/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <GLES/gl.h>
#include <GLES2/gl2.h>
#include <GLES/glext.h>
#include <rs_hal.h>
#include <rsContext.h>
#include <rsMesh.h>
#include "rsdAllocation.h"
#include "rsdMeshObj.h"
#include "rsdGL.h"
using namespace android;
using namespace android::renderscript;
RsdMeshObj::RsdMeshObj(const Context *rsc, const Mesh *rsMesh) {
mRSMesh = rsMesh;
mAttribs = NULL;
mAttribAllocationIndex = NULL;
mGLPrimitives = NULL;
mAttribCount = 0;
}
RsdMeshObj::~RsdMeshObj() {
if (mAttribs) {
delete[] mAttribs;
delete[] mAttribAllocationIndex;
}
if (mGLPrimitives) {
delete[] mGLPrimitives;
}
}
bool RsdMeshObj::isValidGLComponent(const Element *elem, uint32_t fieldIdx) {
// Only GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_FIXED, GL_FLOAT are accepted.
// Filter rs types accordingly
RsDataType dt = elem->mHal.state.fields[fieldIdx]->mHal.state.dataType;
if (dt != RS_TYPE_FLOAT_32 && dt != RS_TYPE_UNSIGNED_8 &&
dt != RS_TYPE_UNSIGNED_16 && dt != RS_TYPE_SIGNED_8 &&
dt != RS_TYPE_SIGNED_16) {
return false;
}
// Now make sure they are not arrays
uint32_t arraySize = elem->mHal.state.fieldArraySizes[fieldIdx];
if (arraySize != 1) {
return false;
}
return true;
}
bool RsdMeshObj::init(const Context *rsc) {
updateGLPrimitives(rsc);
// Count the number of gl attrs to initialize
mAttribCount = 0;
for (uint32_t ct=0; ct < mRSMesh->mHal.state.vertexBuffersCount; ct++) {
const Element *elem = mRSMesh->mHal.state.vertexBuffers[ct]->getType()->getElement();
for (uint32_t ct=0; ct < elem->mHal.state.fieldsCount; ct++) {
if (isValidGLComponent(elem, ct)) {
mAttribCount ++;
}
}
}
if (mAttribs) {
delete [] mAttribs;
delete [] mAttribAllocationIndex;
mAttribs = NULL;
mAttribAllocationIndex = NULL;
}
if (!mAttribCount) {
return false;
}
mAttribs = new RsdVertexArray::Attrib[mAttribCount];
mAttribAllocationIndex = new uint32_t[mAttribCount];
uint32_t userNum = 0;
for (uint32_t ct=0; ct < mRSMesh->mHal.state.vertexBuffersCount; ct++) {
const Element *elem = mRSMesh->mHal.state.vertexBuffers[ct]->getType()->getElement();
uint32_t stride = elem->mHal.state.elementSizeBytes;
for (uint32_t fieldI=0; fieldI < elem->mHal.state.fieldsCount; fieldI++) {
const Element *f = elem->mHal.state.fields[fieldI];
if (!isValidGLComponent(elem, fieldI)) {
continue;
}
mAttribs[userNum].size = f->mHal.state.vectorSize;
mAttribs[userNum].offset = elem->mHal.state.fieldOffsetBytes[fieldI];
mAttribs[userNum].type = rsdTypeToGLType(f->mHal.state.dataType);
mAttribs[userNum].normalized = f->mHal.state.dataType != RS_TYPE_FLOAT_32;
mAttribs[userNum].stride = stride;
String8 tmp(RS_SHADER_ATTR);
tmp.append(elem->mHal.state.fieldNames[fieldI]);
mAttribs[userNum].name.setTo(tmp.string());
// Remember which allocation this attribute came from
