// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/net_util.h" #include <iphlpapi.h> #include <wlanapi.h> #include <algorithm> #include "base/files/file_path.h" #include "base/lazy_instance.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_piece.h" #include "base/strings/string_util.h" #include "base/strings/sys_string_conversions.h" #include "base/strings/utf_string_conversions.h" #include "base/threading/thread_restrictions.h" #include "base/win/scoped_handle.h" #include "base/win/windows_version.h" #include "net/base/escape.h" #include "net/base/ip_endpoint.h" #include "net/base/net_errors.h" #include "url/gurl.h" namespace net { namespace { struct WlanApi { typedef DWORD (WINAPI *WlanOpenHandleFunc)( DWORD, VOID*, DWORD*, HANDLE*); typedef DWORD (WINAPI *WlanEnumInterfacesFunc)( HANDLE, VOID*, WLAN_INTERFACE_INFO_LIST**); typedef DWORD (WINAPI *WlanQueryInterfaceFunc)( HANDLE, const GUID*, WLAN_INTF_OPCODE, VOID*, DWORD*, VOID**, WLAN_OPCODE_VALUE_TYPE*); typedef VOID (WINAPI *WlanFreeMemoryFunc)(VOID*); typedef DWORD (WINAPI *WlanCloseHandleFunc)(HANDLE, VOID*); WlanApi() : initialized(false) { // Use an absolute path to load the DLL to avoid DLL preloading attacks. static const wchar_t* const kDLL = L"%WINDIR%\\system32\\wlanapi.dll"; wchar_t path[MAX_PATH] = {0}; ExpandEnvironmentStrings(kDLL, path, arraysize(path)); module = ::LoadLibraryEx(path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH); if (!module) return; open_handle_func = reinterpret_cast<WlanOpenHandleFunc>( ::GetProcAddress(module, "WlanOpenHandle")); enum_interfaces_func = reinterpret_cast<WlanEnumInterfacesFunc>( ::GetProcAddress(module, "WlanEnumInterfaces")); query_interface_func = reinterpret_cast<WlanQueryInterfaceFunc>( ::GetProcAddress(module, "WlanQueryInterface")); free_memory_func = reinterpret_cast<WlanFreeMemoryFunc>( ::GetProcAddress(module, "WlanFreeMemory")); close_handle_func = reinterpret_cast<WlanCloseHandleFunc>( ::GetProcAddress(module, "WlanCloseHandle")); initialized = open_handle_func && enum_interfaces_func && query_interface_func && free_memory_func && close_handle_func; } template <typename T> DWORD OpenHandle(DWORD client_version, DWORD* cur_version, T* handle) const { HANDLE temp_handle; DWORD result = open_handle_func(client_version, NULL, cur_version, &temp_handle); if (result != ERROR_SUCCESS) return result; handle->Set(temp_handle); return ERROR_SUCCESS; } HMODULE module; WlanOpenHandleFunc open_handle_func; WlanEnumInterfacesFunc enum_interfaces_func; WlanQueryInterfaceFunc query_interface_func; WlanFreeMemoryFunc free_memory_func; WlanCloseHandleFunc close_handle_func; bool initialized; }; // Converts Windows defined types to NetworkInterfaceType. NetworkChangeNotifier::ConnectionType GetNetworkInterfaceType(DWORD ifType) { // Bail out for pre-Vista versions of Windows which are documented to give // inaccurate results like returning Ethernet for WiFi. // http://msdn.microsoft.com/en-us/library/windows/desktop/aa366058.aspx if (base::win::GetVersion() < base::win::VERSION_VISTA) return NetworkChangeNotifier::CONNECTION_UNKNOWN; NetworkChangeNotifier::ConnectionType type = NetworkChangeNotifier::CONNECTION_UNKNOWN; if (ifType == IF_TYPE_ETHERNET_CSMACD) { type = NetworkChangeNotifier::CONNECTION_ETHERNET; } else if (ifType == IF_TYPE_IEEE80211) { type = NetworkChangeNotifier::CONNECTION_WIFI; } // TODO(mallinath) - Cellular? return type; } } // namespace bool GetNetworkList(NetworkInterfaceList* networks, int policy) { // GetAdaptersAddresses() may require IO operations. base::ThreadRestrictions::AssertIOAllowed(); bool is_xp = base::win::GetVersion() < base::win::VERSION_VISTA; ULONG len = 0; ULONG flags = is_xp ? GAA_FLAG_INCLUDE_PREFIX : 0; // First get number of networks. ULONG result = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, NULL, &len); if (result != ERROR_BUFFER_OVERFLOW) { // There are 0 networks. return true; } scoped_ptr<char[]> buf(new char[len]); IP_ADAPTER_ADDRESSES *adapters = reinterpret_cast<IP_ADAPTER_ADDRESSES *>(buf.get()); result = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, adapters, &len); if (result != NO_ERROR) { LOG(ERROR) << "GetAdaptersAddresses failed: " << result; return false; } // These two variables are used below when this method is asked to pick a // IPv6 address which has the shortest lifetime. ULONG ipv6_valid_lifetime = 0; scoped_ptr<NetworkInterface> ipv6_address; for (IP_ADAPTER_ADDRESSES *adapter = adapters; adapter != NULL; adapter = adapter->Next) { // Ignore the loopback device. if (adapter->IfType == IF_TYPE_SOFTWARE_LOOPBACK) { continue; } if (adapter->OperStatus != IfOperStatusUp) { continue; } // Ignore any HOST side vmware adapters with a description like: // VMware Virtual Ethernet Adapter for VMnet1 // but don't ignore any GUEST side adapters with a description like: // VMware Accelerated AMD PCNet Adapter #2 if (policy == EXCLUDE_HOST_SCOPE_VIRTUAL_INTERFACES && strstr(adapter->AdapterName, "VMnet") != NULL) { continue; } for (IP_ADAPTER_UNICAST_ADDRESS* address = adapter->FirstUnicastAddress; address; address = address->Next) { int family = address->Address.lpSockaddr->sa_family; if (family == AF_INET || family == AF_INET6) { IPEndPoint endpoint; if (endpoint.FromSockAddr(address->Address.lpSockaddr, address->Address.iSockaddrLength)) { // XP has no OnLinkPrefixLength field. size_t net_prefix = is_xp ? 0 : address->OnLinkPrefixLength; if (is_xp) { // Prior to Windows Vista the FirstPrefix pointed to the list with // single prefix for each IP address assigned to the adapter. // Order of FirstPrefix does not match order of FirstUnicastAddress, // so we need to find corresponding prefix. for (IP_ADAPTER_PREFIX* prefix = adapter->FirstPrefix; prefix; prefix = prefix->Next) { int prefix_family = prefix->Address.lpSockaddr->sa_family; IPEndPoint network_endpoint; if (prefix_family == family && network_endpoint.FromSockAddr(prefix->Address.lpSockaddr, prefix->Address.iSockaddrLength) && IPNumberMatchesPrefix(endpoint.address(), network_endpoint.address(), prefix->PrefixLength)) { net_prefix = std::max<size_t>(net_prefix, prefix->PrefixLength); } } } uint32 index = (family == AF_INET) ? adapter->IfIndex : adapter->Ipv6IfIndex; // Pick one IPv6 address with least valid lifetime. // The reason we are checking |ValidLifeftime| as there is no other // way identifying the interface type. Usually (and most likely) temp // IPv6 will have a shorter ValidLifetime value then the permanent // interface. if (family == AF_INET6 && (policy & INCLUDE_ONLY_TEMP_IPV6_ADDRESS_IF_POSSIBLE)) { if (ipv6_valid_lifetime == 0 || ipv6_valid_lifetime > address->ValidLifetime) { ipv6_valid_lifetime = address->ValidLifetime; ipv6_address.reset(new NetworkInterface(adapter->AdapterName, base::SysWideToNativeMB(adapter->FriendlyName), index, GetNetworkInterfaceType(adapter->IfType), endpoint.address(), net_prefix)); continue; } } networks->push_back( NetworkInterface(adapter->AdapterName, base::SysWideToNativeMB(adapter->FriendlyName), index, GetNetworkInterfaceType(adapter->IfType), endpoint.address(), net_prefix)); } } } } if (ipv6_address.get()) { networks->push_back(*(ipv6_address.get())); } return true; } WifiPHYLayerProtocol GetWifiPHYLayerProtocol() { static base::LazyInstance<WlanApi>::Leaky lazy_wlanapi = LAZY_INSTANCE_INITIALIZER; struct WlanApiHandleTraits { typedef HANDLE Handle; static bool CloseHandle(HANDLE handle) { return lazy_wlanapi.Get().close_handle_func(handle, NULL) == ERROR_SUCCESS; } static bool IsHandleValid(HANDLE handle) { return base::win::HandleTraits::IsHandleValid(handle); } static HANDLE NullHandle() { return base::win::HandleTraits::NullHandle(); } }; typedef base::win::GenericScopedHandle< WlanApiHandleTraits, base::win::DummyVerifierTraits> WlanHandle; struct WlanApiDeleter { inline void operator()(void* ptr) const { lazy_wlanapi.Get().free_memory_func(ptr); } }; const WlanApi& wlanapi = lazy_wlanapi.Get(); if (!wlanapi.initialized) return WIFI_PHY_LAYER_PROTOCOL_NONE; WlanHandle client; DWORD cur_version = 0; const DWORD kMaxClientVersion = 2; DWORD result = wlanapi.OpenHandle(kMaxClientVersion, &cur_version, &client); if (result != ERROR_SUCCESS) return WIFI_PHY_LAYER_PROTOCOL_NONE; WLAN_INTERFACE_INFO_LIST* interface_list_ptr = NULL; result = wlanapi.enum_interfaces_func(client, NULL, &interface_list_ptr); if (result != ERROR_SUCCESS) return WIFI_PHY_LAYER_PROTOCOL_NONE; scoped_ptr<WLAN_INTERFACE_INFO_LIST, WlanApiDeleter> interface_list( interface_list_ptr); // Assume at most one connected wifi interface. WLAN_INTERFACE_INFO* info = NULL; for (unsigned i = 0; i < interface_list->dwNumberOfItems; ++i) { if (interface_list->InterfaceInfo[i].isState == wlan_interface_state_connected) { info = &interface_list->InterfaceInfo[i]; break; } } if (info == NULL) return WIFI_PHY_LAYER_PROTOCOL_NONE; WLAN_CONNECTION_ATTRIBUTES* conn_info_ptr; DWORD conn_info_size = 0; WLAN_OPCODE_VALUE_TYPE op_code; result = wlanapi.query_interface_func( client, &info->InterfaceGuid, wlan_intf_opcode_current_connection, NULL, &conn_info_size, reinterpret_cast<VOID**>(&conn_info_ptr), &op_code); if (result != ERROR_SUCCESS) return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN; scoped_ptr<WLAN_CONNECTION_ATTRIBUTES, WlanApiDeleter> conn_info( conn_info_ptr); switch (conn_info->wlanAssociationAttributes.dot11PhyType) { case dot11_phy_type_fhss: return WIFI_PHY_LAYER_PROTOCOL_ANCIENT; case dot11_phy_type_dsss: return WIFI_PHY_LAYER_PROTOCOL_B; case dot11_phy_type_irbaseband: return WIFI_PHY_LAYER_PROTOCOL_ANCIENT; case dot11_phy_type_ofdm: return WIFI_PHY_LAYER_PROTOCOL_A; case dot11_phy_type_hrdsss: return WIFI_PHY_LAYER_PROTOCOL_B; case dot11_phy_type_erp: return WIFI_PHY_LAYER_PROTOCOL_G; case dot11_phy_type_ht: return WIFI_PHY_LAYER_PROTOCOL_N; default: return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN; } } } // namespace net