/*
** Copyright (c) 2011, Intel Corporation
**
** This software is licensed under the terms of the GNU General Public
** License version 2, as published by the Free Software Foundation, and
** may be copied, distributed, and modified under those terms.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*/
/*
* HAX common code for both Windows and Darwin
* Some portion of code from KVM is used in this file.
*/
#include "target-i386/hax-i386.h"
#define HAX_EMUL_ONE 0x1
#define HAX_EMUL_REAL 0x2
#define HAX_EMUL_HLT 0x4
#define HAX_EMUL_EXITLOOP 0x5
#define HAX_EMULATE_STATE_MMIO 0x1
#define HAX_EMULATE_STATE_REAL 0x2
#define HAX_EMULATE_STATE_NONE 0x3
#define HAX_EMULATE_STATE_INITIAL 0x4
struct hax_state hax_global;
int hax_support = -1;
/* Called after hax_init */
int hax_enabled()
{
return (!hax_disabled && hax_support);
}
/* Currently non-PG modes are emulated by QEMU */
int hax_vcpu_emulation_mode(CPUState *env)
{
return !(env->cr[0] & CR0_PG_MASK);
}
static int hax_prepare_emulation(CPUState *env)
{
/* Flush all emulation states */
tlb_flush(env, 1);
tb_flush(env);
/* Sync the vcpu state from hax kernel module */
hax_vcpu_sync_state(env, 0);
return 0;
}
/*
* Check whether to break the translation block loop
* Break tbloop after one MMIO emulation, or after finish emulation mode
*/
static int hax_stop_tbloop(CPUState *env)
{
switch (env->hax_vcpu->emulation_state)
{
case HAX_EMULATE_STATE_MMIO:
return 1;
case HAX_EMULATE_STATE_INITIAL:
case HAX_EMULATE_STATE_REAL:
if (!hax_vcpu_emulation_mode(env))
return 1;
break;
default:
dprint("Invalid emulation state in hax_sto_tbloop state %x\n",
env->hax_vcpu->emulation_state);
break;
}
return 0;
}
int hax_stop_emulation(CPUState *env)
{
if (hax_stop_tbloop(env))
{
env->hax_vcpu->emulation_state = HAX_EMULATE_STATE_NONE;
/*
* QEMU emulation changes vcpu state,
* Sync the vcpu state to HAX kernel module
*/
hax_vcpu_sync_state(env, 1);
return 1;
}
return 0;
}
int hax_stop_translate(CPUState *env)
{
struct hax_vcpu_state *vstate;
vstate = env->hax_vcpu;
assert(vstate->emulation_state);
if (vstate->emulation_state == HAX_EMULATE_STATE_MMIO )
return 1;
return 0;
}
int valid_hax_tunnel_size(uint16_t size)
{
return size >= sizeof(struct hax_tunnel);
}
hax_fd hax_vcpu_get_fd(CPUState *env)
{
struct hax_vcpu_state *vcpu = env->hax_vcpu;
if (!vcpu)
return HAX_INVALID_FD;
return vcpu->fd;
}
/* Current version */
uint32_t hax_cur_version = 0x2;
/* Least HAX kernel version */
uint32_t hax_lest_version = 0x1;
static int hax_get_capability(struct hax_state *hax)
{
int ret;
struct hax_capabilityinfo capinfo, *cap = &capinfo;
ret = hax_capability(hax, cap);
if (ret)
return -ENOSYS;
if ( ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) ==
HAX_CAP_STATUS_NOTWORKING ))
{
if (cap->winfo & HAX_CAP_FAILREASON_VT)
dprint("VT feature is not enabled, HAXM not working.\n");
else if (cap->winfo & HAX_CAP_FAILREASON_NX)
dprint("NX feature is not enabled, HAXM not working.\n");
return -ENXIO;
}
if (cap->wstatus & HAX_CAP_MEMQUOTA)
{
if (cap->mem_quota < hax->mem_quota)
{
dprint("The memory needed by this VM exceeds the driver limit.\n");
return -ENOSPC;
}
}
return 0;
}
static int hax_version_support(struct hax_state *hax)
{
int ret;
struct hax_module_version version;
ret = hax_mod_version(hax, &version);
if (ret < 0)
return 0;
if ( (hax_lest_version > version.cur_version) ||
