// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stdio.h> #include <stdlib.h> #include <algorithm> // for min() #include "base/atomicops.h" #include "testing/gtest/include/gtest/gtest.h" // Number of bits in a size_t. static const int kSizeBits = 8 * sizeof(size_t); // The maximum size of a size_t. static const size_t kMaxSize = ~static_cast<size_t>(0); // Maximum positive size of a size_t if it were signed. static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1); // An allocation size which is not too big to be reasonable. static const size_t kNotTooBig = 100000; // An allocation size which is just too big. static const size_t kTooBig = ~static_cast<size_t>(0); namespace { using std::min; // Fill a buffer of the specified size with a predetermined pattern static void Fill(unsigned char* buffer, int n) { for (int i = 0; i < n; i++) { buffer[i] = (i & 0xff); } } // Check that the specified buffer has the predetermined pattern // generated by Fill() static bool Valid(unsigned char* buffer, int n) { for (int i = 0; i < n; i++) { if (buffer[i] != (i & 0xff)) { return false; } } return true; } // Check that a buffer is completely zeroed. static bool IsZeroed(unsigned char* buffer, int n) { for (int i = 0; i < n; i++) { if (buffer[i] != 0) { return false; } } return true; } // Check alignment static void CheckAlignment(void* p, int align) { EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1)); } // Return the next interesting size/delta to check. Returns -1 if no more. static int NextSize(int size) { if (size < 100) return size+1; if (size < 100000) { // Find next power of two int power = 1; while (power < size) power <<= 1; // Yield (power-1, power, power+1) if (size < power-1) return power-1; if (size == power-1) return power; assert(size == power); return power+1; } else { return -1; } } template <class AtomicType> static void TestAtomicIncrement() { // For now, we just test single threaded execution // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go // outside the expected address bounds. This is in particular to // test that some future change to the asm code doesn't cause the // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines. struct { AtomicType prev_word; AtomicType count; AtomicType next_word; } s; AtomicType prev_word_value, next_word_value; memset(&prev_word_value, 0xFF, sizeof(AtomicType)); memset(&next_word_value, 0xEE, sizeof(AtomicType)); s.prev_word = prev_word_value; s.count = 0; s.next_word = next_word_value; EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1); EXPECT_EQ(s.count, 1); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3); EXPECT_EQ(s.count, 3); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6); EXPECT_EQ(s.count, 6); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3); EXPECT_EQ(s.count, 3); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1); EXPECT_EQ(s.count, 1); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0); EXPECT_EQ(s.count, 0); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1); EXPECT_EQ(s.count, -1); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5); EXPECT_EQ(s.count, -5); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0); EXPECT_EQ(s.count, 0); EXPECT_EQ(s.prev_word, prev_word_value); EXPECT_EQ(s.next_word, next_word_value); } #define NUM_BITS(T) (sizeof(T) * 8) template <class AtomicType> static void TestCompareAndSwap() { AtomicType value = 0; AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1); EXPECT_EQ(1, value); EXPECT_EQ(0, prev); // Use test value that has non-zero bits in both halves, more for testing // 64-bit implementation on 32-bit platforms. const AtomicType k_test_val = (static_cast<uint64_t>(1) << (NUM_BITS(AtomicType) - 2)) + 11; value = k_test_val; prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5); EXPECT_EQ(k_test_val, value); EXPECT_EQ(k_test_val, prev); value = k_test_val; prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5); EXPECT_EQ(5, value); EXPECT_EQ(k_test_val, prev); } template <class AtomicType> static void TestAtomicExchange() { AtomicType value = 0; AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1); EXPECT_EQ(1, value); EXPECT_EQ(0, new_value); // Use test value that has non-zero bits in both halves, more for testing // 64-bit implementation on 32-bit platforms. const AtomicType k_test_val = (static_cast<uint64_t>(1) << (NUM_BITS(AtomicType) - 2)) + 11; value = k_test_val; new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val); EXPECT_EQ(k_test_val, value); EXPECT_EQ(k_test_val, new_value); value = k_test_val; new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5); EXPECT_EQ(5, value); EXPECT_EQ(k_test_val, new_value); } template <class AtomicType> static void TestAtomicIncrementBounds() { // Test increment at the half-width boundary of the atomic type. // It is primarily for testing at the 32-bit boundary for 64-bit atomic type. AtomicType test_val = static_cast<uint64_t>(1) << (NUM_BITS(AtomicType) / 2); AtomicType value = test_val - 1; AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1); EXPECT_EQ(test_val, value); EXPECT_EQ(value, new_value); base::subtle::NoBarrier_AtomicIncrement(&value, -1); EXPECT_EQ(test_val - 1, value); } // This is a simple sanity check that values are correct. Not testing // atomicity template <class AtomicType> static void TestStore() { const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL); const AtomicType kVal2 = static_cast<AtomicType>(-1); AtomicType value; base::subtle::NoBarrier_Store(&value, kVal1); EXPECT_EQ(kVal1, value); base::subtle::NoBarrier_Store(&value, kVal2); EXPECT_EQ(kVal2, value); base::subtle::Acquire_Store(&value, kVal1); EXPECT_EQ(kVal1, value); base::subtle::Acquire_Store(&value, kVal2); EXPECT_EQ(kVal2, value); base::subtle::Release_Store(&value, kVal1); EXPECT_EQ(kVal1, value); base::subtle::Release_Store(&value, kVal2); EXPECT_EQ(kVal2, value); } // This is a simple sanity check that values are correct. Not testing // atomicity template <class AtomicType> static void TestLoad() { const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL); const AtomicType kVal2 = static_cast<AtomicType>(-1); AtomicType value; value = kVal1; EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value)); value = kVal2; EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value)); value = kVal1; EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value)); value = kVal2; EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value)); value = kVal1; EXPECT_EQ(kVal1, base::subtle::Release_Load(&value)); value = kVal2; EXPECT_EQ(kVal2, base::subtle::Release_Load(&value)); } template <class AtomicType> static void TestAtomicOps() { TestCompareAndSwap<AtomicType>(); TestAtomicExchange<AtomicType>(); TestAtomicIncrementBounds<AtomicType>(); TestStore<AtomicType>(); TestLoad<AtomicType>(); } static void TestCalloc(size_t n, size_t s, bool ok) { char* p = reinterpret_cast<char*>(calloc(n, s)); if (!ok) { EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed"; } else { EXPECT_NE(reinterpret_cast<void*>(NULL), p) << "calloc(n, s) should succeed"; for (int i = 0; i < n*s; i++) { EXPECT_EQ('\0', p[i]); } free(p); } } // A global test counter for number of times the NewHandler is called. static int news_handled = 0; static void TestNewHandler() { ++news_handled; throw std::bad_alloc(); } // Because we compile without exceptions, we expect these will not throw. static void TestOneNewWithoutExceptions(void* (*func)(size_t), bool should_throw) { // success test try { void* ptr = (*func)(kNotTooBig); EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) << "allocation should not have failed."; } catch(...) { EXPECT_EQ(0, 1) << "allocation threw unexpected exception."; } // failure test try { void* rv = (*func)(kTooBig); EXPECT_EQ(NULL, rv); EXPECT_FALSE(should_throw) << "allocation should have thrown."; } catch(...) { EXPECT_TRUE(should_throw) << "allocation threw unexpected exception."; } } static void TestNothrowNew(void* (*func)(size_t)) { news_handled = 0; // test without new_handler: std::new_handler saved_handler = std::set_new_handler(0); TestOneNewWithoutExceptions(func, false); // test with new_handler: std::set_new_handler(TestNewHandler); TestOneNewWithoutExceptions(func, true); EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called."; std::set_new_handler(saved_handler); } } // namespace //----------------------------------------------------------------------------- TEST(Atomics, AtomicIncrementWord) { TestAtomicIncrement<AtomicWord>(); } TEST(Atomics, AtomicIncrement32) { TestAtomicIncrement<Atomic32>(); } TEST(Atomics, AtomicOpsWord) { TestAtomicIncrement<AtomicWord>(); } TEST(Atomics, AtomicOps32) { TestAtomicIncrement<Atomic32>(); } TEST(Allocators, Malloc) { // Try allocating data with a bunch of alignments and sizes for (int size = 1; size < 1048576; size *= 2) { unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size)); CheckAlignment(ptr, 2); // Should be 2 byte aligned Fill(ptr, size); EXPECT_TRUE(Valid(ptr, size)); free(ptr); } } TEST(Allocators, Calloc) { TestCalloc(0, 0, true); TestCalloc(0, 1, true); TestCalloc(1, 1, true); TestCalloc(1<<10, 0, true); TestCalloc(1<<20, 0, true); TestCalloc(0, 