 0xff) | (other_child & 0xffffff00); FreeExternalNode(ext_index); } void StrikeRegister::FreeExternalNode(uint32 index) { external_node_next_ptr(index) = external_node_free_head_; external_node_free_head_ = index; } void StrikeRegister::FreeInternalNode(uint32 index) { internal_nodes_[index].SetNextPtr(internal_node_free_head_); internal_node_free_head_ = index; } void StrikeRegister::ValidateTree( uint32 internal_node, int last_bit, const vector<pair<unsigned, bool> >& bits, const set<uint32>& free_internal_nodes, const set<uint32>& free_external_nodes, set<uint32>* used_internal_nodes, set<uint32>* used_external_nodes) { CHECK_LT(internal_node, max_entries_); const InternalNode* i = &internal_nodes_[internal_node]; unsigned bit = 0; switch (i->otherbits()) { case 0xff & ~(1 << 7): bit = 0; break; case 0xff & ~(1 << 6): bit = 1; break; case 0xff & ~(1 << 5): bit = 2; break; case 0xff & ~(1 << 4): bit = 3; break; case 0xff & ~(1 << 3): bit = 4; break; case 0xff & ~(1 << 2): bit = 5; break; case 0xff & ~(1 << 1): bit = 6; break; case 0xff & ~1: bit = 7; break; default: CHECK(false); } bit += 8 * i->critbyte(); if (last_bit > -1) { CHECK_GT(bit, static_cast<unsigned>(last_bit)); } CHECK_EQ(free_internal_nodes.count(internal_node), 0u); for (unsigned child = 0; child < 2; child++) { if (i->child(child) & kExternalFlag) { uint32 ext = i->child(child) & ~kExternalFlag; CHECK_EQ(free_external_nodes.count(ext), 0u); CHECK_EQ(used_external_nodes->count(ext), 0u); used_external_nodes->insert(ext); const uint8* bytes = external_node(ext); for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin(); i != bits.end(); i++) { unsigned byte = i->first / 8; DCHECK_LE(byte, 0xffu); unsigned bit = i->first % 8; static const uint8 kMasks[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second); } } else { uint32 inter = i->child(child); vector<pair<unsigned, bool> > new_bits(bits); new_bits.push_back(pair<unsigned, bool>(bit, child != 0)); CHECK_EQ(free_internal_nodes.count(inter), 0u); CHECK_EQ(used_internal_nodes->count(inter), 0u); used_internal_nodes->insert(inter); ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes, used_internal_nodes, used_external_nodes); } } } } // namespace net