#!/usr/bin/python # Copyright (C) 2012 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from consts import * import numpy as np import scipy as sp import scipy.fftpack as fft import matplotlib.pyplot as plt import sys sys.path.append(sys.path[0]) import calc_delay # check if amplitude of DUT's playback # lies in the given error boundary # input: host record # sampling rate # low frequency in Hz, # high frequency in Hz, # allowed error in negative side for pass in %, # allowed error ih positive side for pass # output: min value in negative side, normalized to 1.0 # max value in positive side # calculated freq spectrum in amplittude def do_check_spectrum_playback(hostData, samplingRate, fLow, fHigh, margainLow, margainHigh): # reduce FFT resolution to have averaging effects N = 512 if (len(hostData) > 512) else len(hostData) iLow = N * fLow / samplingRate + 1 # 1 for DC if iLow > (N / 2 - 1): iLow = (N / 2 - 1) iHigh = N * fHigh / samplingRate + 1 # 1 for DC if iHigh > (N / 2 + 1): iHigh = N / 2 + 1 print fLow, iLow, fHigh, iHigh, samplingRate Phh, freqs = plt.psd(hostData, NFFT=N, Fs=samplingRate, Fc=0, detrend=plt.mlab.detrend_none,\ window=plt.mlab.window_hanning, noverlap=0, pad_to=None, sides='onesided',\ scale_by_freq=False) print len(Phh) print "Phh", abs(Phh[iLow:iHigh]) spectrum = np.sqrt(abs(Phh[iLow:iHigh])) spectrumMean = np.mean(spectrum) spectrum = spectrum / spectrumMean print "Mean ", spectrumMean print "Normalized spectrum", spectrum positiveMax = abs(max(spectrum)) negativeMin = abs(min(spectrum)) passFail = True if (positiveMax < (margainHigh / 100.0 + 1.0)) and\ ((1.0 - negativeMin) < margainLow / 100.0) else False spectrumResult = np.zeros(len(spectrum), dtype=np.int16) for i in range(len(spectrum)): spectrumResult[i] = spectrum[i] * 1024 # make fixed point print "positiveMax", positiveMax, "negativeMin", negativeMin return (passFail, negativeMin, positiveMax, spectrumResult) def check_spectrum_playback(inputData, inputTypes): output = [] outputData = [] outputTypes = [] # basic sanity check inputError = False if (inputTypes[0] != TYPE_MONO): inputError = True if (inputTypes[1] != TYPE_I64): inputError = True if (inputTypes[2] != TYPE_I64): inputError = True if (inputTypes[3] != TYPE_I64): inputError = True if (inputTypes[4] != TYPE_DOUBLE): inputError = True if (inputTypes[5] != TYPE_DOUBLE): inputError = True if inputError: output.append(RESULT_ERROR) output.append(outputData) output.append(outputTypes) return output hostData = inputData[0] samplingRate = inputData[1] fLow = inputData[2] fHigh = inputData[3] margainLow = inputData[4] margainHigh = inputData[5] (passFail, minError, maxError, Spectrum) = do_check_spectrum_playback(hostData, \ samplingRate, fLow, fHigh, margainLow, margainHigh) if passFail: output.append(RESULT_PASS) else: output.append(RESULT_OK) outputData.append(minError) outputTypes.append(TYPE_DOUBLE) outputData.append(maxError) outputTypes.append(TYPE_DOUBLE) outputData.append(Spectrum) outputTypes.append(TYPE_MONO) output.append(outputData) output.append(outputTypes) return output # test code if __name__=="__main__": sys.path.append(sys.path[0]) mod = __import__("gen_random") peakAmpl = 10000 durationInMSec = 1000 samplingRate = 44100 fLow = 500 fHigh = 15000 data = getattr(mod, "do_gen_random")(peakAmpl, durationInMSec, samplingRate, fHigh,\ stereo=False) print len(data) (passFail, minVal, maxVal, amp) = do_check_spectrum_playback(data, samplingRate, fLow,\ fHigh, 1.0, 1.0) plt.plot(amp) plt.show()