// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <string> #include <vector> #include "base/basictypes.h" #include "base/bind.h" #include "media/base/cdm_promise.h" #include "media/base/decoder_buffer.h" #include "media/base/decrypt_config.h" #include "media/base/mock_filters.h" #include "media/cdm/aes_decryptor.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using ::testing::_; using ::testing::Gt; using ::testing::IsNull; using ::testing::NotNull; using ::testing::SaveArg; using ::testing::StrNe; MATCHER(IsEmpty, "") { return arg.empty(); } MATCHER(IsNotEmpty, "") { return !arg.empty(); } class GURL; namespace media { const uint8 kOriginalData[] = "Original subsample data."; const int kOriginalDataSize = 24; // In the examples below, 'k'(key) has to be 16 bytes, and will always require // 2 bytes of padding. 'kid'(keyid) is variable length, and may require 0, 1, // or 2 bytes of padding. const uint8 kKeyId[] = { // base64 equivalent is AAECAw 0x00, 0x01, 0x02, 0x03 }; // Key is 0x0405060708090a0b0c0d0e0f10111213, // base64 equivalent is BAUGBwgJCgsMDQ4PEBESEw. const char kKeyAsJWK[] = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAw\"," " \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\"" " }" " ]" "}"; // Same kid as kKeyAsJWK, key to decrypt kEncryptedData2 const char kKeyAlternateAsJWK[] = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAw\"," " \"k\": \"FBUWFxgZGhscHR4fICEiIw\"" " }" " ]" "}"; const char kWrongKeyAsJWK[] = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAw\"," " \"k\": \"7u7u7u7u7u7u7u7u7u7u7g\"" " }" " ]" "}"; const char kWrongSizedKeyAsJWK[] = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAw\"," " \"k\": \"AAECAw\"" " }" " ]" "}"; const uint8 kIv[] = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // kOriginalData encrypted with kKey and kIv but without any subsamples (or // equivalently using kSubsampleEntriesCypherOnly). const uint8 kEncryptedData[] = { 0x2f, 0x03, 0x09, 0xef, 0x71, 0xaf, 0x31, 0x16, 0xfa, 0x9d, 0x18, 0x43, 0x1e, 0x96, 0x71, 0xb5, 0xbf, 0xf5, 0x30, 0x53, 0x9a, 0x20, 0xdf, 0x95 }; // kOriginalData encrypted with kSubsampleKey and kSubsampleIv using // kSubsampleEntriesNormal. const uint8 kSubsampleEncryptedData[] = { 0x4f, 0x72, 0x09, 0x16, 0x09, 0xe6, 0x79, 0xad, 0x70, 0x73, 0x75, 0x62, 0x09, 0xbb, 0x83, 0x1d, 0x4d, 0x08, 0xd7, 0x78, 0xa4, 0xa7, 0xf1, 0x2e }; const uint8 kOriginalData2[] = "Changed Original data."; const uint8 kIv2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; const uint8 kKeyId2[] = { // base64 equivalent is AAECAwQFBgcICQoLDA0ODxAREhM= 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13 }; const char kKey2AsJWK[] = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\"," " \"k\": \"FBUWFxgZGhscHR4fICEiIw\"" " }" " ]" "}"; // 'k' in bytes is x14x15x16x17x18x19x1ax1bx1cx1dx1ex1fx20x21x22x23 const uint8 kEncryptedData2[] = { 0x57, 0x66, 0xf4, 0x12, 0x1a, 0xed, 0xb5, 0x79, 0x1c, 0x8e, 0x25, 0xd7, 0x17, 0xe7, 0x5e, 0x16, 0xe3, 0x40, 0x08, 0x27, 0x11, 0xe9 }; // Subsample entries for testing. The sum of |cypher_bytes| and |clear_bytes| of // all entries must be equal to kOriginalDataSize to make the subsample entries // valid. const SubsampleEntry kSubsampleEntriesNormal[] = { { 2, 7 }, { 3, 11 }, { 1, 0 } }; const SubsampleEntry kSubsampleEntriesWrongSize[] = { { 3, 6 }, // This entry doesn't match the correct entry. { 3, 11 }, { 1, 0 } }; const SubsampleEntry kSubsampleEntriesInvalidTotalSize[] = { { 1, 1000 }, // This entry is too large. { 3, 11 }, { 1, 0 } }; const