/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_internals.h" #include "dex_file-inl.h" #include "gc_map.h" #include "gc_map_builder.h" #include "mapping_table.h" #include "mir_to_lir-inl.h" #include "dex/quick/dex_file_method_inliner.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "dex/verification_results.h" #include "dex/verified_method.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" #include "vmap_table.h" namespace art { namespace { /* Dump a mapping table */ template <typename It> void DumpMappingTable(const char* table_name, const char* descriptor, const char* name, const Signature& signature, uint32_t size, It first) { if (size != 0) { std::string line(StringPrintf("\n %s %s%s_%s_table[%u] = {", table_name, descriptor, name, signature.ToString().c_str(), size)); std::replace(line.begin(), line.end(), ';', '_'); LOG(INFO) << line; for (uint32_t i = 0; i != size; ++i) { line = StringPrintf(" {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc()); ++first; LOG(INFO) << line; } LOG(INFO) <<" };\n\n"; } } } // anonymous namespace bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) { bool res = false; if (rl_src.is_const) { if (rl_src.wide) { // For wide registers, check whether we're the high partner. In that case we need to switch // to the lower one for the correct value. if (rl_src.high_word) { rl_src.high_word = false; rl_src.s_reg_low--; rl_src.orig_sreg--; } if (rl_src.fp) { res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src)); } else { res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src)); } } else { if (rl_src.fp) { res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src)); } else { res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src)); } } } return res; } void Mir2Lir::MarkSafepointPC(LIR* inst) { DCHECK(!inst->flags.use_def_invalid); inst->u.m.def_mask = &kEncodeAll; LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC); DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll)); } void Mir2Lir::MarkSafepointPCAfter(LIR* after) { DCHECK(!after->flags.use_def_invalid); after->u.m.def_mask = &kEncodeAll; // As NewLIR0 uses Append, we need to create the LIR by hand. LIR* safepoint_pc = RawLIR(current_dalvik_offset_, kPseudoSafepointPC); if (after->next == nullptr) { DCHECK_EQ(after, last_lir_insn_); AppendLIR(safepoint_pc); } else { InsertLIRAfter(after, safepoint_pc); } DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll)); } /* Remove a LIR from the list. */ void Mir2Lir::UnlinkLIR(LIR* lir) { if (UNLIKELY(lir == first_lir_insn_)) { first_lir_insn_ = lir->next; if (lir->next != NULL) { lir->next->prev = NULL; } else { DCHECK(lir->next == NULL); DCHECK(lir == last_lir_insn_); last_lir_insn_ = NULL; } } else if (lir == last_lir_insn_) { last_lir_insn_ = lir->prev; lir->prev->next = NULL; } else if ((lir->prev != NULL) && (lir->next != NULL)) { lir->prev->next = lir->next; lir->next->prev = lir->prev; } } /* Convert an instruction to a NOP */ void Mir2Lir::NopLIR(LIR* lir) { lir->flags.is_nop = true; if (!cu_->verbose) { UnlinkLIR(lir); } } void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) { DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE)); DCHECK(!lir->flags.use_def_invalid); // TODO: Avoid the extra Arena allocation! const ResourceMask** mask_ptr; ResourceMask mask; if (is_load) { mask_ptr = &lir->u.m.use_mask; } else { mask_ptr = &lir->u.m.def_mask; } mask = **mask_ptr; /* Clear out the memref flags */ mask.ClearBits(kEncodeMem); /* ..and then add back the one we need */ switch (mem_type) { case ResourceMask::kLiteral: DCHECK(is_load); mask.SetBit(ResourceMask::kLiteral); break; case ResourceMask::kDalvikReg: mask.SetBit(ResourceMask::kDalvikReg); break; case ResourceMask::kHeapRef: mask.SetBit(ResourceMask::kHeapRef); break; case ResourceMask::kMustNotAlias: /* Currently only loads can be marked as kMustNotAlias */ DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE)); mask.SetBit(ResourceMask::kMustNotAlias); break; default: LOG(FATAL) << "Oat: invalid memref kind - " << mem_type; } *mask_ptr = mask_cache_.GetMask(mask); } /* * Mark load/store instructions that access Dalvik registers through the stack. */ void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit) { DCHECK((is_load ? lir->u.m.use_mask : lir->u.m.def_mask)->Intersection(kEncodeMem).Equals( kEncodeDalvikReg)); /* * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit * access. */ lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit); } /* * Debugging macros */ #define DUMP_RESOURCE_MASK(X) /* Pretty-print a LIR instruction */ void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) { int offset = lir->offset; int dest = lir->operands[0]; const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops)); /* Handle pseudo-ops individually, and all regular insns as a group */ switch (lir->opcode) { case kPseudoMethodEntry: LOG(INFO) << "-------- method entry " << PrettyMethod(cu_->method_idx, *cu_->dex_file); break; case kPseudoMethodExit: LOG(INFO) << "-------- Method_Exit"; break; case kPseudoBarrier: LOG(INFO) << "-------- BARRIER"; break; case kPseudoEntryBlock: LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest; break; case kPseudoDalvikByteCodeBoundary: if (lir->operands[0] == 0) { // NOTE: only used for debug listings. lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string")); } LOG(INFO) << "-------- dalvik offset: 0x" << std::hex << lir->dalvik_offset << " @ " << reinterpret_cast<char*>(UnwrapPointer(lir->operands[0])); break; case kPseudoExitBlock: LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest; break; case kPseudoPseudoAlign4: LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex << offset << "): .align4"; break; case kPseudoEHBlockLabel: LOG(INFO) << "Exception_Handling:"; break; case kPseudoTargetLabel: case kPseudoNormalBlockLabel: LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoThrowTarget: LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoIntrinsicRetry: LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoSuspendTarget: LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":"; break; case kPseudoSafepointPC: LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; break; case kPseudoExportedPC: LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; break; case kPseudoCaseLabel: LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x" << std::hex << lir->operands[0] << "|" << std::dec << lir->operands[0]; break; default: if (lir->flags.is_nop && !dump_nop) { break; } else { std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode), lir, base_addr)); std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode), lir, base_addr)); LOG(INFO) << StringPrintf("%5p: %-9s%s%s", base_addr + offset, op_name.c_str(), op_operands.c_str(), lir->flags.is_nop ? "(nop)" : ""); } break; } if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) { DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.use_mask, "use")); } if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) { DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.def_mask, "def")); } } void Mir2Lir::DumpPromotionMap() { int num_regs = cu_->num_dalvik_registers + mir_graph_->GetNumUsedCompilerTemps(); for (int i = 0; i < num_regs; i++) { PromotionMap v_reg_map = promotion_map_[i]; std::string buf; if (v_reg_map.fp_location == kLocPhysReg) { StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.fp_reg)); } std::string buf3; if (i < cu_->num_dalvik_registers) { StringAppendF(&buf3, "%02d", i); } else if (i == mir_graph_->GetMethodSReg()) { buf3 = "Method*"; } else { StringAppendF(&buf3, "ct%d", i - cu_->num_dalvik_registers); } LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(), v_reg_map.core_location == kLocPhysReg ? "r" : "SP+", v_reg_map.core_location == kLocPhysReg ? v_reg_map.core_reg : SRegOffset(i), buf.c_str()); } } void Mir2Lir::UpdateLIROffsets() { // Only used for code listings. size_t offset = 0; for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) { lir->offset = offset; if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) { offset += GetInsnSize(lir); } else if (lir->opcode == kPseudoPseudoAlign4) { offset += (offset & 0x2); } } } /* Dump instructions and constant pool contents */ void Mir2Lir::CodegenDump() { LOG(INFO) << "Dumping LIR insns for " << PrettyMethod(cu_->method_idx, *cu_->dex_file); LIR* lir_insn; int insns_size = cu_->code_item->insns_size_in_code_units_; LOG(INFO) << "Regs (excluding ins) : " << cu_->num_regs; LOG(INFO) << "Ins : " << cu_->num_ins; LOG(INFO) << "Outs : " << cu_->num_outs; LOG(INFO) << "CoreSpills : " << num_core_spills_; LOG(INFO) << "FPSpills : " << num_fp_spills_; LOG(INFO) << "CompilerTemps : " << mir_graph_->GetNumUsedCompilerTemps(); LOG(INFO) << "Frame size : " << frame_size_; LOG(INFO) << "code size is " << total_size_ << " bytes, Dalvik size is " << insns_size * 2; LOG(INFO) << "expansion factor: " << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2); DumpPromotionMap(); UpdateLIROffsets(); for (lir_insn = first_lir_insn_; lir_insn != NULL; lir_insn = lir_insn->next) { DumpLIRInsn(lir_insn, 0); } for (lir_insn = literal_list_; lir_insn != NULL; lir_insn = lir_insn->next) { LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset, lir_insn->operands[0]); } const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(cu_->method_idx); const Signature signature = cu_->dex_file->GetMethodSignature(method_id); const char* name = cu_->dex_file->GetMethodName(method_id); const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id)); // Dump mapping tables if (!encoded_mapping_table_.empty()) { MappingTable table(&encoded_mapping_table_[0]); DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, table.PcToDexSize(), table.PcToDexBegin()); DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, table.DexToPcSize(), table.DexToPcBegin()); } } /* * Search the existing constants in the literal pool for an exact or close match * within specified delta (greater or equal to 0). */ LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) { while (data_target) { if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta) return data_target; data_target = data_target->next; } return NULL; } /* Search the existing constants in the literal pool for an exact wide match */ LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) { bool lo_match = false; LIR* lo_target = NULL; while (data_target) { if (lo_match && (data_target->operands[0] == val_hi)) { // Record high word in case we need to expand this later. lo_target->operands[1] = val_hi; return lo_target; } lo_match = false; if (data_target->operands[0] == val_lo) { lo_match = true; lo_target = data_target; } data_target = data_target->next; } return NULL; } /* Search the existing constants in the literal pool for an exact method match */ LIR* Mir2Lir::ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method) { while (data_target) { if (static_cast<uint32_t>(data_target->operands[0]) == method.dex_method_index && UnwrapPointer(data_target->operands[1]) == method.dex_file) { return data_target; } data_target = data_target->next; } return nullptr; } /* * The following are building blocks to insert constants into the pool or * instruction streams. */ /* Add a 32-bit constant to the constant pool */ LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) { /* Add the constant to the literal pool */ if (constant_list_p) { LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData)); new_value->operands[0] = value; new_value->next = *constant_list_p; *constant_list_p = new_value; estimated_native_code_size_ += sizeof(value); return new_value; } return NULL; } /* Add a 64-bit constant to the constant pool or mixed with code */ LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) { AddWordData(constant_list_p, val_hi); return AddWordData(constant_list_p, val_lo); } static void Push32(std::vector<uint8_t>&buf, int data) { buf.push_back(data & 0xff); buf.push_back((data >> 8) & 0xff); buf.push_back((data >> 16) & 0xff); buf.push_back((data >> 24) & 0xff); } // Push 8 bytes on 64-bit target systems; 4 on 32-bit target systems. static void PushPointer(std::vector<uint8_t>&buf, const void* pointer, bool target64) { uint64_t data = reinterpret_cast<uintptr_t>(pointer); if (target64) { Push32(buf, data & 0xFFFFFFFF); Push32(buf, (data >> 32) & 0xFFFFFFFF); } else { Push32(buf, static_cast<uint32_t>(data)); } } static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) { while (buf.size() < offset) { buf.push_back(0); } } /* Write the literal pool to the output stream */ void Mir2Lir::InstallLiteralPools() { AlignBuffer(code_buffer_, data_offset_); LIR* data_lir = literal_list_; while (data_lir != NULL) { Push32(code_buffer_, data_lir->operands[0]); data_lir = NEXT_LIR(data_lir); } // Push code and method literals, record offsets for the compiler to patch. data_lir = code_literal_list_; while (data_lir != NULL) { uint32_t target_method_idx = data_lir->operands[0]; const DexFile* target_dex_file = reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1])); cu_->compiler_driver->AddCodePatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, cu_->invoke_type, target_method_idx, target_dex_file, static_cast<InvokeType>(data_lir->operands[2]), code_buffer_.size()); const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); // unique value based on target to ensure code deduplication works PushPointer(code_buffer_, &target_method_id, cu_->target64); data_lir = NEXT_LIR(data_lir); } data_lir = method_literal_list_; while (data_lir != NULL) { uint32_t target_method_idx = data_lir->operands[0]; const DexFile* target_dex_file = reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1])); cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, cu_->invoke_type, target_method_idx, target_dex_file, static_cast<InvokeType>(data_lir->operands[2]), code_buffer_.size()); const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); // unique value based on target to ensure code deduplication works PushPointer(code_buffer_, &target_method_id, cu_->target64); data_lir = NEXT_LIR(data_lir); } // Push class literals. data_lir = class_literal_list_; while (data_lir != NULL) { uint32_t target_method_idx = data_lir->operands[0]; cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx, cu_->method_idx, target_method_idx, code_buffer_.size()); const DexFile::TypeId& target_method_id = cu_->dex_file->GetTypeId(target_method_idx); // unique value based on target to ensure code deduplication works PushPointer(code_buffer_, &target_method_id, cu_->target64); data_lir = NEXT_LIR(data_lir); } } /* Write the switch tables to the output stream */ void Mir2Lir::InstallSwitchTables() { GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); while (true) { Mir2Lir::SwitchTable* tab_rec = iterator.Next(); if (tab_rec == NULL) break; AlignBuffer(code_buffer_, tab_rec->offset); /* * For Arm, our reference point is the address of the bx * instruction that does the launch, so we have to subtract * the auto pc-advance. For other targets the reference point * is a label, so we can use the offset as-is. */ int bx_offset = INVALID_OFFSET; switch (cu_->instruction_set) { case kThumb2: DCHECK(tab_rec->anchor->flags.fixup != kFixupNone); bx_offset = tab_rec->anchor->offset + 4; break; case kX86: case kX86_64: bx_offset = 0; break; case kArm64: case kMips: bx_offset = tab_rec->anchor->offset; break; default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; } if (cu_->verbose) { LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset; } if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { const int32_t* keys = reinterpret_cast<const int32_t*>(&(tab_rec->table[2])); for (int elems = 0; elems < tab_rec->table[1]; elems++) { int disp = tab_rec->targets[elems]->offset - bx_offset; if (cu_->verbose) { LOG(INFO) << " Case[" << elems << "] key: 0x" << std::hex << keys[elems] << ", disp: 0x" << std::hex << disp; } Push32(code_buffer_, keys[elems]); Push32(code_buffer_, tab_rec->targets[elems]->offset - bx_offset); } } else { DCHECK_EQ(static_cast<int>(tab_rec->table[0]), static_cast<int>(Instruction::kPackedSwitchSignature)); for (int elems = 0; elems < tab_rec->table[1]; elems++) { int disp = tab_rec->targets[elems]->offset - bx_offset; if (cu_->verbose) { LOG(INFO) << " Case[" << elems << "] disp: 0x" << std::hex << disp; } Push32(code_buffer_, tab_rec->targets[elems]->offset - bx_offset); } } } } /* Write the fill array dta to the output stream */ void Mir2Lir::InstallFillArrayData() { GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_); while (true) { Mir2Lir::FillArrayData *tab_rec = iterator.Next(); if (tab_rec == NULL) break; AlignBuffer(code_buffer_, tab_rec->offset); for (int i = 0; i < (tab_rec->size + 1) / 2; i++) { code_buffer_.push_back(tab_rec->table[i] & 0xFF); code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF); } } } static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) { for (; lir != NULL; lir = lir->next) { lir->offset = offset; offset += 4; } return offset; } static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset, unsigned int element_size) { // Align to natural pointer size. offset = RoundUp(offset, element_size); for (; lir != NULL; lir = lir->next) { lir->offset = offset; offset += element_size; } return offset; } // Make sure we have a code address for every declared catch entry bool Mir2Lir::VerifyCatchEntries() { MappingTable table(&encoded_mapping_table_[0]); std::vector<uint32_t> dex_pcs; dex_pcs.reserve(table.DexToPcSize()); for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) { dex_pcs.push_back(it.DexPc()); } // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_. std::sort(dex_pcs.begin(), dex_pcs.end()); bool success = true; auto it = dex_pcs.begin(), end = dex_pcs.end(); for (uint32_t dex_pc : mir_graph_->catches_) { while (it != end && *it < dex_pc) { LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it; ++it; success = false; } if (it == end || *it > dex_pc) { LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc; success = false; } else { ++it; } } if (!success) { LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: " << table.DexToPcSize(); } return success; } void Mir2Lir::CreateMappingTables() { uint32_t pc2dex_data_size = 0u; uint32_t pc2dex_entries = 0u; uint32_t pc2dex_offset = 0u; uint32_t pc2dex_dalvik_offset = 0u; uint32_t dex2pc_data_size = 0u; uint32_t dex2pc_entries = 0u; uint32_t dex2pc_offset = 0u; uint32_t dex2pc_dalvik_offset = 0u; for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { pc2dex_entries += 1; DCHECK(pc2dex_offset <= tgt_lir->offset); pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset); pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) - static_cast<int32_t>(pc2dex_dalvik_offset)); pc2dex_offset = tgt_lir->offset; pc2dex_dalvik_offset = tgt_lir->dalvik_offset; } if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { dex2pc_entries += 1; DCHECK(dex2pc_offset <= tgt_lir->offset); dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset); dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) - static_cast<int32_t>(dex2pc_dalvik_offset)); dex2pc_offset = tgt_lir->offset; dex2pc_dalvik_offset = tgt_lir->dalvik_offset; } } uint32_t total_entries = pc2dex_entries + dex2pc_entries; uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; encoded_mapping_table_.resize(data_size); uint8_t* write_pos = &encoded_mapping_table_[0]; write_pos = EncodeUnsignedLeb128(write_pos, total_entries); write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size); uint8_t* write_pos2 = write_pos + pc2dex_data_size; pc2dex_offset = 0u; pc2dex_dalvik_offset = 0u; dex2pc_offset = 0u; dex2pc_dalvik_offset = 0u; for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { DCHECK(pc2dex_offset <= tgt_lir->offset); write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset); write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) - static_cast<int32_t>(pc2dex_dalvik_offset)); pc2dex_offset = tgt_lir->offset; pc2dex_dalvik_offset = tgt_lir->dalvik_offset; } if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { DCHECK(dex2pc_offset <= tgt_lir->offset); write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset); write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) - static_cast<int32_t>(dex2pc_dalvik_offset)); dex2pc_offset = tgt_lir->offset; dex2pc_dalvik_offset = tgt_lir->dalvik_offset; } } DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size + pc2dex_data_size); DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size); if (kIsDebugBuild) { CHECK(VerifyCatchEntries()); // Verify the encoded table holds the expected data. MappingTable table(&encoded_mapping_table_[0]); CHECK_EQ(table.TotalSize(), total_entries); CHECK_EQ(table.PcToDexSize(), pc2dex_entries); auto it = table.PcToDexBegin(); auto it2 = table.DexToPcBegin(); for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { CHECK_EQ(tgt_lir->offset, it.NativePcOffset()); CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc()); ++it; } if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { CHECK_EQ(tgt_lir->offset, it2.NativePcOffset()); CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc()); ++it2; } } CHECK(it == table.PcToDexEnd()); CHECK(it2 == table.DexToPcEnd()); } } void Mir2Lir::CreateNativeGcMap() { DCHECK(!encoded_mapping_table_.empty()); MappingTable mapping_table(&encoded_mapping_table_[0]); uint32_t max_native_offset = 0; for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) { uint32_t native_offset = it.NativePcOffset(); if (native_offset > max_native_offset) { max_native_offset = native_offset; } } MethodReference method_ref(cu_->dex_file, cu_->method_idx); const std::vector<uint8_t>& gc_map_raw = mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap(); verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize()); // Compute native offset to references size. GcMapBuilder native_gc_map_builder(&native_gc_map_, mapping_table.PcToDexSize(), max_native_offset, dex_gc_map.RegWidth()); for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) { uint32_t native_offset = it.NativePcOffset(); uint32_t dex_pc = it.DexPc(); const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc << ": " << PrettyMethod(cu_->method_idx, *cu_->dex_file); native_gc_map_builder.AddEntry(native_offset, references); } } /* Determine the offset of each literal field */ int Mir2Lir::AssignLiteralOffset(CodeOffset offset) { offset = AssignLiteralOffsetCommon(literal_list_, offset); unsigned int ptr_size = GetInstructionSetPointerSize(cu_->instruction_set); offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size); offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size); offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size); return offset; } int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) { GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); while (true) { Mir2Lir::SwitchTable* tab_rec = iterator.Next(); if (tab_rec == NULL) break; tab_rec->offset = offset; if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { offset += tab_rec->table[1] * (sizeof(int) * 2); } else { DCHECK_EQ(static_cast<int>(tab_rec->table[0]), static_cast<int>(Instruction::kPackedSwitchSignature)); offset += tab_rec->table[1] * sizeof(int); } } return offset; } int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) { GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_); while (true) { Mir2Lir::FillArrayData *tab_rec = iterator.Next(); if (tab_rec == NULL) break; tab_rec->offset = offset; offset += tab_rec->size; // word align offset = RoundUp(offset, 4); } return offset; } /* * Insert a kPseudoCaseLabel at the beginning of the Dalvik * offset vaddr if pretty-printing, otherise use the standard block * label. The selected label will be used to fix up the case * branch table during the assembly phase. All resource flags * are set to prevent code motion. KeyVal is just there for debugging. */ LIR* Mir2Lir::InsertCaseLabel(DexOffset vaddr, int keyVal) { LIR* boundary_lir = &block_label_list_[mir_graph_->FindBlock(vaddr)->id]; LIR* res = boundary_lir; if (cu_->verbose) { // Only pay the expense if we're pretty-printing. LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR)); new_label->dalvik_offset = vaddr; new_label->opcode = kPseudoCaseLabel; new_label->operands[0] = keyVal; new_label->flags.fixup = kFixupLabel; DCHECK(!new_label->flags.use_def_invalid); new_label->u.m.def_mask = &kEncodeAll; InsertLIRAfter(boundary_lir, new_label); res = new_label; } return res; } void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec) { const uint16_t* table = tab_rec->table; DexOffset base_vaddr = tab_rec->vaddr; const int32_t *targets = reinterpret_cast<const int32_t*>(&table[4]); int entries = table[1]; int low_key = s4FromSwitchData(&table[2]); for (int i = 0; i < entries; i++) { tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key); } } void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec) { const uint16_t* table = tab_rec->table; DexOffset base_vaddr = tab_rec->vaddr; int entries = table[1]; const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]); const int32_t* targets = &keys[entries]; for (int i = 0; i < entries; i++) { tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]); } } void Mir2Lir::ProcessSwitchTables() { GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); while (true) { Mir2Lir::SwitchTable *tab_rec = iterator.Next(); if (tab_rec == NULL) break; if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) { MarkPackedCaseLabels(tab_rec); } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { MarkSparseCaseLabels(tab_rec); } else { LOG(FATAL) << "Invalid switch table"; } } } void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) { /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ uint16_t ident = table[0]; int entries = table[1]; const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]); const int32_t* targets = &keys[entries]; LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident << ", entries: " << std::dec << entries; for (int i = 0; i < entries; i++) { LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; } } void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) { /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ uint16_t ident = table[0]; const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]); int entries = table[1]; int low_key = s4FromSwitchData(&table[2]); LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident << ", entries: " << std::dec << entries << ", low_key: " << low_key; for (int i = 0; i < entries; i++) { LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex << targets[i]; } } /* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */ void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) { // NOTE: only used for debug listings. NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str))); } bool Mir2Lir::EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) { bool is_taken; switch (opcode) { case Instruction::IF_EQ: is_taken = (src1 == src2); break; case Instruction::IF_NE: is_taken = (src1 != src2); break; case Instruction::IF_LT: is_taken = (src1 < src2); break; case Instruction::IF_GE: is_taken = (src1 >= src2); break; case Instruction::IF_GT: is_taken = (src1 > src2); break; case Instruction::IF_LE: is_taken = (src1 <= src2); break; case Instruction::IF_EQZ: is_taken = (src1 == 0); break; case Instruction::IF_NEZ: is_taken = (src1 != 0); break; case Instruction::IF_LTZ: is_taken = (src1 < 0); break; case Instruction::IF_GEZ: is_taken = (src1 >= 0); break; case Instruction::IF_GTZ: is_taken = (src1 > 0); break; case Instruction::IF_LEZ: is_taken = (src1 <= 0); break; default: LOG(FATAL) << "Unexpected opcode " << opcode; is_taken = false; } return is_taken; } // Convert relation of src1/src2 to src2/src1 ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) { ConditionCode res; switch (before) { case kCondEq: res = kCondEq; break; case kCondNe: res = kCondNe; break; case kCondLt: res = kCondGt; break; case kCondGt: res = kCondLt; break; case kCondLe: res = kCondGe; break; case kCondGe: res = kCondLe; break; default: res = static_cast<ConditionCode>(0); LOG(FATAL) << "Unexpected ccode " << before; } return res; } ConditionCode Mir2Lir::NegateComparison(ConditionCode before) { ConditionCode res; switch (before) { case kCondEq: res = kCondNe; break; case kCondNe: res = kCondEq; break; case kCondLt: res = kCondGe; break; case kCondGt: res = kCondLe; break; case kCondLe: res = kCondGt; break; case kCondGe: res = kCondLt; break; default: res = static_cast<ConditionCode>(0); LOG(FATAL) << "Unexpected ccode " << before; } return res; } // TODO: move to mir_to_lir.cc Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Backend(arena), literal_list_(NULL), method_literal_list_(NULL), class_literal_list_(NULL), code_literal_list_(NULL), first_fixup_(NULL), cu_(cu), mir_graph_(mir_graph), switch_tables_(arena, 4, kGrowableArraySwitchTables), fill_array_data_(arena, 4, kGrowableArrayFillArrayData), tempreg_info_(arena, 20, kGrowableArrayMisc), reginfo_map_(arena, RegStorage::kMaxRegs, kGrowableArrayMisc), pointer_storage_(arena, 128, kGrowableArrayMisc), data_offset_(0), total_size_(0), block_label_list_(NULL), promotion_map_(NULL), current_dalvik_offset_(0), estimated_native_code_size_(0), reg_pool_(NULL), live_sreg_(0), core_vmap_table_(mir_graph->GetArena()->Adapter()), fp_vmap_table_(mir_graph->GetArena()->Adapter()), num_core_spills_(0), num_fp_spills_(0), frame_size_(0), core_spill_mask_(0), fp_spill_mask_(0), first_lir_insn_(NULL), last_lir_insn_(NULL), slow_paths_(arena, 32, kGrowableArraySlowPaths), mem_ref_type_(ResourceMask::kHeapRef), mask_cache_(arena) { // Reserve pointer id 0 for NULL. size_t null_idx = WrapPointer(NULL); DCHECK_EQ(null_idx, 0U); } void Mir2Lir::Materialize() { cu_->NewTimingSplit("RegisterAllocation"); CompilerInitializeRegAlloc(); // Needs to happen after SSA naming /* Allocate Registers using simple local allocation scheme */ SimpleRegAlloc(); /* First try the custom light codegen for special cases. */ DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) ->GenSpecial(this, cu_->method_idx); /* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */ if (special_worked == false) { MethodMIR2LIR(); } /* Method is not empty */ if (first_lir_insn_) { // mark the targets of switch statement case labels ProcessSwitchTables(); /* Convert LIR into machine code. */ AssembleLIR(); if ((cu_->enable_debug & (1 << kDebugCodegenDump)) != 0) { CodegenDump(); } } } CompiledMethod* Mir2Lir::GetCompiledMethod() { // Combine vmap tables - core regs, then fp regs - into vmap_table. Leb128EncodingVector vmap_encoder; if (frame_size_ > 0) { // Prefix the encoded data with its size. size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size(); vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). vmap_encoder.PushBackUnsigned(size); // Core regs may have been inserted out of order - sort first. std::sort(core_vmap_table_.begin(), core_vmap_table_.end()); for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) { // Copy, stripping out the phys register sort key. vmap_encoder.PushBackUnsigned( ~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment)); } // Push a marker to take place of lr. vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); if (cu_->instruction_set == kThumb2) { // fp regs already sorted. for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) { vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment); } } else { // For other platforms regs may have been inserted out of order - sort first. std::sort(fp_vmap_table_.begin(), fp_vmap_table_.end()); for (size_t i = 0 ; i < fp_vmap_table_.size(); ++i) { // Copy, stripping out the phys register sort key. vmap_encoder.PushBackUnsigned( ~(-1 << VREG_NUM_WIDTH) & (fp_vmap_table_[i] + VmapTable::kEntryAdjustment)); } } } else { DCHECK_EQ(POPCOUNT(core_spill_mask_), 0); DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0); DCHECK_EQ(core_vmap_table_.size(), 0u); DCHECK_EQ(fp_vmap_table_.size(), 0u); vmap_encoder.PushBackUnsigned(0u); // Size is 0. } std::unique_ptr<std::vector<uint8_t>> cfi_info(ReturnCallFrameInformation()); CompiledMethod* result = new CompiledMethod(cu_->compiler_driver, cu_->instruction_set, code_buffer_, frame_size_, core_spill_mask_, fp_spill_mask_, encoded_mapping_table_, vmap_encoder.GetData(), native_gc_map_, cfi_info.get()); return result; } size_t Mir2Lir::GetMaxPossibleCompilerTemps() const { // Chose a reasonably small value in order to contain stack growth. // Backends that are smarter about spill region can return larger values. const size_t max_compiler_temps = 10; return max_compiler_temps; } size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() { // By default assume that the Mir2Lir will need one slot for each temporary. // If the backend can better determine temps that have non-overlapping ranges and // temps that do not need spilled, it can actually provide a small region. return (mir_graph_->GetNumUsedCompilerTemps() * sizeof(uint32_t)); } int Mir2Lir::ComputeFrameSize() { /* Figure out the frame size */ uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set) + num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set) + sizeof(uint32_t) // Filler. + (cu_->num_regs + cu_->num_outs) * sizeof(uint32_t) + GetNumBytesForCompilerTempSpillRegion(); /* Align and set */ return RoundUp(size, kStackAlignment); } /* * Append an LIR instruction to the LIR list maintained by a compilation * unit */ void Mir2Lir::AppendLIR(LIR* lir) { if (first_lir_insn_ == NULL) { DCHECK(last_lir_insn_ == NULL); last_lir_insn_ = first_lir_insn_ = lir; lir->prev = lir->next = NULL; } else { last_lir_insn_->next = lir; lir->prev = last_lir_insn_; lir->next = NULL; last_lir_insn_ = lir; } } /* * Insert an LIR instruction before the current instruction, which cannot be the * first instruction. * * prev_lir <-> new_lir <-> current_lir */ void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) { DCHECK(current_lir->prev != NULL); LIR *prev_lir = current_lir->prev; prev_lir->next = new_lir; new_lir->prev = prev_lir; new_lir->next = current_lir; current_lir->prev = new_lir; } /* * Insert an LIR instruction after the current instruction, which cannot be the * last instruction. * * current_lir -> new_lir -> old_next */ void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) { new_lir->prev = current_lir; new_lir->next = current_lir->next; current_lir->next = new_lir; new_lir->next->prev = new_lir; } bool Mir2Lir::IsPowerOfTwo(uint64_t x) { return (x & (x - 1)) == 0; } // Returns the index of the lowest set bit in 'x'. int32_t Mir2Lir::LowestSetBit(uint64_t x) { int bit_posn = 0; while ((x & 0xf) == 0) { bit_posn += 4; x >>= 4; } while ((x & 1) == 0) { bit_posn++; x >>= 1; } return bit_posn; } bool Mir2Lir::BadOverlap(RegLocation rl_src, RegLocation rl_dest) { DCHECK(rl_src.wide); DCHECK(rl_dest.wide); return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1); } LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, int offset, int check_value, LIR* target, LIR** compare) { // Handle this for architectures that can't compare to memory. LIR* inst = Load32Disp(base_reg, offset, temp_reg); if (compare != nullptr) { *compare = inst; } LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target); return branch; } void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) { slow_paths_.Insert(slowpath); } void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type, SpecialTargetRegister symbolic_reg) { LIR* data_target = ScanLiteralPoolMethod(code_literal_list_, target_method); if (data_target == NULL) { data_target = AddWordData(&code_literal_list_, target_method.dex_method_index); data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file)); // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have // the same method invoked with kVirtual, kSuper and kInterface but the class linker will // resolve these invokes to the same method, so we don't care which one we record here. data_target->operands[2] = type; } // Loads a code pointer. Code from oat file can be mapped anywhere. LIR* load_pc_rel = OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target); AppendLIR(load_pc_rel); DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target); } void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, SpecialTargetRegister symbolic_reg) { LIR* data_target = ScanLiteralPoolMethod(method_literal_list_, target_method); if (data_target == NULL) { data_target = AddWordData(&method_literal_list_, target_method.dex_method_index); data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file)); // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have // the same method invoked with kVirtual, kSuper and kInterface but the class linker will // resolve these invokes to the same method, so we don't care which one we record here. data_target->operands[2] = type; } // Loads an ArtMethod pointer, which is a reference as it lives in the heap. LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target); AppendLIR(load_pc_rel); DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target); } void Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) { // Use the literal pool and a PC-relative load from a data word. LIR* data_target = ScanLiteralPool(class_literal_list_, type_idx, 0); if (data_target == nullptr) { data_target = AddWordData(&class_literal_list_, type_idx); } // Loads a Class pointer, which is a reference as it lives in the heap. LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target); AppendLIR(load_pc_rel); } std::vector<uint8_t>* Mir2Lir::ReturnCallFrameInformation() { // Default case is to do nothing. return nullptr; } RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) { if (loc.location == kLocPhysReg) { DCHECK(!loc.reg.Is32Bit()); if (loc.reg.IsPair()) { RegisterInfo* info_lo = GetRegInfo(loc.reg.GetLow()); RegisterInfo* info_hi = GetRegInfo(loc.reg.GetHigh()); info_lo->SetIsWide(false); info_hi->SetIsWide(false); loc.reg = info_lo->GetReg(); } else { RegisterInfo* info = GetRegInfo(loc.reg); RegisterInfo* info_new = info->FindMatchingView(RegisterInfo::k32SoloStorageMask); DCHECK(info_new != nullptr); if (info->IsLive() && (info->SReg() == loc.s_reg_low)) { info->MarkDead(); info_new->MarkLive(loc.s_reg_low); } loc.reg = info_new->GetReg(); } DCHECK(loc.reg.Valid()); } loc.wide = false; return loc; } void Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { LOG(FATAL) << "Unknown MIR opcode not supported on this architecture"; } } // namespace art