// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include <cmath> #include "base/bind.h" #include "base/bind_helpers.h" #include "base/strings/string_number_conversions.h" #include "base/time/time.h" #include "build/build_config.h" #include "media/base/sinc_resampler.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using testing::_; namespace media { static const double kSampleRateRatio = 192000.0 / 44100.0; // Helper class to ensure ChunkedResample() functions properly. class MockSource { public: MOCK_METHOD2(ProvideInput, void(int frames, float* destination)); }; ACTION(ClearBuffer) { memset(arg1, 0, arg0 * sizeof(float)); } ACTION(FillBuffer) { // Value chosen arbitrarily such that SincResampler resamples it to something // easily representable on all platforms; e.g., using kSampleRateRatio this // becomes 1.81219. memset(arg1, 64, arg0 * sizeof(float)); } // Test requesting multiples of ChunkSize() frames results in the proper number // of callbacks. TEST(SincResamplerTest, ChunkedResample) { MockSource mock_source; // Choose a high ratio of input to output samples which will result in quick // exhaustion of SincResampler's internal buffers. SincResampler resampler( kSampleRateRatio, SincResampler::kDefaultRequestSize, base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source))); static const int kChunks = 2; int max_chunk_size = resampler.ChunkSize() * kChunks; scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]); // Verify requesting ChunkSize() frames causes a single callback. EXPECT_CALL(mock_source, ProvideInput(_, _)) .Times(1).WillOnce(ClearBuffer()); resampler.Resample(resampler.ChunkSize(), resampled_destination.get()); // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks. testing::Mock::VerifyAndClear(&mock_source); EXPECT_CALL(mock_source, ProvideInput(_, _)) .Times(kChunks).WillRepeatedly(ClearBuffer()); resampler.Resample(max_chunk_size, resampled_destination.get()); } // Test flush resets the internal state properly. TEST(SincResamplerTest, Flush) { MockSource mock_source; SincResampler resampler( kSampleRateRatio, SincResampler::kDefaultRequestSize, base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source))); scoped_ptr<float[]> resampled_destination(new float[resampler.ChunkSize()]); // Fill the resampler with junk data. EXPECT_CALL(mock_source, ProvideInput(_, _)) .Times(1).WillOnce(FillBuffer()); resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); ASSERT_NE(resampled_destination[0], 0); // Flush and request more data, which should all be zeros now. resampler.Flush(); testing::Mock::VerifyAndClear(&mock_source); EXPECT_CALL(mock_source, ProvideInput(_, _)) .Times(1).WillOnce(ClearBuffer()); resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get()); for (int i = 0; i < resampler.ChunkSize() / 2; ++i) ASSERT_FLOAT_EQ(resampled_destination[i], 0); } // Test flush resets the internal state properly. TEST(SincResamplerTest, DISABLED_SetRatioBench) { MockSource mock_source; SincResampler resampler( kSampleRateRatio, SincResampler::kDefaultRequestSize, base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source))); base::TimeTicks start = base::TimeTicks::HighResNow(); for (int i = 1; i < 10000; ++i) resampler.SetRatio(1.0 / i); double total_time_c_ms = (base::TimeTicks::HighResNow() - start).InMillisecondsF(); printf("SetRatio() took %.2fms.\n", total_time_c_ms); } // Define platform independent function name for Convolve* tests. #if defined(ARCH_CPU_X86_FAMILY) #define CONVOLVE_FUNC Convolve_SSE #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) #define CONVOLVE_FUNC Convolve_NEON #endif // Ensure various optimized Convolve() methods return the same value. Only run // this test if other optimized methods exist, otherwise the default Convolve() // will be tested by the parameterized SincResampler tests below. #if defined(CONVOLVE_FUNC) static const double kKernelInterpolationFactor = 0.5; TEST(SincResamplerTest, Convolve) { // Initialize a dummy resampler. MockSource mock_source; SincResampler resampler( kSampleRateRatio, SincResampler::kDefaultRequestSize, base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source))); // The optimized Convolve methods are slightly more precise than Convolve_C(), // so comparison must be done using an epsilon. static const double kEpsilon = 0.00000005; // Use a kernel from SincResampler as input and kernel data, this has the // benefit of already being properly sized and aligned for Convolve_SSE(). double result = resampler.Convolve_C( resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); double result2 = resampler.CONVOLVE_FUNC( resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); EXPECT_NEAR(result2, result, kEpsilon); // Test Convolve() w/ unaligned input pointer. result = resampler.Convolve_C( resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); result2 = resampler.CONVOLVE_FUNC( resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(), resampler.kernel_storage_.get(), kKernelInterpolationFactor); EXPECT_NEAR(result2, result, kEpsilon); } #endif // Fake audio source for testing the resampler. Generates a sinusoidal linear // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the // resampler for the specific sample rate conversion being used. class SinusoidalLinearChirpSource { public: SinusoidalLinearChirpSource(int sample_rate, int samples, double max_frequency) : sample_rate_(sample_rate), total_samples_(samples), max_frequency_(max_frequency), current_index_(0) { // Chirp rate. double duration = static_cast<double>(total_samples_) / sample_rate_; k_ = (max_frequency_ - kMinFrequency) / duration; } virtual ~SinusoidalLinearChirpSource() {} void ProvideInput(int frames, float* destination) { for (int i = 0; i < frames; ++i, ++current_index_) { // Filter out frequencies higher than Nyquist. if (Frequency(current_index_) > 0.5 * sample_rate_) { destination[i] = 0; } else { // Calculate time in seconds. double t = static_cast<double>(current_index_) / sample_rate_; // Sinusoidal linear chirp. destination[i] = sin(2 * M_PI * (kMinFrequency * t + (k_ / 2) * t * t)); } } } double Frequency(int position) { return kMinFrequency + position * (max_frequency_ - kMinFrequency) / total_samples_; } private: enum { kMinFrequency = 5 }; double sample_rate_; int total_samples_; double max_frequency_; double k_; int