SubsampleEntry kSubsampleEntriesClearOnly[] = { { 7, 0 }, { 8, 0 }, { 9, 0 } }; const SubsampleEntry kSubsampleEntriesCypherOnly[] = { { 0, 6 }, { 0, 8 }, { 0, 10 } }; static scoped_refptr<DecoderBuffer> CreateEncryptedBuffer( const std::vector<uint8>& data, const std::vector<uint8>& key_id, const std::vector<uint8>& iv, const std::vector<SubsampleEntry>& subsample_entries) { DCHECK(!data.empty()); scoped_refptr<DecoderBuffer> encrypted_buffer(new DecoderBuffer(data.size())); memcpy(encrypted_buffer->writable_data(), &data[0], data.size()); CHECK(encrypted_buffer.get()); std::string key_id_string( reinterpret_cast<const char*>(key_id.empty() ? NULL : &key_id[0]), key_id.size()); std::string iv_string( reinterpret_cast<const char*>(iv.empty() ? NULL : &iv[0]), iv.size()); encrypted_buffer->set_decrypt_config(scoped_ptr<DecryptConfig>( new DecryptConfig(key_id_string, iv_string, subsample_entries))); return encrypted_buffer; } enum PromiseResult { RESOLVED, REJECTED }; class AesDecryptorTest : public testing::Test { public: AesDecryptorTest() : decryptor_(base::Bind(&AesDecryptorTest::OnSessionMessage, base::Unretained(this)), base::Bind(&AesDecryptorTest::OnSessionClosed, base::Unretained(this))), decrypt_cb_(base::Bind(&AesDecryptorTest::BufferDecrypted, base::Unretained(this))), original_data_(kOriginalData, kOriginalData + kOriginalDataSize), encrypted_data_(kEncryptedData, kEncryptedData + arraysize(kEncryptedData)), subsample_encrypted_data_( kSubsampleEncryptedData, kSubsampleEncryptedData + arraysize(kSubsampleEncryptedData)), key_id_(kKeyId, kKeyId + arraysize(kKeyId)), iv_(kIv, kIv + arraysize(kIv)), normal_subsample_entries_( kSubsampleEntriesNormal, kSubsampleEntriesNormal + arraysize(kSubsampleEntriesNormal)) { } protected: void OnResolveWithSession(PromiseResult expected, const std::string& web_session_id) { EXPECT_EQ(expected, RESOLVED); EXPECT_GT(web_session_id.length(), 0ul); web_session_id_ = web_session_id; } void OnResolve(PromiseResult expected) { EXPECT_EQ(expected, RESOLVED); } void OnReject(PromiseResult expected, MediaKeys::Exception exception_code, uint32 system_code, const std::string& error_message) { EXPECT_EQ(expected, REJECTED); } scoped_ptr<SimpleCdmPromise> CreatePromise(PromiseResult expected) { scoped_ptr<SimpleCdmPromise> promise(new SimpleCdmPromise( base::Bind( &AesDecryptorTest::OnResolve, base::Unretained(this), expected), base::Bind( &AesDecryptorTest::OnReject, base::Unretained(this), expected))); return promise.Pass(); } scoped_ptr<NewSessionCdmPromise> CreateSessionPromise( PromiseResult expected) { scoped_ptr<NewSessionCdmPromise> promise(new NewSessionCdmPromise( base::Bind(&AesDecryptorTest::OnResolveWithSession, base::Unretained(this), expected), base::Bind( &AesDecryptorTest::OnReject, base::Unretained(this), expected))); return promise.Pass(); } // Creates a new session using |key_id|. Returns the session ID. std::string CreateSession(const std::vector<uint8>& key_id) { DCHECK(!key_id.empty()); EXPECT_CALL(*this, OnSessionMessage(IsNotEmpty(), key_id, GURL::EmptyGURL())); decryptor_.CreateSession(std::string(), &key_id[0], key_id.size(), MediaKeys::TEMPORARY_SESSION, CreateSessionPromise(RESOLVED)); // This expects the promise to be called synchronously, which is the case // for AesDecryptor. return web_session_id_; } // Releases the session specified by |session_id|. void ReleaseSession(const std::string& session_id) { EXPECT_CALL(*this, OnSessionClosed(session_id)); decryptor_.ReleaseSession(session_id, CreatePromise(RESOLVED)); } // Updates