(hax_cur_version < version.compat_version) )
return 0;
return 1;
}
int hax_vcpu_create(int id)
{
struct hax_vcpu_state *vcpu = NULL;
int ret;
if (!hax_global.vm)
{
dprint("vcpu %x created failed, vm is null\n", id);
return -1;
}
if (hax_global.vm->vcpus[id])
{
dprint("vcpu %x allocated already\n", id);
return 0;
}
vcpu = g_malloc(sizeof(struct hax_vcpu_state));
if (!vcpu)
{
dprint("Failed to alloc vcpu state\n");
return -ENOMEM;
}
memset(vcpu, 0, sizeof(struct hax_vcpu_state));
ret = hax_host_create_vcpu(hax_global.vm->fd, id);
if (ret)
{
dprint("Failed to create vcpu %x\n", id);
goto error;
}
vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
if (hax_invalid_fd(vcpu->fd))
{
dprint("Failed to open the vcpu\n");
ret = -ENODEV;
goto error;
}
hax_global.vm->vcpus[id] = vcpu;
ret = hax_host_setup_vcpu_channel(vcpu);
if (ret)
{
dprint("Invalid HAX tunnel size \n");
ret = -EINVAL;
goto error;
}
return 0;
error:
/* vcpu and tunnel will be closed automatically */
if (vcpu && !hax_invalid_fd(vcpu->fd))
hax_close_fd(vcpu->fd);
hax_global.vm->vcpus[id] = NULL;
g_free(vcpu);
return -1;
}
int hax_vcpu_destroy(CPUState *env)
{
struct hax_vcpu_state *vcpu = env->hax_vcpu;
if (!hax_global.vm)
{
dprint("vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
return -1;
}
if (!vcpu)
return 0;
/*
* 1. The hax_tunnel is also destroyed at vcpu_destroy
* 2. hax_close_fd will require the HAX kernel module to free vcpu
*/
hax_close_fd(vcpu->fd);
hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
g_free(vcpu);
return 0;
}
int hax_init_vcpu(CPUState *env)
{
int ret;
ret = hax_vcpu_create(env->cpu_index);
if (ret < 0)
{
dprint("Failed to create HAX vcpu\n");
exit(-1);
}
env->hax_vcpu = hax_global.vm->vcpus[env->cpu_index];
env->hax_vcpu->emulation_state = HAX_EMULATE_STATE_INITIAL;
return ret;
}
struct hax_vm *hax_vm_create(struct hax_state *hax)
{
struct hax_vm *vm;
int vm_id = 0, ret;
char *vm_name = NULL;
if (hax_invalid_fd(hax->fd))
return NULL;
if (hax->vm)
return hax->vm;
vm = g_malloc(sizeof(struct hax_vm));
if (!vm)
return NULL;
memset(vm, 0, sizeof(struct hax_vm));
ret = hax_host_create_vm(hax, &vm_id);
if (ret) {
dprint("Failed to create vm %x\n", ret);
goto error;
}
vm->id = vm_id;
vm->fd = hax_host_open_vm(hax, vm_id);
if (hax_invalid_fd(vm->fd))
{
dprint("Open vm device error:%s\n", vm_name);
goto error;
}
hax->vm = vm;
return vm;
error:
g_free(vm);
hax->vm = NULL;
return NULL;
}
int hax_vm_destroy(struct hax_vm *vm)
{
int i;
for (i = 0; i < HAX_MAX_VCPU; i++)
if (vm->vcpus[i])
{
dprint("VCPU should be cleaned before vm clean\n");
return -1;
}
hax_close_fd(vm->fd);
g_free(vm);
hax_global.vm = NULL;
return 0;
}
int hax_set_ramsize(uint64_t ramsize)
{
struct hax_state *hax = &hax_global;
memset(hax, 0, sizeof(struct hax_state));
hax->mem_quota = ram_size;
return 0;
}
int hax_init(int smp_cpus)
{
struct hax_state *hax = NULL;
struct hax_qemu_version qversion;
int ret;
hax_support = 0;
hax = &hax_global;
hax->fd = hax_mod_open();
if (hax_invalid_fd(hax->fd))
{
hax->fd = 0;
ret = -ENODEV;
goto error;
}
ret = hax_get_capability(hax);
/* In case HAXM have no such capability support */
if (ret && (ret != -ENOSYS))
{
ret = -EINVAL;
goto error;
}
if (!hax_version_support(hax))
{
dprint("Incompatible HAX version. Qemu current version %x ", hax_cur_version );
dprint("requires least HAX version %x\n", hax_lest_version);