current_index_; DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource); }; typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData; class SincResamplerTest : public testing::TestWithParam<SincResamplerTestData> { public: SincResamplerTest() : input_rate_(std::tr1::get<0>(GetParam())), output_rate_(std::tr1::get<1>(GetParam())), rms_error_(std::tr1::get<2>(GetParam())), low_freq_error_(std::tr1::get<3>(GetParam())) { } virtual ~SincResamplerTest() {} protected: int input_rate_; int output_rate_; double rms_error_; double low_freq_error_; }; // Tests resampling using a given input and output sample rate. TEST_P(SincResamplerTest, Resample) { // Make comparisons using one second of data. static const double kTestDurationSecs = 1; int input_samples = kTestDurationSecs * input_rate_; int output_samples = kTestDurationSecs * output_rate_; // Nyquist frequency for the input sampling rate. double input_nyquist_freq = 0.5 * input_rate_; // Source for data to be resampled. SinusoidalLinearChirpSource resampler_source( input_rate_, input_samples, input_nyquist_freq); const double io_ratio = input_rate_ / static_cast<double>(output_rate_); SincResampler resampler( io_ratio, SincResampler::kDefaultRequestSize, base::Bind(&SinusoidalLinearChirpSource::ProvideInput, base::Unretained(&resampler_source))); // Force an update to the sample rate ratio to ensure dyanmic sample rate // changes are working correctly. scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]); memcpy(kernel.get(), resampler.get_kernel_for_testing(), SincResampler::kKernelStorageSize); resampler.SetRatio(M_PI); ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), SincResampler::kKernelStorageSize)); resampler.SetRatio(io_ratio); ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(), SincResampler::kKernelStorageSize)); // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes. scoped_ptr<float[]> resampled_destination(new float[output_samples]); scoped_ptr<float[]> pure_destination(new float[output_samples]); // Generate resampled signal. resampler.Resample(output_samples, resampled_destination.get()); // Generate pure signal. SinusoidalLinearChirpSource pure_source( output_rate_, output_samples, input_nyquist_freq); pure_source.ProvideInput(output_samples, pure_destination.get()); // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which // we refer to as low and high. static const double kLowFrequencyNyquistRange = 0.7; static const double kHighFrequencyNyquistRange = 0.9; // Calculate Root-Mean-Square-Error and maximum error for the resampling. double sum_of_squares = 0; double low_freq_max_error = 0; double high_freq_max_error = 0; int minimum_rate = std::min(input_rate_, output_rate_); double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate; double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate; for (int i = 0; i < output_samples; ++i) { double error = fabs(resampled_destination[i] - pure_destination[i]); if (pure_source.Frequency(i) < low_frequency_range) { if (error > low_freq_max_error) low_freq_max_error = error; } else if (pure_source.Frequency(i) < high_frequency_range) { if (error > high_freq_max_error) high_freq_max_error = error; } // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange. sum_of_squares += error * error; } double rms_error = sqrt(sum_of_squares / output_samples); // Convert each error to dbFS. #define DBFS(x) 20 * log10(x) rms_error = DBFS(rms_error); low_freq_max_error = DBFS(low_freq_max_error); high_freq_max_error = DBFS(high_freq_max_error); EXPECT_LE(rms_error, rms_error_); EXPECT_LE(low_freq_max_error, low_freq_error_); // All conversions currently have a high frequency error around -6 dbFS. static const double kHighFrequencyMaxError = -6.02; EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError); } // Almost all conversions have an RMS error of around -14 dbFS. static const double kResamplingRMSError = -14.58; // Thresholds chosen arbitrarily based on what each resampling reported during // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS. INSTANTIATE_TEST_CASE_P( SincResamplerTest, SincResamplerTest, testing::Values( // To 44.1kHz std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73), std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19), std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54), std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53), std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32), std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53), std::tr1::make_tuple(48000, 44100, -15.01, -64.04), std::tr1::make_tuple(96000, 44100, -18.49, -25.51), std::tr1::make_tuple(192000, 44100, -20.50, -13.31), // To 48kHz std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43), std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61), std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96), std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42), std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04), std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63), std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52), std::tr1::make_tuple(96000, 48000, -18.40, -28.44), std::tr1::make_tuple(192000, 48000, -20.43, -14.11), // To 96kHz std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19), std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61), std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39), std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42), std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95), std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63), std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52), std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52), std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41), // To 192kHz std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10), std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61), std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14), std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42), std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38), std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63), std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44), std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52), std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52))); } // namespace media