the session specified by |session_id| with |key|. |result| // tests that the update succeeds or generates an error. void UpdateSessionAndExpect(std::string session_id, const std::string& key, PromiseResult result) { DCHECK(!key.empty()); decryptor_.UpdateSession(session_id, reinterpret_cast<const uint8*>(key.c_str()), key.length(), CreatePromise(result)); } MOCK_METHOD2(BufferDecrypted, void(Decryptor::Status, const scoped_refptr<DecoderBuffer>&)); enum DecryptExpectation { SUCCESS, DATA_MISMATCH, DATA_AND_SIZE_MISMATCH, DECRYPT_ERROR, NO_KEY }; void DecryptAndExpect(const scoped_refptr<DecoderBuffer>& encrypted, const std::vector<uint8>& plain_text, DecryptExpectation result) { scoped_refptr<DecoderBuffer> decrypted; switch (result) { case SUCCESS: case DATA_MISMATCH: case DATA_AND_SIZE_MISMATCH: EXPECT_CALL(*this, BufferDecrypted(Decryptor::kSuccess, NotNull())) .WillOnce(SaveArg<1>(&decrypted)); break; case DECRYPT_ERROR: EXPECT_CALL(*this, BufferDecrypted(Decryptor::kError, IsNull())) .WillOnce(SaveArg<1>(&decrypted)); break; case NO_KEY: EXPECT_CALL(*this, BufferDecrypted(Decryptor::kNoKey, IsNull())) .WillOnce(SaveArg<1>(&decrypted)); break; } decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_); std::vector<uint8> decrypted_text; if (decrypted && decrypted->data_size()) { decrypted_text.assign( decrypted->data(), decrypted->data() + decrypted->data_size()); } switch (result) { case SUCCESS: EXPECT_EQ(plain_text, decrypted_text); break; case DATA_MISMATCH: EXPECT_EQ(plain_text.size(), decrypted_text.size()); EXPECT_NE(plain_text, decrypted_text); break; case DATA_AND_SIZE_MISMATCH: EXPECT_NE(plain_text.size(), decrypted_text.size()); break; case DECRYPT_ERROR: case NO_KEY: EXPECT_TRUE(decrypted_text.empty()); break; } } MOCK_METHOD3(OnSessionMessage, void(const std::string& web_session_id, const std::vector<uint8>& message, const GURL& destination_url)); MOCK_METHOD1(OnSessionClosed, void(const std::string& web_session_id)); AesDecryptor decryptor_; AesDecryptor::DecryptCB decrypt_cb_; std::string web_session_id_; // Constants for testing. const std::vector<uint8> original_data_; const std::vector<uint8> encrypted_data_; const std::vector<uint8> subsample_encrypted_data_; const std::vector<uint8> key_id_; const std::vector<uint8> iv_; const std::vector<SubsampleEntry> normal_subsample_entries_; const std::vector<SubsampleEntry> no_subsample_entries_; }; TEST_F(AesDecryptorTest, CreateSessionWithNullInitData) { EXPECT_CALL(*this, OnSessionMessage(IsNotEmpty(), IsEmpty(), GURL::EmptyGURL())); decryptor_.CreateSession(std::string(), NULL, 0, MediaKeys::TEMPORARY_SESSION, CreateSessionPromise(RESOLVED)); } TEST_F(AesDecryptorTest, MultipleCreateSession) { EXPECT_CALL(*this, OnSessionMessage(IsNotEmpty(), IsEmpty(), GURL::EmptyGURL())); decryptor_.CreateSession(std::string(), NULL, 0, MediaKeys::TEMPORARY_SESSION, CreateSessionPromise(RESOLVED)); EXPECT_CALL(*this, OnSessionMessage(IsNotEmpty(), IsEmpty(), GURL::EmptyGURL())); decryptor_.CreateSession(std::string(), NULL, 0, MediaKeys::TEMPORARY_SESSION, CreateSessionPromise(RESOLVED)); EXPECT_CALL(*this, OnSessionMessage(IsNotEmpty(), IsEmpty(), GURL::EmptyGURL())); decryptor_.CreateSession(std::string(), NULL, 0, MediaKeys::TEMPORARY_SESSION, CreateSessionPromise(RESOLVED)); } TEST_F(AesDecryptorTest, NormalDecryption) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS); } TEST_F(AesDecryptorTest, UnencryptedFrame) { // An empty iv string signals that the frame is