// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "mojo/system/raw_shared_buffer.h" #include <limits> #include "base/macros.h" #include "base/memory/ref_counted.h" #include "base/memory/scoped_ptr.h" #include "testing/gtest/include/gtest/gtest.h" namespace mojo { namespace system { namespace { TEST(RawSharedBufferTest, Basic) { const size_t kNumInts = 100; const size_t kNumBytes = kNumInts * sizeof(int); // A fudge so that we're not just writing zero bytes 75% of the time. const int kFudge = 1234567890; // Make some memory. scoped_refptr<RawSharedBuffer> buffer(RawSharedBuffer::Create(kNumBytes)); ASSERT_TRUE(buffer); // Map it all, scribble some stuff, and then unmap it. { EXPECT_TRUE(buffer->IsValidMap(0, kNumBytes)); scoped_ptr<RawSharedBufferMapping> mapping(buffer->Map(0, kNumBytes)); ASSERT_TRUE(mapping); ASSERT_TRUE(mapping->base()); int* stuff = static_cast<int*>(mapping->base()); for (size_t i = 0; i < kNumInts; i++) stuff[i] = static_cast<int>(i) + kFudge; } // Map it all again, check that our scribbling is still there, then do a // partial mapping and scribble on that, check that everything is coherent, // unmap the first mapping, scribble on some of the second mapping, and then // unmap it. { ASSERT_TRUE(buffer->IsValidMap(0, kNumBytes)); // Use |MapNoCheck()| this time. scoped_ptr<RawSharedBufferMapping> mapping1( buffer->MapNoCheck(0, kNumBytes)); ASSERT_TRUE(mapping1); ASSERT_TRUE(mapping1->base()); int* stuff1 = static_cast<int*>(mapping1->base()); for (size_t i = 0; i < kNumInts; i++) EXPECT_EQ(static_cast<int>(i) + kFudge, stuff1[i]) << i; scoped_ptr<RawSharedBufferMapping> mapping2( buffer->Map((kNumInts / 2) * sizeof(int), 2 * sizeof(int))); ASSERT_TRUE(mapping2); ASSERT_TRUE(mapping2->base()); int* stuff2 = static_cast<int*>(mapping2->base()); EXPECT_EQ(static_cast<int>(kNumInts / 2) + kFudge, stuff2[0]); EXPECT_EQ(static_cast<int>(kNumInts / 2) + 1 + kFudge, stuff2[1]); stuff2[0] = 123; stuff2[1] = 456; EXPECT_EQ(123, stuff1[kNumInts / 2]); EXPECT_EQ(456, stuff1[kNumInts / 2 + 1]); mapping1.reset(); EXPECT_EQ(123, stuff2[0]); EXPECT_EQ(456, stuff2[1]); stuff2[1] = 789; } // Do another partial mapping and check that everything is the way we expect // it to be. { EXPECT_TRUE(buffer->IsValidMap(sizeof(int), kNumBytes - sizeof(int))); scoped_ptr<RawSharedBufferMapping> mapping( buffer->Map(sizeof(int), kNumBytes - sizeof(int))); ASSERT_TRUE(mapping); ASSERT_TRUE(mapping->base()); int* stuff = static_cast<int*>(mapping->base()); for (size_t j = 0; j < kNumInts - 1; j++) { int i = static_cast<int>(j) + 1; if (i == kNumInts / 2) { EXPECT_EQ(123, stuff[j]); } else if (i == kNumInts / 2 + 1) { EXPECT_EQ(789, stuff[j]); } else { EXPECT_EQ(i + kFudge, stuff[j]) << i; } } } } // TODO(vtl): Bigger buffers. TEST(RawSharedBufferTest, InvalidMappings) { scoped_refptr<RawSharedBuffer> buffer(RawSharedBuffer::Create(100)); ASSERT_TRUE(buffer); // Zero length not allowed. EXPECT_FALSE(buffer->Map(0, 0)); EXPECT_FALSE(buffer->IsValidMap(0, 0)); // Okay: EXPECT_TRUE(buffer->Map(0, 100)); EXPECT_TRUE(buffer->IsValidMap(0, 100)); // Offset + length too big. EXPECT_FALSE(buffer->Map(0, 101)); EXPECT_FALSE(buffer->IsValidMap(0, 101)); EXPECT_FALSE(buffer->Map(1, 100)); EXPECT_FALSE(buffer->IsValidMap(1, 100)); // Okay: EXPECT_TRUE(buffer->Map(50, 50)); EXPECT_TRUE(buffer->IsValidMap(50, 50)); // Offset + length too big. EXPECT_FALSE(buffer->Map(50, 51)); EXPECT_FALSE(buffer->IsValidMap(50, 51)); EXPECT_FALSE(buffer->Map(51, 50)); EXPECT_FALSE(buffer->IsValidMap(51, 50)); } TEST(RawSharedBufferTest, TooBig) { // If |size_t| is 32-bit, it's quite possible/likely that |Create()| succeeds // (since it only involves creating a 4 GB file). const size_t kMaxSizeT = std::numeric_limits<size_t>::max(); scoped_refptr<RawSharedBuffer> buffer(RawSharedBuffer::Create(kMaxSizeT)); // But, assuming |sizeof(size_t) == sizeof(void*)|, mapping all of it should // always fail. if (buffer) EXPECT_FALSE(buffer->Map(0, kMaxSizeT)); } // Tests that separate mappings get distinct addresses. // Note: It's not inconceivable that the OS could ref-count identical mappings // and reuse the same address, in which case we'd have to be more careful about // using the address as the key for unmapping. TEST(RawSharedBufferTest, MappingsDistinct) { scoped_refptr<RawSharedBuffer> buffer(RawSharedBuffer::Create(100)); scoped_ptr<RawSharedBufferMapping> mapping1(buffer->Map(0, 100)); scoped_ptr<RawSharedBufferMapping> mapping2(buffer->Map(0, 100)); EXPECT_NE(mapping1->base(), mapping2->base()); } TEST(RawSharedBufferTest, BufferZeroInitialized) { static const size_t kSizes[] = { 10, 100, 1000, 10000, 100000 }; for (size_t i = 0; i < arraysize(kSizes); i++) { scoped_refptr<RawSharedBuffer> buffer(RawSharedBuffer::Create(kSizes[i])); scoped_ptr<RawSharedBufferMapping> mapping(buffer->Map(0, kSizes[i])); for (size_t j = 0; j < kSizes[i]; j++) { // "Assert" instead of "expect" so we don't spam the output with thousands // of failures if we fail. ASSERT_EQ('\0', static_cast<char*>(mapping->base())[j]) << "size " << kSizes[i] << ", offset " << j; } } } TEST(RawSharedBufferTest, MappingsOutliveBuffer) { scoped_ptr<RawSharedBufferMapping> mapping1; scoped_ptr<RawSharedBufferMapping> mapping2; { scoped_refptr<RawSharedBuffer> buffer(RawSharedBuffer::Create(100)); mapping1 = buffer->Map(0, 100).Pass(); mapping2 = buffer->Map(50, 50).Pass(); static_cast<char*>(mapping1->base())[50] = 'x'; } EXPECT_EQ('x', static_cast<char*>(mapping2->base())[0]); static_cast<char*>(mapping2->base())[1] = 'y'; EXPECT_EQ('y', static_cast<char*>(mapping1->base())[51]); } } // namespace } // namespace system } // namespace mojo