// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/dns/dns_session.h" #include "base/basictypes.h" #include "base/bind.h" #include "base/lazy_instance.h" #include "base/metrics/histogram.h" #include "base/metrics/sample_vector.h" #include "base/rand_util.h" #include "base/stl_util.h" #include "base/time/time.h" #include "net/base/ip_endpoint.h" #include "net/base/net_errors.h" #include "net/dns/dns_config_service.h" #include "net/dns/dns_socket_pool.h" #include "net/socket/stream_socket.h" #include "net/udp/datagram_client_socket.h" namespace net { namespace { // Never exceed max timeout. const unsigned kMaxTimeoutMs = 5000; // Set min timeout, in case we are talking to a local DNS proxy. const unsigned kMinTimeoutMs = 10; // Number of buckets in the histogram of observed RTTs. const size_t kRTTBucketCount = 100; // Target percentile in the RTT histogram used for retransmission timeout. const unsigned kRTOPercentile = 99; } // namespace // Runtime statistics of DNS server. struct DnsSession::ServerStats { ServerStats(base::TimeDelta rtt_estimate_param, RttBuckets* buckets) : last_failure_count(0), rtt_estimate(rtt_estimate_param) { rtt_histogram.reset(new base::SampleVector(buckets)); // Seed histogram with 2 samples at |rtt_estimate| timeout. rtt_histogram->Accumulate(rtt_estimate.InMilliseconds(), 2); } // Count of consecutive failures after last success. int last_failure_count; // Last time when server returned failure or timeout. base::Time last_failure; // Last time when server returned success. base::Time last_success; // Estimated RTT using moving average. base::TimeDelta rtt_estimate; // Estimated error in the above. base::TimeDelta rtt_deviation; // A histogram of observed RTT . scoped_ptr<base::SampleVector> rtt_histogram; DISALLOW_COPY_AND_ASSIGN(ServerStats); }; // static base::LazyInstance<DnsSession::RttBuckets>::Leaky DnsSession::rtt_buckets_ = LAZY_INSTANCE_INITIALIZER; DnsSession::RttBuckets::RttBuckets() : base::BucketRanges(kRTTBucketCount + 1) { base::Histogram::InitializeBucketRanges(1, 5000, this); } DnsSession::SocketLease::SocketLease(scoped_refptr<DnsSession> session, unsigned server_index, scoped_ptr<DatagramClientSocket> socket) : session_(session), server_index_(server_index), socket_(socket.Pass()) {} DnsSession::SocketLease::~SocketLease() { session_->FreeSocket(server_index_, socket_.Pass()); } DnsSession::DnsSession(const DnsConfig& config, scoped_ptr<DnsSocketPool> socket_pool, const RandIntCallback& rand_int_callback, NetLog* net_log) : config_(config), socket_pool_(socket_pool.Pass()), rand_callback_(base::Bind(rand_int_callback, 0, kuint16max)), net_log_(net_log), server_index_(0) { socket_pool_->Initialize(&config_.nameservers, net_log); UMA_HISTOGRAM_CUSTOM_COUNTS( "AsyncDNS.ServerCount", config_.nameservers.size(), 0, 10, 10); for (size_t i = 0; i < config_.nameservers.size(); ++i) { server_stats_.push_back(new ServerStats(config_.timeout, rtt_buckets_.Pointer())); } } DnsSession::~DnsSession() { RecordServerStats(); } int DnsSession::NextQueryId() const { return rand_callback_.Run(); } unsigned DnsSession::NextFirstServerIndex() { unsigned index = NextGoodServerIndex(server_index_); if (config_.rotate) server_index_ = (server_index_ + 1) % config_.nameservers.size(); return index; } unsigned DnsSession::NextGoodServerIndex(unsigned server_index) { unsigned index = server_index; base::Time oldest_server_failure(base::Time::Now()); unsigned oldest_server_failure_index = 0; UMA_HISTOGRAM_BOOLEAN("AsyncDNS.ServerIsGood", server_stats_[server_index]->last_failure.is_null()); do { base::Time cur_server_failure = server_stats_[index]->last_failure; // If number of failures on this server doesn't exceed number of allowed // attempts, return its index. if (server_stats_[server_index]->last_failure_count < config_.attempts) { return index; } // Track oldest failed server. if (cur_server_failure < oldest_server_failure) { oldest_server_failure = cur_server_failure; oldest_server_failure_index = index; } index = (index + 1) % config_.nameservers.size(); } while (index != server_index); // If we are here it means that there are no successful servers, so we have // to use one that has failed oldest. return oldest_server_failure_index; } void DnsSession::RecordServerFailure(unsigned server_index) { UMA_HISTOGRAM_CUSTOM_COUNTS( "AsyncDNS.ServerFailureIndex", server_index, 0, 10, 10); ++(server_stats_[server_index]->last_failure_count); server_stats_[server_index]->last_failure = base::Time::Now(); } void DnsSession::RecordServerSuccess(unsigned server_index) { if (server_stats_[server_index]->last_success.is_null()) { UMA_HISTOGRAM_COUNTS_100("AsyncDNS.ServerFailuresAfterNetworkChange", server_stats_[server_index]->last_failure_count); } else { UMA_HISTOGRAM_COUNTS_100("AsyncDNS.ServerFailuresBeforeSuccess", server_stats_[server_index]->last_failure_count); } server_stats_[server_index]->last_failure_count = 0; server_stats_[server_index]->last_failure = base::Time(); server_stats_[server_index]->last_success = base::Time::Now(); } void DnsSession::RecordRTT(unsigned server_index, base::TimeDelta rtt) { DCHECK_LT(server_index, server_stats_.size()); // For measurement, assume it is the first attempt (no backoff). base::TimeDelta timeout_jacobson = NextTimeoutFromJacobson(server_index, 0); base::TimeDelta timeout_histogram = NextTimeoutFromHistogram(server_index, 0); UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorJacobson", rtt - timeout_jacobson); UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorHistogram", rtt - timeout_histogram); UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorJacobsonUnder", timeout_jacobson - rtt); UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorHistogramUnder", timeout_histogram - rtt); // Jacobson/Karels algorithm for TCP. // Using parameters: alpha = 1/8, delta = 1/4, beta = 4 base::TimeDelta& estimate = server_stats_[server_index]->rtt_estimate; base::TimeDelta& deviation = server_stats_[server_index]->rtt_deviation; base::TimeDelta current_error = rtt - estimate; estimate += current_error / 8; // * alpha base::TimeDelta abs_error = base::TimeDelta::FromInternalValue( std::abs(current_error.ToInternalValue())); deviation += (abs_error - deviation) / 4; // * delta // Histogram-based method. server_stats_[server_index]->rtt_histogram ->Accumulate(rtt.InMilliseconds(), 1); } void DnsSession::RecordLostPacket(unsigned server_index, int attempt) { base::TimeDelta timeout_jacobson = NextTimeoutFromJacobson(server_index, attempt); base::TimeDelta timeout_histogram = NextTimeoutFromHistogram(server_index, attempt); UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutSpentJacobson", timeout_jacobson); UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutSpentHistogram", timeout_histogram); } void DnsSession::RecordServerStats() { for (size_t index = 0; index < server_stats_.size(); ++index) { if (server_stats_[index]->last_failure_count) { if (server_stats_[index]->last_success.is_null()) { UMA_HISTOGRAM_COUNTS("AsyncDNS.ServerFailuresWithoutSuccess", server_stats_[index]->last_failure_count); } else { UMA_HISTOGRAM_COUNTS("AsyncDNS.ServerFailuresAfterSuccess", server_stats_[index]->last_failure_count); } } } } base::TimeDelta DnsSession::NextTimeout(unsigned server_index, int attempt) { // Respect config timeout if it exceeds |kMaxTimeoutMs|. if (config_.timeout.InMilliseconds() >= kMaxTimeoutMs) return config_.timeout; return NextTimeoutFromHistogram(server_index, attempt); } // Allocate a socket, already connected to the server address. scoped_ptr<DnsSession::SocketLease> DnsSession::AllocateSocket( unsigned server_index, const NetLog::Source& source) { scoped_ptr<DatagramClientSocket> socket; socket = socket_pool_->AllocateSocket(server_index); if (!socket.get()) return scoped_ptr<SocketLease>(); socket->NetLog().BeginEvent(NetLog::TYPE_SOCKET_IN_USE, source.ToEventParametersCallback()); SocketLease* lease = new SocketLease(this, server_index, socket.Pass()); return scoped_ptr<SocketLease>(lease); } scoped_ptr<StreamSocket> DnsSession::CreateTCPSocket( unsigned server_index, const NetLog::Source& source) { return socket_pool_->CreateTCPSocket(server_index, source); } // Release a socket. void DnsSession::FreeSocket(unsigned server_index, scoped_ptr<DatagramClientSocket> socket) { DCHECK(socket.get()); socket->NetLog().EndEvent(NetLog::TYPE_SOCKET_IN_USE); socket_pool_->FreeSocket(server_index, socket.Pass()); } base::TimeDelta DnsSession::NextTimeoutFromJacobson(unsigned server_index, int attempt) { DCHECK_LT(server_index, server_stats_.size()); base::TimeDelta timeout = server_stats_[server_index]->rtt_estimate + 4 * server_stats_[server_index]->rtt_deviation; timeout = std::max(timeout, base::TimeDelta::FromMilliseconds(kMinTimeoutMs)); // The timeout doubles every full round. unsigned num_backoffs = attempt / config_.nameservers.size(); return std::min(timeout * (1 << num_backoffs), base::TimeDelta::FromMilliseconds(kMaxTimeoutMs)); } base::TimeDelta DnsSession::NextTimeoutFromHistogram(unsigned server_index, int attempt) { DCHECK_LT(server_index, server_stats_.size()); COMPILE_ASSERT(std::numeric_limits<base::HistogramBase::Count>::is_signed, histogram_base_count_assumed_to_be_signed); // Use fixed percentile of observed samples. const base::SampleVector& samples = *server_stats_[server_index]->rtt_histogram; base::HistogramBase::Count total = samples.TotalCount(); base::HistogramBase::Count remaining_count = kRTOPercentile * total / 100; size_t index = 0; while (remaining_count > 0 && index < rtt_buckets_.Get().size()) { remaining_count -= samples.GetCountAtIndex(index); ++index; } base::TimeDelta timeout = base::TimeDelta::FromMilliseconds(rtt_buckets_.Get().range(index)); timeout = std::max(timeout, base::TimeDelta::FromMilliseconds(kMinTimeoutMs)); // The timeout still doubles every full round. unsigned num_backoffs = attempt / config_.nameservers.size(); return std::min(timeout * (1 << num_backoffs), base::TimeDelta::FromMilliseconds(kMaxTimeoutMs)); } } // namespace net