unencrypted. scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( original_data_, key_id_, std::vector<uint8>(), no_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS); } TEST_F(AesDecryptorTest, WrongKey) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kWrongKeyAsJWK, RESOLVED); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH); } TEST_F(AesDecryptorTest, NoKey) { scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kNoKey, IsNull())); decryptor_.Decrypt(Decryptor::kVideo, encrypted_buffer, decrypt_cb_); } TEST_F(AesDecryptorTest, KeyReplacement) { std::string session_id = CreateSession(key_id_); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); UpdateSessionAndExpect(session_id, kWrongKeyAsJWK, RESOLVED); ASSERT_NO_FATAL_FAILURE(DecryptAndExpect( encrypted_buffer, original_data_, DATA_MISMATCH)); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); } TEST_F(AesDecryptorTest, WrongSizedKey) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kWrongSizedKeyAsJWK, REJECTED); } TEST_F(AesDecryptorTest, MultipleKeysAndFrames) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); UpdateSessionAndExpect(session_id, kKey2AsJWK, RESOLVED); // The first key is still available after we added a second key. ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); // The second key is also available. encrypted_buffer = CreateEncryptedBuffer( std::vector<uint8>(kEncryptedData2, kEncryptedData2 + arraysize(kEncryptedData2)), std::vector<uint8>(kKeyId2, kKeyId2 + arraysize(kKeyId2)), std::vector<uint8>(kIv2, kIv2 + arraysize(kIv2)), no_subsample_entries_); ASSERT_NO_FATAL_FAILURE(DecryptAndExpect( encrypted_buffer, std::vector<uint8>(kOriginalData2, kOriginalData2 + arraysize(kOriginalData2) - 1), SUCCESS)); } TEST_F(AesDecryptorTest, CorruptedIv) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); std::vector<uint8> bad_iv = iv_; bad_iv[1]++; scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, bad_iv, no_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH); } TEST_F(AesDecryptorTest, CorruptedData) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); std::vector<uint8> bad_data = encrypted_data_; bad_data[1]++; scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( bad_data, key_id_, iv_, no_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH); } TEST_F(AesDecryptorTest, EncryptedAsUnencryptedFailure) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, std::vector<uint8>(), no_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH); } TEST_F(AesDecryptorTest, SubsampleDecryption) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( subsample_encrypted_data_, key_id_, iv_, normal_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS); } // Ensures noninterference of data offset and subsample mechanisms. We never // expect to encounter this in the wild, but since the DecryptConfig doesn't // disallow such a configuration, it should be covered. TEST_F(AesDecryptorTest, SubsampleDecryptionWithOffset) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( subsample_encrypted_data_, key_id_, iv_, normal_subsample_entries_); DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS); } TEST_F(AesDecryptorTest, SubsampleWrongSize) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); std::vector<SubsampleEntry> subsample_entries_wrong_size( kSubsampleEntriesWrongSize, kSubsampleEntriesWrongSize + arraysize(kSubsampleEntriesWrongSize)); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( subsample_encrypted_data_, key_id_, iv_, subsample_entries_wrong_size); DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH); } TEST_F(AesDecryptorTest, SubsampleInvalidTotalSize) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); std::vector<SubsampleEntry> subsample_entries_invalid_total_size( kSubsampleEntriesInvalidTotalSize, kSubsampleEntriesInvalidTotalSize + arraysize(kSubsampleEntriesInvalidTotalSize)); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( subsample_encrypted_data_, key_id_, iv_, subsample_entries_invalid_total_size); DecryptAndExpect(encrypted_buffer, original_data_, DECRYPT_ERROR); } // No cypher bytes in any of the subsamples. TEST_F(AesDecryptorTest, SubsampleClearBytesOnly) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); std::vector<SubsampleEntry> clear_only_subsample_entries( kSubsampleEntriesClearOnly, kSubsampleEntriesClearOnly + arraysize(kSubsampleEntriesClearOnly)); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( original_data_, key_id_, iv_, clear_only_subsample_entries); DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS); } // No clear bytes in any of the subsamples. TEST_F(AesDecryptorTest, SubsampleCypherBytesOnly) { std::string session_id = CreateSession(key_id_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); std::vector<SubsampleEntry> cypher_only_subsample_entries( kSubsampleEntriesCypherOnly, kSubsampleEntriesCypherOnly + arraysize(kSubsampleEntriesCypherOnly)); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, cypher_only_subsample_entries); DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS); } TEST_F(AesDecryptorTest, ReleaseSession) { std::string session_id = CreateSession(key_id_); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); ReleaseSession(session_id); } TEST_F(AesDecryptorTest, NoKeyAfterReleaseSession) { std::string session_id = CreateSession(key_id_); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); UpdateSessionAndExpect(session_id, kKeyAsJWK, RESOLVED); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); ReleaseSession(session_id); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, NO_KEY)); } TEST_F(AesDecryptorTest, LatestKeyUsed) { std::string session_id1 = CreateSession(key_id_); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); // Add alternate key, buffer should not be decoded properly. UpdateSessionAndExpect(session_id1, kKeyAlternateAsJWK, RESOLVED); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH)); // Create a second session with a correct key value for key_id_. std::string session_id2 = CreateSession(key_id_); UpdateSessionAndExpect(session_id2, kKeyAsJWK, RESOLVED); // Should be able to decode with latest key. ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); } TEST_F(AesDecryptorTest, LatestKeyUsedAfterReleaseSession) { std::string session_id1 = CreateSession(key_id_); scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer( encrypted_data_, key_id_, iv_, no_subsample_entries_); UpdateSessionAndExpect(session_id1, kKeyAsJWK, RESOLVED); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); // Create a second session with a different key value for key_id_. std::string session_id2 = CreateSession(key_id_); UpdateSessionAndExpect(session_id2, kKeyAlternateAsJWK, RESOLVED); // Should not be able to decode with new key. ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH)); // Close second session, should revert to original key. ReleaseSession(session_id2); ASSERT_NO_FATAL_FAILURE( DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS)); } TEST_F(AesDecryptorTest, JWKKey) { std::string session_id = CreateSession(key_id_); // Try a simple JWK key (i.e. not in a set) const std::string kJwkSimple = "{" " \"kty\": \"oct\"," " \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\"," " \"k\": \"FBUWFxgZGhscHR4fICEiIw\"" "}"; UpdateSessionAndExpect(session_id, kJwkSimple, REJECTED); // Try a key list with multiple entries. const std::string kJwksMultipleEntries = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\"," " \"k\": \"FBUWFxgZGhscHR4fICEiIw\"" " }," " {" " \"kty\": \"oct\"," " \"kid\": \"JCUmJygpKissLS4vMA\"," " \"k\":\"MTIzNDU2Nzg5Ojs8PT4/QA\"" " }" " ]" "}"; UpdateSessionAndExpect(session_id, kJwksMultipleEntries, RESOLVED); // Try a key with no spaces and some \n plus additional fields. const std::string kJwksNoSpaces = "\n\n{\"something\":1,\"keys\":[{\n\n\"kty\":\"oct\",\"alg\":\"A128KW\"," "\"kid\":\"AAECAwQFBgcICQoLDA0ODxAREhM\",\"k\":\"GawgguFyGrWKav7AX4VKUg" "\",\"foo\":\"bar\"}]}\n\n"; UpdateSessionAndExpect(session_id, kJwksNoSpaces, RESOLVED); // Try some non-ASCII characters. UpdateSessionAndExpect( session_id, "This is not ASCII due to \xff\xfe\xfd in it.", REJECTED); // Try a badly formatted key. Assume that the JSON parser is fully tested, // so we won't try a lot of combinations. However, need a test to ensure // that the code doesn't crash if invalid JSON received. UpdateSessionAndExpect(session_id, "This is not a JSON key.", REJECTED); // Try passing some valid JSON that is not a dictionary at the top level. UpdateSessionAndExpect(session_id, "40", REJECTED); // Try an empty dictionary. UpdateSessionAndExpect(session_id, "{ }", REJECTED); // Try an empty 'keys' dictionary. UpdateSessionAndExpect(session_id, "{ \"keys\": [] }", REJECTED); // Try with 'keys' not a dictionary. UpdateSessionAndExpect(session_id, "{ \"keys\":\"1\" }", REJECTED); // Try with 'keys' a list of integers. UpdateSessionAndExpect(session_id, "{ \"keys\": [ 1, 2, 3 ] }", REJECTED); // Try padding(=) at end of 'k' base64 string. const std::string kJwksWithPaddedKey = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAw\"," " \"k\": \"BAUGBwgJCgsMDQ4PEBESEw==\"" " }" " ]" "}"; UpdateSessionAndExpect(session_id, kJwksWithPaddedKey, REJECTED); // Try padding(=) at end of 'kid' base64 string. const std::string kJwksWithPaddedKeyId = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"AAECAw==\"," " \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\"" " }" " ]" "}"; UpdateSessionAndExpect(session_id, kJwksWithPaddedKeyId, REJECTED); // Try a key with invalid base64 encoding. const std::string kJwksWithInvalidBase64 = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"!@#$%^&*()\"," " \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\"" " }" " ]" "}"; UpdateSessionAndExpect(session_id, kJwksWithInvalidBase64, REJECTED); // Try a 3-byte 'kid' where no base64 padding is required. // |kJwksMultipleEntries| above has 2 'kid's that require 1 and 2 padding // bytes. Note that 'k' has to be 16 bytes, so it will always require padding. const std::string kJwksWithNoPadding = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"Kiss\"," " \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\"" " }" " ]" "}"; UpdateSessionAndExpect(session_id, kJwksWithNoPadding, RESOLVED); // Empty key id. const std::string kJwksWithEmptyKeyId = "{" " \"keys\": [" " {" " \"kty\": \"oct\"," " \"kid\": \"\"," " \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\"" " }" " ]" "}"; UpdateSessionAndExpect(session_id, kJwksWithEmptyKeyId, REJECTED); ReleaseSession(session_id); } } // namespace media