1<<10, true); TestCalloc(0, 1<<20, true); TestCalloc(1<<20, 2, true); TestCalloc(2, 1<<20, true); TestCalloc(1000, 1000, true); TestCalloc(kMaxSize, 2, false); TestCalloc(2, kMaxSize, false); TestCalloc(kMaxSize, kMaxSize, false); TestCalloc(kMaxSignedSize, 3, false); TestCalloc(3, kMaxSignedSize, false); TestCalloc(kMaxSignedSize, kMaxSignedSize, false); } TEST(Allocators, New) { TestNothrowNew(&::operator new); TestNothrowNew(&::operator new[]); } // This makes sure that reallocing a small number of bytes in either // direction doesn't cause us to allocate new memory. TEST(Allocators, Realloc1) { int start_sizes[] = { 100, 1000, 10000, 100000 }; int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 }; for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) { void* p = malloc(start_sizes[s]); ASSERT_TRUE(p); // The larger the start-size, the larger the non-reallocing delta. for (int d = 0; d < s*2; ++d) { void* new_p = realloc(p, start_sizes[s] + deltas[d]); ASSERT_EQ(p, new_p); // realloc should not allocate new memory } // Test again, but this time reallocing smaller first. for (int d = 0; d < s*2; ++d) { void* new_p = realloc(p, start_sizes[s] - deltas[d]); ASSERT_EQ(p, new_p); // realloc should not allocate new memory } free(p); } } TEST(Allocators, Realloc2) { for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) { for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) { unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size)); Fill(src, src_size); unsigned char* dst = reinterpret_cast<unsigned char*>(realloc(src, dst_size)); EXPECT_TRUE(Valid(dst, min(src_size, dst_size))); Fill(dst, dst_size); EXPECT_TRUE(Valid(dst, dst_size)); if (dst != NULL) free(dst); } } // Now make sure realloc works correctly even when we overflow the // packed cache, so some entries are evicted from the cache. // The cache has 2^12 entries, keyed by page number. const int kNumEntries = 1 << 14; int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries)); int sum = 0; for (int i = 0; i < kNumEntries; i++) { // no page size is likely to be bigger than 8192? p[i] = reinterpret_cast<int*>(malloc(8192)); p[i][1000] = i; // use memory deep in the heart of p } for (int i = 0; i < kNumEntries; i++) { p[i] = reinterpret_cast<int*>(realloc(p[i], 9000)); } for (int i = 0; i < kNumEntries; i++) { sum += p[i][1000]; free(p[i]); } EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even free(p); } TEST(Allocators, ReallocZero) { // Test that realloc to zero does not return NULL. for (int size = 0; size >= 0; size = NextSize(size)) { char* ptr = reinterpret_cast<char*>(malloc(size)); EXPECT_NE(static_cast<char*>(NULL), ptr); ptr = reinterpret_cast<char*>(realloc(ptr, 0)); EXPECT_NE(static_cast<char*>(NULL), ptr); if (ptr) free(ptr); } } #ifdef WIN32 // Test recalloc TEST(Allocators, Recalloc) { for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) { for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) { unsigned char* src = reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size)); EXPECT_TRUE(IsZeroed(src, src_size)); Fill(src, src_size); unsigned char* dst = reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size)); EXPECT_TRUE(Valid(dst, min(src_size, dst_size))); Fill(dst, dst_size); EXPECT_TRUE(Valid(dst, dst_size)); if (dst != NULL) free(dst); } } } // Test windows specific _aligned_malloc() and _aligned_free() methods. TEST(Allocators, AlignedMalloc) { // Try allocating data with a bunch of alignments and sizes static const int kTestAlignments[] = {8, 16, 256, 4096, 8192, 16384}; for (int size = 1; size > 0; size = NextSize(size)) { for (int i = 0; i < ARRAYSIZE(kTestAlignments); ++i) { unsigned char* ptr = static_cast<unsigned char*>( _aligned_malloc(size, kTestAlignments[i])); CheckAlignment(ptr, kTestAlignments[i]); Fill(ptr, size); EXPECT_TRUE(Valid(ptr, size)); // Make a second allocation of the same size and alignment to prevent // allocators from passing this test by accident. Per jar, tcmalloc // provides allocations for new (never before seen) sizes out of a thread // local heap of a given "size class." Each time the test requests a new // size, it will usually get the first element of a span, which is a // 4K aligned allocation. unsigned char* ptr2 = static_cast<unsigned char*>( _aligned_malloc(size, kTestAlignments[i])); CheckAlignment(ptr2, kTestAlignments[i]); Fill(ptr2, size); EXPECT_TRUE(Valid(ptr2, size)); // Should never happen, but sanity check just in case. ASSERT_NE(ptr, ptr2); _aligned_free(ptr); _aligned_free(ptr2); } } } #endif int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }