/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm64_lir.h" #include "codegen_arm64.h" #include "dex/quick/mir_to_lir-inl.h" #include "utils.h" namespace art { void Arm64Mir2Lir::GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { int op = kA64Brk1d; RegLocation rl_result; switch (opcode) { case Instruction::ADD_FLOAT_2ADDR: case Instruction::ADD_FLOAT: op = kA64Fadd3fff; break; case Instruction::SUB_FLOAT_2ADDR: case Instruction::SUB_FLOAT: op = kA64Fsub3fff; break; case Instruction::DIV_FLOAT_2ADDR: case Instruction::DIV_FLOAT: op = kA64Fdiv3fff; break; case Instruction::MUL_FLOAT_2ADDR: case Instruction::MUL_FLOAT: op = kA64Fmul3fff; break; case Instruction::REM_FLOAT_2ADDR: case Instruction::REM_FLOAT: FlushAllRegs(); // Send everything to home location CallRuntimeHelperRegLocationRegLocation(kQuickFmodf, rl_src1, rl_src2, false); rl_result = GetReturn(kFPReg); StoreValue(rl_dest, rl_result); return; case Instruction::NEG_FLOAT: GenNegFloat(rl_dest, rl_src1); return; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } rl_src1 = LoadValue(rl_src1, kFPReg); rl_src2 = LoadValue(rl_src2, kFPReg); rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR3(op, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); StoreValue(rl_dest, rl_result); } void Arm64Mir2Lir::GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { int op = kA64Brk1d; RegLocation rl_result; switch (opcode) { case Instruction::ADD_DOUBLE_2ADDR: case Instruction::ADD_DOUBLE: op = kA64Fadd3fff; break; case Instruction::SUB_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE: op = kA64Fsub3fff; break; case Instruction::DIV_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE: op = kA64Fdiv3fff; break; case Instruction::MUL_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE: op = kA64Fmul3fff; break; case Instruction::REM_DOUBLE_2ADDR: case Instruction::REM_DOUBLE: FlushAllRegs(); // Send everything to home location { RegStorage r_tgt = CallHelperSetup(kQuickFmod); LoadValueDirectWideFixed(rl_src1, rs_d0); LoadValueDirectWideFixed(rl_src2, rs_d1); ClobberCallerSave(); CallHelper(r_tgt, kQuickFmod, false); } rl_result = GetReturnWide(kFPReg); StoreValueWide(rl_dest, rl_result); return; case Instruction::NEG_DOUBLE: GenNegDouble(rl_dest, rl_src1); return; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } rl_src1 = LoadValueWide(rl_src1, kFPReg); DCHECK(rl_src1.wide); rl_src2 = LoadValueWide(rl_src2, kFPReg); DCHECK(rl_src2.wide); rl_result = EvalLoc(rl_dest, kFPReg, true); DCHECK(rl_dest.wide); DCHECK(rl_result.wide); NewLIR3(FWIDE(op), rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) { int op = kA64Brk1d; RegLocation rl_result; RegisterClass src_reg_class = kInvalidRegClass; RegisterClass dst_reg_class = kInvalidRegClass; switch (opcode) { case Instruction::INT_TO_FLOAT: op = kA64Scvtf2fw; src_reg_class = kCoreReg; dst_reg_class = kFPReg; break; case Instruction::FLOAT_TO_INT: op = kA64Fcvtzs2wf; src_reg_class = kFPReg; dst_reg_class = kCoreReg; break; case Instruction::DOUBLE_TO_FLOAT: op = kA64Fcvt2sS; src_reg_class = kFPReg; dst_reg_class = kFPReg; break; case Instruction::FLOAT_TO_DOUBLE: op = kA64Fcvt2Ss; src_reg_class = kFPReg; dst_reg_class = kFPReg; break; case Instruction::INT_TO_DOUBLE: op = FWIDE(kA64Scvtf2fw); src_reg_class = kCoreReg; dst_reg_class = kFPReg; break; case Instruction::DOUBLE_TO_INT: op = FWIDE(kA64Fcvtzs2wf); src_reg_class = kFPReg; dst_reg_class = kCoreReg; break; case Instruction::LONG_TO_DOUBLE: op = FWIDE(kA64Scvtf2fx); src_reg_class = kCoreReg; dst_reg_class = kFPReg; break; case Instruction::FLOAT_TO_LONG: op = kA64Fcvtzs2xf; src_reg_class = kFPReg; dst_reg_class = kCoreReg; break; case Instruction::LONG_TO_FLOAT: op = kA64Scvtf2fx; src_reg_class = kCoreReg; dst_reg_class = kFPReg; break; case Instruction::DOUBLE_TO_LONG: op = FWIDE(kA64Fcvtzs2xf); src_reg_class = kFPReg; dst_reg_class = kCoreReg; break; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } DCHECK_NE(src_reg_class, kInvalidRegClass); DCHECK_NE(dst_reg_class, kInvalidRegClass); DCHECK_NE(op, kA64Brk1d); if (rl_src.wide) { rl_src = LoadValueWide(rl_src, src_reg_class); } else { rl_src = LoadValue(rl_src, src_reg_class); } rl_result = EvalLoc(rl_dest, dst_reg_class, true); NewLIR2(op, rl_result.reg.GetReg(), rl_src.reg.GetReg()); if (rl_dest.wide) { StoreValueWide(rl_dest, rl_result); } else { StoreValue(rl_dest, rl_result); } } void Arm64Mir2Lir::GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) { LIR* target = &block_label_list_[bb->taken]; RegLocation rl_src1; RegLocation rl_src2; if (is_double) { rl_src1 = mir_graph_->GetSrcWide(mir, 0); rl_src2 = mir_graph_->GetSrcWide(mir, 2); rl_src1 = LoadValueWide(rl_src1, kFPReg); rl_src2 = LoadValueWide(rl_src2, kFPReg); NewLIR2(FWIDE(kA64Fcmp2ff), rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); } else { rl_src1 = mir_graph_->GetSrc(mir, 0); rl_src2 = mir_graph_->GetSrc(mir, 1); rl_src1 = LoadValue(rl_src1, kFPReg); rl_src2 = LoadValue(rl_src2, kFPReg); NewLIR2(kA64Fcmp2ff, rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); } ConditionCode ccode = mir->meta.ccode; switch (ccode) { case kCondEq: case kCondNe: break; case kCondLt: if (gt_bias) { ccode = kCondMi; } break; case kCondLe: if (gt_bias) { ccode = kCondLs; } break; case kCondGt: if (gt_bias) { ccode = kCondHi; } break; case kCondGe: if (gt_bias) { ccode = kCondUge; } break; default: LOG(FATAL) << "Unexpected ccode: " << ccode; } OpCondBranch(ccode, target); } void Arm64Mir2Lir::GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { bool is_double = false; int default_result = -1; RegLocation rl_result; switch (opcode) { case Instruction::CMPL_FLOAT: is_double = false; default_result = -1; break; case Instruction::CMPG_FLOAT: is_double = false; default_result = 1; break; case Instruction::CMPL_DOUBLE: is_double = true; default_result = -1; break; case Instruction::CMPG_DOUBLE: is_double = true; default_result = 1; break; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } if (is_double) { rl_src1 = LoadValueWide(rl_src1, kFPReg); rl_src2 = LoadValueWide(rl_src2, kFPReg); // In case result vreg is also a src vreg, break association to avoid useless copy by EvalLoc() ClobberSReg(rl_dest.s_reg_low); rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadConstant(rl_result.reg, default_result); NewLIR2(FWIDE(kA64Fcmp2ff), rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); } else { rl_src1 = LoadValue(rl_src1, kFPReg); rl_src2 = LoadValue(rl_src2, kFPReg); // In case result vreg is also a srcvreg, break association to avoid useless copy by EvalLoc() ClobberSReg(rl_dest.s_reg_low); rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadConstant(rl_result.reg, default_result); NewLIR2(kA64Fcmp2ff, rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); } DCHECK(!rl_result.reg.IsFloat()); // TODO(Arm64): should we rather do this? // csinc wD, wzr, wzr, eq // csneg wD, wD, wD, le // (which requires 2 instructions rather than 3) // Rd = if cond then Rd else -Rd. NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_result.reg.GetReg(), rl_result.reg.GetReg(), (default_result == 1) ? kArmCondPl : kArmCondLe); NewLIR4(kA64Csel4rrrc, rl_result.reg.GetReg(), rwzr, rl_result.reg.GetReg(), kArmCondEq); StoreValue(rl_dest, rl_result); } void Arm64Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result; rl_src = LoadValue(rl_src, kFPReg); rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(kA64Fneg2ff, rl_result.reg.GetReg(), rl_src.reg.GetReg()); StoreValue(rl_dest, rl_result); } void Arm64Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result; rl_src = LoadValueWide(rl_src, kFPReg); rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(FWIDE(kA64Fneg2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg()); StoreValueWide(rl_dest, rl_result); } static RegisterClass RegClassForAbsFP(RegLocation rl_src, RegLocation rl_dest) { // If src is in a core reg or, unlikely, dest has been promoted to a core reg, use core reg. if ((rl_src.location == kLocPhysReg && !rl_src.reg.IsFloat()) || (rl_dest.location == kLocPhysReg && !rl_dest.reg.IsFloat())) { return kCoreReg; } // If src is in an fp reg or dest has been promoted to an fp reg, use fp reg. if (rl_src.location == kLocPhysReg || rl_dest.location == kLocPhysReg) { return kFPReg; } // With both src and dest in the stack frame we have to perform load+abs+store. Whether this // is faster using a core reg or fp reg depends on the particular CPU. For example, on A53 // it's faster using core reg while on A57 it's faster with fp reg, the difference being // bigger on the A53. Without further investigation and testing we prefer core register. // (If the result is subsequently used in another fp operation, the dalvik reg will probably // get promoted and that should be handled by the cases above.) return kCoreReg; } bool Arm64Mir2Lir::GenInlinedAbsFloat(CallInfo* info) { if (info->result.location == kLocInvalid) { return true; // Result is unused: inlining successful, no code generated. } RegLocation rl_dest = info->result; RegLocation rl_src = UpdateLoc(info->args[0]); RegisterClass reg_class = RegClassForAbsFP(rl_src, rl_dest); rl_src = LoadValue(rl_src, reg_class); RegLocation rl_result = EvalLoc(rl_dest, reg_class, true); if (reg_class == kFPReg) { NewLIR2(kA64Fabs2ff, rl_result.reg.GetReg(), rl_src.reg.GetReg()); } else { NewLIR4(kA64Ubfm4rrdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), 0, 30); } StoreValue(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedAbsDouble(CallInfo* info) { if (info->result.location == kLocInvalid) { return true; // Result is unused: inlining successful, no code generated. } RegLocation rl_dest = info->result; RegLocation rl_src = UpdateLocWide(info->args[0]); RegisterClass reg_class = RegClassForAbsFP(rl_src, rl_dest); rl_src = LoadValueWide(rl_src, reg_class); RegLocation rl_result = EvalLoc(rl_dest, reg_class, true); if (reg_class == kFPReg) { NewLIR2(FWIDE(kA64Fabs2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg()); } else { NewLIR4(WIDE(kA64Ubfm4rrdd), rl_result.reg.GetReg(), rl_src.reg.GetReg(), 0, 62); } StoreValueWide(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedSqrt(CallInfo* info) { RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTargetWide(info); // double place for result rl_src = LoadValueWide(rl_src, kFPReg); RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(FWIDE(kA64Fsqrt2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg()); StoreValueWide(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedCeil(CallInfo* info) { RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTargetWide(info); rl_src = LoadValueWide(rl_src, kFPReg); RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(FWIDE(kA64Frintp2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg()); StoreValueWide(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedFloor(CallInfo* info) { RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTargetWide(info); rl_src = LoadValueWide(rl_src, kFPReg); RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(FWIDE(kA64Frintm2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg()); StoreValueWide(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedRint(CallInfo* info) { RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTargetWide(info); rl_src = LoadValueWide(rl_src, kFPReg); RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR2(FWIDE(kA64Frintn2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg()); StoreValueWide(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) { int32_t encoded_imm = EncodeImmSingle(bit_cast<float, uint32_t>(0.5f)); ArmOpcode wide = (is_double) ? FWIDE(0) : FUNWIDE(0); RegLocation rl_src = info->args[0]; RegLocation rl_dest = (is_double) ? InlineTargetWide(info) : InlineTarget(info); rl_src = (is_double) ? LoadValueWide(rl_src, kFPReg) : LoadValue(rl_src, kFPReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); RegStorage r_imm_point5 = (is_double) ? AllocTempDouble() : AllocTempSingle(); RegStorage r_tmp = (is_double) ? AllocTempDouble() : AllocTempSingle(); // 0.5f and 0.5d are encoded in the same way. NewLIR2(kA64Fmov2fI | wide, r_imm_point5.GetReg(), encoded_imm); NewLIR3(kA64Fadd3fff | wide, r_tmp.GetReg(), rl_src.reg.GetReg(), r_imm_point5.GetReg()); NewLIR2((is_double) ? kA64Fcvtms2xS : kA64Fcvtms2ws, rl_result.reg.GetReg(), r_tmp.GetReg()); (is_double) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) { DCHECK_EQ(cu_->instruction_set, kArm64); int op = (is_min) ? kA64Fmin3fff : kA64Fmax3fff; ArmOpcode wide = (is_double) ? FWIDE(0) : FUNWIDE(0); RegLocation rl_src1 = info->args[0]; RegLocation rl_src2 = (is_double) ? info->args[2] : info->args[1]; rl_src1 = (is_double) ? LoadValueWide(rl_src1, kFPReg) : LoadValue(rl_src1, kFPReg); rl_src2 = (is_double) ? LoadValueWide(rl_src2, kFPReg) : LoadValue(rl_src2, kFPReg); RegLocation rl_dest = (is_double) ? InlineTargetWide(info) : InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true); NewLIR3(op | wide, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg()); (is_double) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result); return true; } } // namespace art