mAttribAllocationIndex[userNum] = ct;
userNum ++;
}
}
return true;
}
void RsdMeshObj::renderPrimitiveRange(const Context *rsc, uint32_t primIndex,
uint32_t start, uint32_t len) const {
if (len < 1 || primIndex >= mRSMesh->mHal.state.primitivesCount || mAttribCount == 0) {
rsc->setError(RS_ERROR_FATAL_DRIVER, "Invalid mesh or parameters");
return;
}
for (uint32_t ct=0; ct < mRSMesh->mHal.state.vertexBuffersCount; ct++) {
const Allocation *alloc = mRSMesh->mHal.state.vertexBuffers[ct];
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
if (drv->uploadDeferred) {
rsdAllocationSyncAll(rsc, alloc, RS_ALLOCATION_USAGE_SCRIPT);
}
}
// update attributes with either buffer information or data ptr based on their current state
for (uint32_t ct=0; ct < mAttribCount; ct++) {
uint32_t allocIndex = mAttribAllocationIndex[ct];
Allocation *alloc = mRSMesh->mHal.state.vertexBuffers[allocIndex];
DrvAllocation *drvAlloc = (DrvAllocation *)alloc->mHal.drv;
if (drvAlloc->bufferID) {
mAttribs[ct].buffer = drvAlloc->bufferID;
mAttribs[ct].ptr = NULL;
} else {
mAttribs[ct].buffer = 0;
mAttribs[ct].ptr = (const uint8_t*)alloc->mHal.drvState.lod[0].mallocPtr;
}
}
RsdVertexArray va(mAttribs, mAttribCount);
va.setup(rsc);
const Allocation *idxAlloc = mRSMesh->mHal.state.indexBuffers[primIndex];
if (idxAlloc) {
DrvAllocation *drvAlloc = (DrvAllocation *)idxAlloc->mHal.drv;
if (drvAlloc->uploadDeferred) {
rsdAllocationSyncAll(rsc, idxAlloc, RS_ALLOCATION_USAGE_SCRIPT);
}
if (drvAlloc->bufferID) {
RSD_CALL_GL(glBindBuffer, GL_ELEMENT_ARRAY_BUFFER, drvAlloc->bufferID);
RSD_CALL_GL(glDrawElements, mGLPrimitives[primIndex], len, GL_UNSIGNED_SHORT,
(uint16_t *)(start * 2));
} else {
RSD_CALL_GL(glBindBuffer, GL_ELEMENT_ARRAY_BUFFER, 0);
RSD_CALL_GL(glDrawElements, mGLPrimitives[primIndex], len, GL_UNSIGNED_SHORT,
idxAlloc->mHal.drvState.lod[0].mallocPtr);
}
} else {
RSD_CALL_GL(glDrawArrays, mGLPrimitives[primIndex], start, len);
}
rsdGLCheckError(rsc, "Mesh::renderPrimitiveRange");
}
void RsdMeshObj::updateGLPrimitives(const Context *rsc) {
mGLPrimitives = new uint32_t[mRSMesh->mHal.state.primitivesCount];
for (uint32_t i = 0; i < mRSMesh->mHal.state.primitivesCount; i ++) {
switch (mRSMesh->mHal.state.primitives[i]) {
case RS_PRIMITIVE_POINT: mGLPrimitives[i] = GL_POINTS; break;
case RS_PRIMITIVE_LINE: mGLPrimitives[i] = GL_LINES; break;
case RS_PRIMITIVE_LINE_STRIP: mGLPrimitives[i] = GL_LINE_STRIP; break;
case RS_PRIMITIVE_TRIANGLE: mGLPrimitives[i] = GL_TRIANGLES; break;
case RS_PRIMITIVE_TRIANGLE_STRIP: mGLPrimitives[i] = GL_TRIANGLE_STRIP; break;
case RS_PRIMITIVE_TRIANGLE_FAN: mGLPrimitives[i] = GL_TRIANGLE_FAN; break;
default: rsc->setError(RS_ERROR_FATAL_DRIVER, "Invalid mesh primitive"); break;
}
}
}