ret = -EINVAL;
goto error;
}
hax->vm = hax_vm_create(hax);
if (!hax->vm)
{
dprint("Failed to create HAX VM\n");
ret = -EINVAL;
goto error;
}
qversion.cur_version = hax_cur_version;
qversion.least_version = hax_lest_version;
hax_notify_qemu_version(hax->vm->fd, &qversion);
hax_support = 1;
qemu_register_reset( hax_reset_vcpu_state, 0, NULL);
return 0;
error:
if (hax->vm)
hax_vm_destroy(hax->vm);
if (hax->fd)
hax_mod_close(hax);
return ret;
}
int hax_handle_fastmmio(CPUState *env, struct hax_fastmmio *hft)
{
uint64_t buf = 0;
/*
* With fast MMIO, QEMU need not sync vCPU state with HAXM
* driver because it will only invoke MMIO handler
* However, some MMIO operations utilize virtual address like qemu_pipe
* Thus we need to sync the CR0, CR3 and CR4 so that QEMU
* can translate the guest virtual address to guest physical
* address
*/
env->cr[0] = hft->_cr0;
env->cr[2] = hft->_cr2;
env->cr[3] = hft->_cr3;
env->cr[4] = hft->_cr4;
buf = hft->value;
cpu_physical_memory_rw(hft->gpa, &buf, hft->size, hft->direction);
if (hft->direction == 0)
hft->value = buf;
return 0;
}
int hax_handle_io(CPUState *env, uint32_t df, uint16_t port, int direction,
int size, int count, void *buffer)
{
uint8_t *ptr;
int i;
if (!df)
ptr = (uint8_t *)buffer;
else
ptr = buffer + size * count - size;
for (i = 0; i < count; i++)
{
if (direction == HAX_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(port));
break;
case 2:
stw_p(ptr, cpu_inw(port));
break;
case 4:
stl_p(ptr, cpu_inl(port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(port, ldub_p(ptr));
break;
case 2:
cpu_outw(port, lduw_p(ptr));
break;
case 4:
cpu_outl(port, ldl_p(ptr));
break;
}
}
if (!df)
ptr += size;
else
ptr -= size;
}
return 0;
}
static int hax_vcpu_interrupt(CPUState *env)
{
struct hax_vcpu_state *vcpu = env->hax_vcpu;
struct hax_tunnel *ht = vcpu->tunnel;
/*
* Try to inject an interrupt if the guest can accept it
* Unlike KVM, the HAX kernel module checks the eflags, instead.
*/
if (ht->ready_for_interrupt_injection &&
(env->interrupt_request & CPU_INTERRUPT_HARD))
{
int irq;
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
irq = cpu_get_pic_interrupt(env);
if (irq >= 0) {
hax_inject_interrupt(env, irq);
}
}
/*
* If we have an interrupt pending but the guest is not ready to
* receive it, request an interrupt window exit. This will cause
* a return to userspace as soon as the guest is ready to receive
* an interrupt.
*/
if ((env->interrupt_request & CPU_INTERRUPT_HARD))
ht->request_interrupt_window = 1;
else
ht->request_interrupt_window = 0;
return 0;
}
void hax_raise_event(CPUState *env)
{
struct hax_vcpu_state *vcpu = env->hax_vcpu;
if (!vcpu)
return;
vcpu->tunnel->user_event_pending = 1;
}
/*
* Request the HAX kernel module to run the CPU for us until one of
* the following occurs:
* 1. Guest crashes or is shut down
* 2. We need QEMU's emulation like when the guest executes a MMIO
* instruction or guest enters emulation mode (non-PG mode)
* 3. Guest executes HLT
* 4. Qemu has Signal/event pending
* 5. An unknown VMX-exit happens
*/
extern void qemu_system_reset_request(void);
static int hax_vcpu_hax_exec(CPUState *env)
{
int ret = 0;
struct hax_vcpu_state *vcpu = env->hax_vcpu;
struct hax_tunnel *ht = vcpu->tunnel;
if (hax_vcpu_emulation_mode(env))
{
dprint("Trying to vcpu execute at eip:%lx\n", env->eip);
return HAX_EMUL_EXITLOOP;
}
do {
int hax_ret;
if (env->exit_request) {
ret = HAX_EMUL_EXITLOOP ;
break;
}
hax_vcpu_interrupt(env);
hax_ret = hax_vcpu_run(vcpu);
/* Simply continue the vcpu_run if system call interrupted */
if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
dprint("io window interrupted\n");
continue;
}
if (hax_ret < 0)
{
dprint("vcpu run failed for vcpu %x\n", vcpu->vcpu_id);
abort();
}
switch (ht->_exit_status)
{
case HAX_EXIT_IO:
{
ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
ht->pio._direction,
ht->pio._size, ht->pio._count, vcpu->iobuf);
}
break;
case HAX_EXIT_MMIO:
ret = HAX_EMUL_ONE;
break;
case HAX_EXIT_FAST_MMIO:
ret = hax_handle_fastmmio(env,
(struct hax_fastmmio *)vcpu->iobuf);
break;
case HAX_EXIT_REAL:
ret = HAX_EMUL_REAL;
break;
/* Guest state changed, currently only for shutdown */
case HAX_EXIT_STATECHANGE:
dprint("VCPU shutdown request\n");
qemu_system_reset_request();
hax_prepare_emulation(env);
cpu_dump_state(env, stderr, fprintf, 0);
ret = HAX_EMUL_EXITLOOP;
break;
case HAX_EXIT_UNKNOWN_VMEXIT:
dprint("Unknown VMX exit %x from guest\n", ht->_exit_reason);
qemu_system_reset_request();
hax_prepare_emulation(env);
cpu_dump_state(env, stderr, fprintf, 0);
ret = HAX_EMUL_EXITLOOP;
break;
case HAX_EXIT_HLT:
if (!(env->interrupt_request & CPU_INTERRUPT_HARD) &&
!(env->interrupt_request & CPU_INTERRUPT_NMI)) {
/* hlt instruction with interrupt disabled is shutdown */
env->eflags |= IF_MASK;
env->halted = 1;
env->exception_index = EXCP_HLT;
ret = HAX_EMUL_HLT;
}
break;
/* these situation will continue to hax module */
case HAX_EXIT_INTERRUPT:
case HAX_EXIT_PAUSED:
break;
default:
dprint("Unknow exit %x from hax\n", ht->_exit_status);
qemu_system_reset_request();
hax_prepare_emulation(env);
cpu_dump_state(env, stderr, fprintf, 0);
ret = HAX_EMUL_EXITLOOP;
break;
}
}while (!ret);
if (env->exit_request) {
env->exit_request = 0;
env->exception_index = EXCP_INTERRUPT;
}
return ret;
}
/*
* return 1 when need to emulate, 0 when need to exit loop
*/
int hax_vcpu_exec(CPUState *env)
{
int next = 0, ret = 0;
struct hax_vcpu_state *vcpu;
if (env->hax_vcpu->emulation_state != HAX_EMULATE_STATE_NONE)
return 1;
vcpu = env->hax_vcpu;
next = hax_vcpu_hax_exec(env);
switch (next)
{
case HAX_EMUL_ONE:
ret = 1;
env->hax_vcpu->emulation_state = HAX_EMULATE_STATE_MMIO;
hax_prepare_emulation(env);
break;
case HAX_EMUL_REAL:
ret = 1;
env->hax_vcpu->emulation_state =
HAX_EMULATE_STATE_REAL;
hax_prepare_emulation(env);
break;
case HAX_EMUL_HLT:
case HAX_EMUL_EXITLOOP:
break;
default:
dprint("Unknown hax vcpu exec return %x\n", next);
abort();
}
return ret;
}
#define HAX_RAM_INFO_ROM 0x1
static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
{
memset(lhs, 0, sizeof(struct segment_desc_t ));
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->operand_size = 0;
lhs->desc = 1;
lhs->long_mode = 0;
lhs->granularity = 0;
lhs->available = 0;
}
static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags =
(rhs->type << DESC_TYPE_SHIFT)
| (rhs->present * DESC_P_MASK)
| (rhs->dpl << DESC_DPL_SHIFT)
| (rhs->operand_size << DESC_B_SHIFT)
| (rhs->desc * DESC_S_MASK)
| (rhs->long_mode << DESC_L_SHIFT)
| (rhs->granularity * DESC_G_MASK)
| (rhs->available * DESC_AVL_MASK);
}
static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
memset(lhs, 0, sizeof(struct segment_desc_t));
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = rhs->selector & 3;
lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
lhs->desc = (flags & DESC_S_MASK) != 0;
lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
lhs->granularity = (flags & DESC_G_MASK) != 0;
lhs->available = (flags & DESC_AVL_MASK) != 0;
}
static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
{
target_ulong reg = *hax_reg;
if (set)
*hax_reg = *qemu_reg;
else
*qemu_reg = reg;
}
/* The sregs has been synced with HAX kernel already before this call */
static int hax_get_segments(CPUState *env, struct vcpu_state_t *sregs)
{
get_seg(&env->segs[R_CS], &sregs->_cs);
get_seg(&env->segs[R_DS], &sregs->_ds);
get_seg(&env->segs[R_ES], &sregs->_es);
get_seg(&env->segs[R_FS], &sregs->_fs);
get_seg(&env->segs[R_GS], &sregs->_gs);
get_seg(&env->segs[R_SS], &sregs->_ss);
get_seg(&env->tr, &sregs->_tr);
get_seg(&env->ldt, &sregs->_ldt);
env->idt.limit = sregs->_idt.limit;
env->idt.base = sregs->_idt.base;
env->gdt.limit = sregs->_gdt.limit;
env->gdt.base = sregs->_gdt.base;
return 0;
}
static int hax_set_segments(CPUState *env, struct vcpu_state_t *sregs)
{
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
} else {
set_seg(&sregs->_cs, &env->segs[R_CS]);
set_seg(&sregs->_ds, &env->segs[R_DS]);
set_seg(&sregs->_es, &env->segs[R_ES]);
set_seg(&sregs->_fs, &env->segs[R_FS]);
set_seg(&sregs->_gs, &env->segs[R_GS]);
set_seg(&sregs->_ss, &env->segs[R_SS]);
if (env->cr[0] & CR0_PE_MASK) {
/* force ss cpl to cs cpl */
sregs->_ss.selector = (sregs->_ss.selector & ~3) |
(sregs->_cs.selector & 3);
sregs->_ss.dpl = sregs->_ss.selector & 3;
}
}
set_seg(&sregs->_tr, &env->tr);
set_seg(&sregs->_ldt, &env->ldt);
sregs->_idt.limit = env->idt.limit;
sregs->_idt.base = env->idt.base;
sregs->_gdt.limit = env->gdt.limit;
sregs->_gdt.base = env->gdt.base;
return 0;
}
/*
* After get the state from the kernel module, some
* qemu emulator state need be updated also
*/
static int hax_setup_qemu_emulator(CPUState *env)
{
#define HFLAG_COPY_MASK ~( \
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
uint32_t hflags;
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
return 0;
}
static int hax_sync_vcpu_register(CPUState *env, int set)
{
struct vcpu_state_t regs;
int ret;
memset(®s, 0, sizeof(struct vcpu_state_t));
if (!set)
{
ret = hax_sync_vcpu_state(env, ®s, 0);
if (ret < 0)
return -1;
}
/*generic register */
hax_getput_reg(®s._rax, &env->regs[R_EAX], set);
hax_getput_reg(®s._rbx, &env->regs[R_EBX], set);
hax_getput_reg(®s._rcx, &env->regs[R_ECX], set);
hax_getput_reg(®s._rdx, &env->regs[R_EDX], set);
hax_getput_reg(®s._rsi, &env->regs[R_ESI], set);
hax_getput_reg(®s._rdi, &env->regs[R_EDI], set);
hax_getput_reg(®s._rsp, &env->regs[R_ESP], set);
hax_getput_reg(®s._rbp, &env->regs[R_EBP], set);
hax_getput_reg(®s._rflags, &env->eflags, set);
hax_getput_reg(®s._rip, &env->eip, set);
if (set)
{
regs._cr0 = env->cr[0];
regs._cr2 = env->cr[2];
regs._cr3 = env->cr[3];
regs._cr4 = env->cr[4];
hax_set_segments(env, ®s);
}
else
{
env->cr[0] = regs._cr0;
env->cr[2] = regs._cr2;
env->cr[3] = regs._cr3;
env->cr[4] = regs._cr4;
hax_get_segments(env, ®s);
}
if (set)
{
ret = hax_sync_vcpu_state(env, ®s, 1);
if (ret < 0)
return -1;
}
if (!set)
hax_setup_qemu_emulator(env);
return 0;
}
static void hax_msr_entry_set(struct vmx_msr *item,
uint32_t index, uint64_t value)
{
item->entry = index;
item->value = value;
}
static int hax_get_msrs(CPUState *env)
{
struct hax_msr_data md;
struct vmx_msr *msrs = md.entries;
int ret, i, n;
n = 0;
msrs[n++].entry = MSR_IA32_SYSENTER_CS;
msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
msrs[n++].entry = MSR_IA32_TSC;
md.nr_msr = n;
ret = hax_sync_msr(env, &md, 0);
if (ret < 0)
return ret;
for (i = 0; i < md.done; i++) {
switch (msrs[i].entry) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = msrs[i].value;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = msrs[i].value;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = msrs[i].value;
break;
case MSR_IA32_TSC:
env->tsc = msrs[i].value;
break;
}
}
return 0;
}
static int hax_set_msrs(CPUState *env)
{
struct hax_msr_data md;
struct vmx_msr *msrs;
msrs = md.entries;
int n = 0;
memset(&md, 0, sizeof(struct hax_msr_data));
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
md.nr_msr = n;
md.done = 0;
return hax_sync_msr(env, &md, 1);
}
static int hax_get_fpu(CPUState *env)
{
struct fx_layout fpu;
int i, ret;
ret = hax_sync_fpu(env, &fpu, 0);
if (ret < 0)
return ret;
env->fpstt = (fpu.fsw >> 11) & 7;
env->fpus = fpu.fsw;
env->fpuc = fpu.fcw;
for (i = 0; i < 8; ++i)
env->fptags[i] = !((fpu.ftw >> i) & 1);
memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
memcpy(env->xmm_regs, fpu.mmx_1, sizeof(fpu.mmx_1));
memcpy((XMMReg *)(env->xmm_regs) + 8, fpu.mmx_2, sizeof(fpu.mmx_2));
env->mxcsr = fpu.mxcsr;
return 0;
}
static int hax_set_fpu(CPUState *env)
{
struct fx_layout fpu;
int i;
memset(&fpu, 0, sizeof(fpu));
fpu.fsw = env->fpus & ~(7 << 11);
fpu.fsw |= (env->fpstt & 7) << 11;
fpu.fcw = env->fpuc;
for (i = 0; i < 8; ++i)
fpu.ftw |= (!env->fptags[i]) << i;
memcpy(fpu.st_mm, env->fpregs, sizeof (env->fpregs));
memcpy(fpu.mmx_1, env->xmm_regs, sizeof (fpu.mmx_1));
memcpy(fpu.mmx_2, (XMMReg *)(env->xmm_regs) + 8, sizeof (fpu.mmx_2));
fpu.mxcsr = env->mxcsr;
return hax_sync_fpu(env, &fpu, 1);
}
int hax_arch_get_registers(CPUState *env)
{
int ret;
ret = hax_sync_vcpu_register(env, 0);
if (ret < 0)
return ret;
ret = hax_get_fpu(env);
if (ret < 0)
return ret;
ret = hax_get_msrs(env);
if (ret < 0)
return ret;
return 0;
}
static int hax_arch_set_registers(CPUState *env)
{
int ret;
ret = hax_sync_vcpu_register(env, 1);
if (ret < 0)
{
dprint("Failed to sync vcpu reg\n");
return ret;
}
ret = hax_set_fpu(env);
if (ret < 0)
{
dprint("FPU failed\n");
return ret;
}
ret = hax_set_msrs(env);
if (ret < 0)
{
dprint("MSR failed\n");
return ret;
}
return 0;
}
void hax_vcpu_sync_state(CPUState *env, int modified)
{
if (hax_enabled()) {
if (modified)
hax_arch_set_registers(env);
else
hax_arch_get_registers(env);
}
}
/*
* This is simpler than the one for KVM because we don't support
* direct I/O device assignment at this point.
*/
int hax_sync_vcpus(void)
{
if (hax_enabled())
{
CPUState *env;
env = first_cpu;
if (!env)
return 0;
for (; env != NULL; env = env->next_cpu) {
int ret;
ret = hax_arch_set_registers(env);
if (ret < 0)
{
dprint("Failed to sync HAX vcpu context\n");
exit(1);
}
}
}
return 0;
}
void hax_reset_vcpu_state(void *opaque)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu)
{
if (env->hax_vcpu)
{
env->hax_vcpu->emulation_state = HAX_EMULATE_STATE_INITIAL;
env->hax_vcpu->tunnel->user_event_pending = 0;
env->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
}
}
}